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Abstract

Natural auditory scenes possess highly structured statistical regularities, which are dictated by the physics of sound production in
nature, such as scale-invariance. We recently identified that natural water sounds exhibit a particular type of scale invariance, in
which the temporal modulation within spectral bands scales with the centre frequency of the band. Here, we tested how neurons
in the mammalian primary auditory cortex encode sounds that exhibit this property, but differ in their statistical parameters. The
stimuli varied in spectro-temporal density and cyclo-temporal statistics over several orders of magnitude, corresponding to a
range of water-like percepts, from pattering of rain to a slow stream. We recorded neuronal activity in the primary auditory cortex
of awake rats presented with these stimuli. The responses of the majority of individual neurons were selective for a subset of
stimuli with specific statistics. However, as a neuronal population, the responses were remarkably stable over large changes in
stimulus statistics, exhibiting a similar range in firing rate, response strength, variability and information rate, and only minor varia-
tion in receptive field parameters. This pattern of neuronal responses suggests a potentially general principle for cortical encoding
of complex acoustic scenes: while individual cortical neurons exhibit selectivity for specific statistical features, a neuronal popula-
tion preserves a constant response structure across a broad range of statistical parameters.

Introduction

Natural environmental sounds span a broad range of frequencies,
and possess characteristic spectro-temporal statistical regularities in
their structure (Voss & Clarke, 1975; Singh & Theunissen, 2003).
Encoding information about these statistical regularities is an impor-
tant processing step in the central auditory pathway, required for
accurate analysis of an auditory scene (Bregman, 1990; Chan-
drasekaran et al., 2009). Spectro-temporal statistical regularities in
sounds can be used by the auditory system to recognize specific
sounds and distinguish them from each other (Woolley et al., 2005;
Geffen et al., 2011; McDermott & Simoncelli, 2011; McDermott
et al., 2013; Gervain et al., 2014).
The power spectrum of natural sounds scales inversely with the

frequency, following the 1/f statistics law (Voss & Clarke, 1975;
Attias & Schreiner, 1997; Singh & Theunissen, 2003). Furthermore,
the overall power spectrum and the temporal modulation spectrum
also obey scale-invariant statistics. Neurons in the central auditory

pathway encode small variations in spectro-temporally modulated
stimuli (Elhilali et al., 2004) and respond preferentially to sounds
exhibiting natural characteristics (Nelken et al., 1999; Woolley
et al., 2005), and 1/f frequency spectrum in particular (Escabi &
Read, 2005; Garcia-Lazaro et al., 2006; Rodriguez et al., 2010).
Changes in the statistical structure of stimuli, including the spectro-
temporal density, or the spectro-temporal range, affect response
properties of cortical neurons, leading to gain adaptation in their fir-
ing rate (Blake & Merzenich, 2002; Valentine & Eggermont, 2004;
Asari & Zador, 2009; Pienkowski & Eggermont, 2009; Eggermont,
2011; Rabinowitz et al., 2011; Natan et al., 2015).
Recently, we identified an additional form of scale-invariance in

environmental sounds (Geffen et al., 2011; Gervain et al., 2014). In
sounds of running water, a subset of environmental sounds, the
temporal modulation spectrum across spectral bands scales with the
centre frequency of the band (Geffen et al., 2011; Gervain et al.,
2014). When the recording of running water was stretched or com-
pressed temporally, it was still perceived as a natural, water-like
sound (Geffen et al., 2011). Such a relationship corresponds to the
optimal representation of a sound waveform under sparse coding
assumptions (Lewicki, 2002; Garcia-Lazaro et al., 2006; Smith &
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Lewicki, 2006). Sounds that obeyed the invariant scaling relation-
ship but which varied in cyclo-temporal coefficients and spectro-
temporal sound density evoked different percepts, ranging from
pattering of rain to sound of a waterfall to artificial ringing. In the
present study, we adapted this set of stimuli to the hearing range of
rats to examine how changing spectro-temporal statistical properties
affect responses of neurons in the primary auditory cortex (A1), an
essential area for encoding complex and behaviourally meaningful
sounds (Nelken, 2004; Aizenberg & Geffen, 2013; Carruthers et al.,
2013, 2015; Mizrahi et al., 2014; Aizenberg et al., 2015).
We recorded the responses of neurons in A1 of awake rats to nat-

uralistic, scale-invariant sounds, designed to mimic the variety of
natural water sounds, as their statistical structure was varied. We
found that individual neurons exhibited tuning for a specific cyclo-
temporal coefficient and spectro-temporal density of the stimulus,
yet over the population of neurons, sounds with vastly different
statistics evoked a similar range of response parameters.

Materials and methods

This study was performed in strict accordance with the recommen-
dations in the Guide for the Care and Use of Laboratory Animals of
the National Institutes of Health. The protocol was approved by the
Institutional Animal Care and Use Committee of the University of
Pennsylvania.

Animals

Subjects in all experiments were adult male rats. Rats were housed
in a temperature- and humidity-controlled vivarium on a reversed
24- light–dark cycle with food and water provided ad libiditum.

Surgery

Sprague Dawley or Long Evans adult male rats (n = 5) were anaes-
thetized with an intraperitoneal injection of a mixture of ketamine
(60 mg per kg body weight) and dexmedetomidine (0.25 mg/kg).
Buprenorphine (0.1 mg/kg) was administered as an operative anal-
gesic with ketoprofen (5 mg/kg) as post-operative analgesic. Rats
were implanted with chronic custom-built multi-tetrode microdrives
as previously described (Otazu et al., 2009). The animal’s head was
secured in a stereotactic frame (David Kopf Instruments, Tujunga,
CA, USA). Following the recession of the temporal muscle, a cran-
iotomy and durotomy were performed over the location of the pri-
mary auditory cortex. A microdrive housed eight tetrodes, of which
two were used for reference and six for signal channels. Each tetrode
consisted of four polyimide-coated Nichrome wires (Kenthal-Palm-
Coast, FL, USA; wire diameter of 12 lm) twisted together, and was
controlled independently with a turn of a screw. Two screws (one
reference and one ground) were inserted in the skull at locations dis-
tal from A1. The tetrodes were implanted 4.5–6.5 mm posterior to
bregma and 6.0 mm left of the midline, covered with agar solution
(3.5%) and secured to the skull with dental acrylic (Metabond) and
dental cement. The location of the electrodes was verified based on
the stereotaxic coordinates, the electrode position in relation to brain
surface blood vessels, and through histological reconstruction of the
electrode tracks post-mortem. The electrodes were gradually
advanced below the brain surface in daily increments of 40–50 lm.
The location was also confirmed by identifying the frequency tuning
curve of the recorded units. The recorded units’ best frequency,
which elicited the highest firing rate, spanned the range of rat hearing
and was consistent with previous studies (Sally & Kelly, 1988).

Stimulus construction

To generate scale-invariant sounds, the sound waveform, y(t), was
modelled as a sum of droplets, where each droplet, xi(ai, fi, Q, si; t)
was modelled as a gammatone function (Geffen et al., 2011):

yðtÞ ¼
X

i

xiðai; fi;Q; si; tÞ

¼
X

i

ai
fi
Q
ðt � siÞe�f ðt�siÞ=Qi sinð2pfiðt � siÞÞ

with parameters amplitude, ai, frequency, fi, onset time, si, and cycle
constant of decay, Q, drawn at random from distinct probability dis-
tributions. fi was uniform random in log-frequency space, between
400 and 80000 Hz; onset time was uniform random with mean rate
r. Five distinct 7-s stimuli were generated, each comprising a differ-
ent set of values of Q and r (in units of droplets/octave/s), chosen
from: Stimulus 1: Q = 2, rmed = 530; Stimulus 2: Q = 0.5,
rmed = 530; Stimulus 3: Q = 8, rmed = 530; Stimulus 4: Q = 2,
rlow = 53; Stimulus 5: Q = 2, rhigh = 5300. The resulting wave-
forms were normalized for equal root-mean-square sound pressure
level. Further, to make the signal punctate within each spectral band,
the amplitude distribution of the droplets was drawn from an inverse
square distribution, pðzÞ� 1

z2 (Geffen et al., 2011). The distributions
of droplet amplitude and frequencies were exactly matched between
the stimuli – all sounds generated at the same rate were produced
with the same random seed.
Each stimulus was 7 s long, and repeated at least 40 times with

an inter-stimulus interval of 1 s.

Neural recordings

Neural signals were analysed as previously described (Carruthers
et al., 2013, 2015; Aizenberg et al., 2015; Natan et al., 2015). Neu-
ronal signals were acquired daily from 24 chronically implanted elec-
trodes in awake, freely moving rats using a Neuralynx Cheetah
system. The neuronal signal was filtered between 0.6 and 6.0 kHz,
digitized and recorded at 32 kHz. Discharge waveforms were clus-
tered into single-unit and multi-unit clusters using either Neuralynx
Spike Sort 3D or Plexon Off-line Spike Sorter software (Carruthers
et al., 2013). Discharge waveforms had to form a visually identifiable
distinct cluster in a projection onto a three-dimensional subspace
(Otazu et al., 2009; Bizley et al., 2010; Brasselet et al., 2012).
The acoustical stimulus was delivered via a magnetic speaker

(MF-1, Tucker-Davis Technologies, Alachua, FL, USA) positioned
above the recording chamber. The speaker output was calibrated
using Bruel and Kjaer 1/4-inch free-field microphone type 4939,
which was placed at the location that would normally be occupied
by the animal’s ear, by presenting a recording of repeated white
noise bursts and tone pips between 400 and 80 000 Hz. From these
measurements, the speaker transfer function and its inverse were
computed. The input to the microphone was adjusted using the
inverse of the transfer function such that the speaker output was
70 dB (sound pressure level relative to 20 lP, SPL) tones, within
3 dB, between 400 and 80 000 Hz. Spectral and temporal distortion
products were measured in response to tone pips between 1 and
80 kHz, and were found to be >50 dB below the SPL of the funda-
mental (Carruthers et al., 2013). All stimuli were presented at
400 kHz sampling rate, using custom-built software based on a
commercially available data acquisition toolbox (Mathworks, Inc.,
Natick, MA, USA), and a high-speed data acquisition card (National
Instruments, Inc., Austin, TX, USA).
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Frequency response analysis

We first presented a stimulus designed to map the frequency response
function of the recorded units: consisting of 50 tones, each 50 ms
long, between 400 and 80 000 Hz, logarithmically spaced, at 70 dB
SPL, repeated five times. The response strength, which combined
onset and offset responses, was computed as the mean firing rate of
neurons during 0–80 ms after tone onset. The best frequency was
computed as the frequency of the tone that evoked the maximum
response strength (Brown & Harrison, 2009; Carruthers et al., 2013).

Droplet stimulus representation

The stimulus, s(f, t), was represented either as the spectrogram of
the sound waveform (2048-point spectrogram computed in Matlab)
or as a matrix of droplet onset time/magnitude. The droplet onset
matrix was computed from the stimulus design matrix, by binning
the droplet onset time into 5-ms bins, and droplet centre frequency
into 0.0772-octave windows. The value of each point of the
matrix was the sum of magnitudes of all droplets originating in
that bin.

Firing rate and response strength

The discharge times in each trial were histogrammed in 1-ms bins
after stimulus onset (0–8 s), averaged across trials, and smoothed
with a Gaussian filter with 3-ms standard deviation. Mean firing rate
was computed as the response averaged across the first 7 s of stimu-
lus presentation. The response strength was computed as the differ-
ence between the firing rate during the stimulus and that during the
baseline, divided by the standard error of the mean of the firing rate
at the baseline over trials. The response was considered significant
if the response strength exceeded 6.

Selectivity index and sparseness

For each neuron, the selectivity index was computed as the differ-
ence between the strongest and the mean response strength to the
five stimuli for each unit, normalized by the strongest response.
For each neuron, sparseness, S, was computed using the following

formula (Weliky et al., 2003):

S ¼ 1�
P

i
v
N

� �2
P

i
v2i
N

;

where vi is the firing rate (spikes/s) of a single neuron to the ith
stimulus, and n is the total number of stimuli (n = 5). S takes a
value between 0 and 1, where a higher value indicates that the neu-
ron responds to a narrow range of stimuli and a lower value indi-
cates that the neuron responds to a broad range of stimuli.

Linear-non-linear model fit

The response of each unit, r(t), was computed as the probability of
emitting a discharge within a 5-ms temporal bin relative to the onset
of the stimulus. We fitted a linear – non-linear model (LN model)
computed using a standard reverse correlation technique (Theunissen
et al., 2001; Baccus & Meister, 2002; Escabi & Read, 2003; Geffen
et al., 2007), using a spectrogram or the droplet-based representation
as an input.
To determine the droplet-temporal receptive field (DTRF), the

stimulus was represented in terms of the onset time and maximum

amplitude of each droplet within its frequency band. One hundred
uniformly, logarithmically distributed frequency bands were used
(range: 0.4–80 kHz). DTRF was computed as the normalized aver-
age of the stimulus preceding each discharge.
To determine the spectrogram-based spectro-temporal receptive

field (STRF), the stimulus was represented as a spectrogram of the
waveform. We used the Auditory Toolbox to compute a cochlea-
gram-based representation of the stimulus (Lyon, 1982; Meddis
et al., 1990; Slaney, 1998) with sampling rate of 400 kHz and deci-
mation factor 100. STRF and cochleagram-based receptive fields
were computed as reverse-correlation between discharge times and
the spectrogram or cochleagram of the stimulus, using ridge regres-
sion (Theunissen et al., 2001).
The linear prediction of the firing rate was computed as the con-

volution of the stimulus with DTRF, cochleagram-based receptive
field or STRF. The instantaneous non-linearity was computed
directly from firing rate vs. linear prediction plot (Baccus & Meister,
2002; Geffen et al., 2007).
The model parameters were fitted to the data over randomly

selected 50% of trials. The remaining 50% of trials were used to
test the prediction accuracy of the model (Ahn et al., 2014). The
prediction accuracy of the LN model was assessed by computing
the coefficient of correlation between the predicted and recorded
firing rate. Only neurons with correlation coefficient above 0.13
for either droplet-based or spectrogram-based prediction for at least
one stimulus were included in the comparisons for model predic-
tion quality over different variants of the model (Figs 5 and 7).
This value was chosen as the elbow in the histogram of model
prediction correlation coefficients, followed by visual inspection of
the predicted and actual firing rates for the cases close to the cho-
sen threshold.

Receptive field measurement

The spectral width, temporal width, time to peak and peak fre-
quency of the positive lobe of the DTRF were computed using stan-
dard methods (Woolley et al., 2006; Shechter & Depireux, 2007;
Schneider & Woolley, 2010). DTRF was denoised by setting all val-
ues outside of a significant positive cluster of pixels to 0. To deter-
mine the significance of the cluster, the z-score of pixels was
computed relative to the baseline values from a DTRF generated
with scrambled spike trains, using the Stat4ci toolbox (Chauvin
et al., 2005). To measure temporal parameters of the receptive field,
the positive portion of the cluster-corrected DTRF was averaged
across frequencies, and fitted with a one-dimensional gaussian filter.
Delay to peak was defined as the centre of the gaussian fit. Tempo-
ral width was defined as twice the standard deviation of the gaussian
fit. Likewise, to measure spectral parameters of the DTRF, the
DTRF was averaged across time, and fitted with a one-dimensional
gaussian. Peak frequency and spectral width were defined as the
centre and 2 9 standard deviation of the gaussian fit, respectively.
Only DTRFs that produced prediction accuracy of 0.13 or higher
over the full set of trials for at least one of the stimuli were included
in the analysis.

Fano factor

A Fano factor was computed as the mean of the variance of the
firing rate over individual trials (in 50-ms bins), divided by the
mean firing rate in each bin. Because of the sparseness of
responses, only ten bins with the highest firing rates were used for
each neuron.
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Information measured

Mutual information was computed between the response and the
stimulus as previously described (Magri et al., 2009; Kayser et al.,
2010). The mutual information between stimuli S and neural
responses V is defined as:

IðS;VÞ ¼
X

v;s

PðsÞPðvjsÞ log2
PðvjsÞ
PðvÞ

where P(s) is the probability of presenting stimulus s, P(v|s) is the
probability of observing response v when stimulus s is presented,
and P(v) is the probability of observing response v across all trials
to any stimulus. A value of zero would indicate that there is no rela-
tionship between the stimulus and the response.
The 7-s stimulus was separated into seven ‘chunks’, each 1 s

long. Mutual information was computed for 50 randomly selected
responses to each of the stimulus ‘chunks’, and averaged. Each
instance of the response was a randomly selected spike count in six
consecutive 2-ms bins to a stimulus chunk (Kayser et al., 2010).
These parameters were selected following a pilot calculation of
mutual information on a subset of data with variable timing and
number of bins.

Statistical comparisons

Samples with n < 50 that did not pass the Shapiro–Wilk test for
normality were compared using a Wilcoxon signed rank test. Mea-
surements across different stimulus conditions with n > 50 were
compared via paired Student’s t-test, with a post-hoc Bonferroni
multiple-comparison correction when appropriate unless otherwise
noted. P < 0.05 was considered significant, unless otherwise noted.

Results

We characterized the responses of neurons in the auditory cortex to
acoustic stimuli designed to capture the statistical properties of natu-
ral water sounds. To construct these stimuli, we adapted the random
droplet stimuli that were originally constructed to mimic the sound
percept of water sounds (Geffen et al., 2011; Gervain et al., 2014),
for presentation in the electrophysiological recordings to rats by
expanding the frequency range and sample rate. The stimulus con-
sisted of a superposition of gammatones, which can be thought of
as individual droplet sounds, that are uniformly distributed in log-
frequency space, and in time (Fig. 1A). The amplitude of each dro-
plet sound was drawn from a random probability distribution, as
described in the Methods. The length of each droplet sound was
scaled relative to its frequency, to mimic the statistical structure of
environmental sounds (Fig. 1B) (Geffen et al., 2011).
We varied two stimulus parameters: the cyclo-temporal coeffi-

cient, Q, and the droplet density, r (Geffen et al., 2011). Q denotes
the ratio between the time constant of decay for the individual dro-
plets, and their centre frequency. As such, it regulates how many
cycles are contained within each droplet. Sounds with high Q have
a sustained quality to them, sounding metallic. Sounds with Q = 2
sound natural, water-like. Sounds with low Q sound like pattering
of rain. For very low Q, sounds are static-like, resembling fire crack-
ling or similar fire-like sounds. r specifies how many droplets per
second are combined to generate the stimulus. Sounds with rhigh and
Q = 2 sound like a fast waterfall, and with rlow and Q = 2 sound
like dripping water (Geffen et al., 2011).
To cover the range of variability expected from natural sounds,

we selected three values of Q and r to construct five random

droplet stimuli (Geffen et al., 2011) (Fig. 1A). The probability
density of the stimulus gammatone transform exhibited a logarith-
mic relationship within distinct spectral bands. The density curves
overlapped across a vast range of frequencies, demonstrating that
the stimulus preserved the self-similar scaling structure, from 1 to
40 kHz (Fig. 1C). Furthermore, these stimuli had a logarithmic
power spectrum (Fig. 1D). This indicates that these sounds pos-
sessed scale-invariance not just in the power spectrum, but also in
temporal statistics across spectral channels. The random droplet
stimulus allowed us to measure not only the response strength,
but also the temporal and spectral time course of the dependency
of the responses on the stimulus for the different statistical
parameters.

The stimulus reliably drives auditory-evoked responses in the
primary auditory cortex

We recorded the activity of 654 units in the primary auditory cor-
tex in awake rats, in response to the five variants of the random
droplet stimulus. We used the stimulus with Q = 2, rmed, as the
baseline stimulus, as this stimulus was perceived as most natural
by human listeners (Geffen et al., 2011). Individual units reliably
followed the stimulus, repeated 50 times, exhibiting a significantly
modified level of activity during the stimulus presentation, as com-
pared with baseline responses (n = 368 out of 654, response
strength > 6, Fig. 2A–C).
The types of responses ranged from sparse, time-locked responses

to sustained responses (Fig. 2B and C). Two representative neuronal
responses are depicted in Fig. 2B and C. Neuron 1 exhibited ele-
vated responses throughout the stimulus presentation (Fig. 2B),
whereas neuron 2 exhibited sparse responses (Fig. 2C).
The recorded units spanned a broad range of best frequencies,

corresponding to the hearing range of rats. Neurons across the full
range of best frequencies exhibited significant responses to the stim-
ulus (Fig. 2D, n = 368), as expected for a broadband stimulus.

Selectivity of neuronal responses for specific stimulus
statistics

We next tested whether and how changing the spectro-temporal sta-
tistical structure of the stimulus affected neuronal response patterns.
The responses of the same neuron to variants of the stimuli included
time-locked excitatory responses, elevated sustained responses or
suppressed responses (Fig. 3).
The majority of recorded units exhibited selectivity for a subset

of the stimuli. Time-locked responses to a subset of stimuli were
more common (Fig. 3A). Figure 3A depicts a neuron that exhibited
time-locked, sparse responses to stimuli of Q = 2, rlow or rmed, and
Q = 8, rate rhigh. The faster fluctuating (Q = 0.5) or more dense
(rhigh) stimuli were less efficient in driving this neuron. Some neu-
rons exhibited sustained responses (Fig. 3B). The neuron whose
response is depicted in Fig. 3B exhibited an elevated firing rate, but
not precise time locking to the stimulus. It was most responsive for
the stimulus with Q = 0.5, rmed. Some neurons responded signifi-
cantly to all five stimuli (Fig. 3C and D). While elevated responses
(Fig. 3C) were more common, some suppressed responses were also
observed (Fig. 3D).
To assay selectivity in neuronal responses to different stimuli, we

computed the selectivity index and the sparseness index. The selec-
tivity index was measured as the difference between the strongest
and the mean response strength to the five stimuli for each unit, nor-
malized by the strongest response (Fig. 4A). This measure is 1 if
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the neuron responds to only one stimulus and 0 if it responds to all
stimuli with equal strength. The sparseness index quantified how
specific the neuronal responses were to a particular stimulus
(Fig. 4B). We found that, typically, neurons were responsive to
more than a single stimulus. Still, most neurons exhibited a non-zero
selectivity ratio (mean selectivity index = 0.24) and sparseness
index (mean sparseness index = 0.069). These values were higher
than when responses were randomly shuffled across stimuli (Fig. 4,
selectivity: P = 1.9e-9; sparseness, P = 4.1e-57, Wilcoxon sign rank
test), such that ~50% of neurons were above the 5% significance
threshold for the shuffled data. These results indicate that most neu-

rons exhibited higher selectivity for a subset of stimuli than would
be expected by chance.
Did selectivity for a specific stimulus imply that a neuron

encoded more information about its structure? We estimated
the information conveyed about the stimulus by neuronal responses
across different stimulus conditions. We applied an information-
theoretic calculation following a previously developed procedure
(Magri et al., 2009; Kayser et al., 2010) by estimating the informa-
tion (in bits) in six successive 2-ms bins between the neuronal
responses and the stimulus over seven 1-s stimulus ‘chunks’. Neu-
rons exhibited significantly higher mutual information for stimuli to

Fig. 1. The random droplet stimulus mimics scale-invariant structure of natural stimuli, while allowing spectro-temporal constant (Q) and density (rate) to vary.
(A) Droplet onset matrix for the five stimuli used in the study. Each line depicts an individual droplet, plotted according to its centre frequency and onset time.
Colour depicts relative maximum amplitude, darker colours corresponding to higher amplitudes. Width corresponds to Q. (B) Time course of the waveform for
individual droplets. Top: centre frequency of 18 kHz. Bottom: centre frequency of 10 kHz. Droplets are depicted for Q = 0.5, 2 and 8. (C) Histogram of the
gammatone transform of the Q = 2, rmed stimulus. (D) Power spectrum density for each of the five stimuli in eight frequency bands.
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which they responded most strongly as compared with those that
they responded to least strongly (Fig. 4C, n = 304, P = 0.009).
Mutual information may be increased due to an increase in relia-

bility of neuronal responses (Kayser et al., 2010). Consistently, we
found a positive correlation between mutual information and the
inverse of the Fano factor for responses of neurons to both most
and least preferred stimuli (most preferred: correlation coeffi-
cient = 0.12, P = 0.04; least preferred: correlation coeffi-
cient = 0.31, P = 2.1e-8). However, there was no difference in the
Fano factor between responses to the most preferred and the least
preferred stimulus (sign rank test, P > 0.05). Therefore, the increase
in mutual information may be attributed to increased responses of
individual neurons to the preferred stimuli.

Droplet onset and spectrogram fits of the linear/non-linear
model to neuronal responses

We next sought to characterize which parameters of neuronal
responses change with the spectro-temporal statistics of the stimuli.
Responses of neurons in the auditory cortex to an acoustic stimu-
lus have previously been successfully modelled through a linear/
non-linear (LN) model (Eggermont et al., 1983b; deCharms et al.,
1998; Depireux et al., 2001; Escabi & Read, 2003; Linden et al.,
2003; Gourevitch et al., 2009). This model is used to predict the
firing rate of a neuron in response to a new stimulus by first con-
volving the stimulus with a linear filter, and then passing the linear
prediction through an instantaneous non-linearity (Geffen et al.,
2007, 2009). The linear filter can be thought of as the receptive
field of the neuron, and the instantaneous non-linearity to represent
the transformation from inputs that change membrane voltage to
neuronal spiking.
We fitted the parameters of the linear and non-linear components

of the responses of each neuron to the stimulus. There was, how-
ever, an important problem in comparing these parameters. Typi-
cally, the receptive field of the neuron is computed as the reverse
correlation of the firing rate of the neuron to the spectrogram of the
stimulus. In the case of a white noise stimulus, this operation is
equivalent to a spike-triggered average of the stimulus. The chang-
ing cyclo-temporal coefficient of the stimulus introduces dependen-
cies across time within spectro-temporal channels, resulting in
temporal correlations. These correlations are further exaggerated in
the spectrogram-based representation of the stimulus due to binned
sampling. To overcome this uneven sampling of the stimulus space,
a standard approach is to use decorrelation, in which the linear pre-
diction from the spike-triggered average is divided by the auto-cor-
relation of the stimulus (Theunissen et al., 2001; Baccus & Meister,
2002). We applied this approach to the spectrogram-based represen-
tation of the stimulus. However, the time scale of correlations would
typically dominate over the time course of neuronal responses,
effectively smoothing them and therefore precluding the analysis of
the receptive field changes across different statistics of the stimulus.
The construction of the droplet-based stimulus allowed us to inno-

vatively extend an existing approach to estimate the linear filter
(deCharms et al., 1998). Instead of the spectrogram-based represen-
tation, the stimulus was represented by the droplet-onset matrix.
This matrix, by construction, does not contain any correlations, and
therefore the optimal filter can be computed as the spike-triggered
average of the droplet-onset matrix, normalized by mean amplitude
of each spectral channel. The droplet-onset matrix does not contain
information about Q, so the matrix is the same for all stimuli at the
same rate. Using this matrix as the stimulus representation allowed
us to test the hypothesis that the neurons respond predominantly to
the onsets of the droplets in the stimulus, rather than their sustained
structure. In other words, the information about the sustained ‘ring-
ing’ of droplets may prove less important to the majority of neurons
than the timing of the droplet onsets. Such a response pattern would
allow the neurons to create a sparse representation of the stimulus,
and would be consistent with previous hypotheses on sparse repre-
sentation of natural acoustic stimuli in the auditory cortex (Smith &
Lewicki, 2006; Hromadka et al., 2008). An analogous representation
is provided by the cochleagram, a standard method for representing
acoustic stimuli (Lyon, 1982; Meddis et al., 1990; Slaney, 1998). In
a cochleagram, the acoustic waveform is transformed across spectro-
temporally delimited channels using kernels that scale the bandwidth
relative to the centre frequency (Smith & Lewicki, 2006; McDer-
mott et al., 2013).

Fig. 2. Neurons in primary auditory cortex exhibit reliable responses to the
stimulus. (A) Stimulus waveform for the baseline stimulus (Q = 2, rmed).
(B, C) Raster plot and firing rate of responses of a representative unit show-
ing time-locking responses to the stimulus. Top panel: raster plot – each
black line denotes an action potential produced by the neuron at a particular
delay from stimulus onset (x-axis) in a particular trial (y-axis). Bottom panel:
mean firing rate of the neuron. (D) Mean response strength of recorded units
to the stimulus vs. their centre frequency (n = 368).
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Therefore, we fitted the LN model to the responses of each neuron
under three different representations of the stimulus. The stimulus
was represented as either a spectrogram or a cochleagram, and the
filter was computed as the spectro-temporal receptive field; or in the
droplet onset representation, in which only the information about
the droplet onset time, amplitude and frequency was contained –
DTRF (Fig. 5A–C).
We analysed the performance of the model by fitting it based on

responses on a random subset of 50% of trials, and computing the

correlation coefficient between the prediction for the firing rate and
the measured firing rate for the remaining 50% of the trials (Car-
ruthers et al., 2013; Ahn et al., 2014). We found that the droplet-
based and cochleagram-based representation provided more accurate
predictions of the neuronal responses than the spectrogram-based
model (Fig. 5D–F, n = 232). This relationship held when computed
over all stimuli [Droplet: 45%, P (all stimuli) = 2.2e-15, Cochlea-
gram: 60%, P (all stimuli) = 5.8e-43], but also for most individual
stimuli [Droplet: P (Q = 2, rmed) = 2.7e-6; P (Q = 0.5,

Fig. 3. Neurons in primary auditory cortex exhibit diverse responses to the five stimuli used in the study. Responses of four sample units to the five stimuli
used in the study. Each row depicts raster plot and firing rate of responses to one of the five stimuli. Left inset: diagram depicting which stimulus was used
(compare with Fig. 1A). (A) Responses of a selective time-locked neuron. (B) Responses of a selective sustained neuron. (C) Responses of a non-selective neu-
ron. (D) Responses of a non-selective suppressed neuron.
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rmed) = 0.0031; P (Q = 8, rmed) = 0.0026; P (Q = 2, rlow) = 2.8e-8;
P (Q = 2, rhigh) > 0.05 - not significant, Cochleagram: P (Q = 2,
rmed) = 7.5e-13; P (Q = 0.5, rmed) = 1.1e-6; P (Q = 8, rmed) = 7.6e-
10; P (Q = 2, rlow) = 1.3e-8; P (Q = 2, rhigh) = 2.8e-10], except Q
= 2, rhigh. Because this stimulus Q = 2, rlow corresponds to the high-
est r value (densest dynamics), the result is probably due to the
spectrogram approximation being more similar to the droplet matrix
under the fastest stimulus dynamics as compared to the other sti-
muli. The predictions based on the cochleagram-based representa-
tions were more accurate than the droplet-based representations over
all stimuli, but the improvement was not as great as for droplet-
based prediction over the spectrogram-based prediction [35%, P (all
stimuli) = 7.7e-12] and for stimuli 1, 3 and 5 [P (Q = 2,
rmed) = 2.9e-4; P (Q = 0.5, rmed) > 0.05, not significant; P (Q = 8,
rmed) = 9.3e-6; P (Q = 2, rlow) > 0.05, not significant; P (Q = 2,
rhigh) = 1.7e-8]. In some studies, neurons in the auditory cortex
have been shown to be more sensitive to stimulus onsets, rather than
the prolonged ‘ringing’ of distinct spectral components. This obser-
vation may provide an explanation for the improved performance of
the LN model when using droplet-based representation of the stimu-
lus, as this model is more sensitive to the stimulus onsets by design.

Response parameters of the receptive field of A1 neurons do
not exhibit systematic change with changing cyclo-temporal
constant

We next examined whether there were any systematic changes in
the time course and the spectral structure of the receptive field
depending on the stimulus (Fig. 6). We measured the spectral width,
temporal delay and temporal length of the positive lobes of the
cyclo-temporal receptive fields (the linear component of the model
computed using the droplet-onset matrix as the stimulus) of the
recorded units (Woolley et al., 2006; Shechter & Depireux, 2007;
Schneider & Woolley, 2010). Across the neuronal population, there
were only modest changes in a small subset of DTRF parameters
(Fig. 6C): for Q = 0.5, rmed stimulus, the peak frequency was
slightly reduced (P = 0.008); for Q = 2, rlow stimulus, temporal
width of DTRF increased (P = 0.004) whereas spectral width
decreased (P = 0.011) as compared with the baseline Q = 2, rmed

stimulus. This difference is attributed to the temporal delay between
droplet onsets in the low-droplet-rate stimulus, which allows for
more sustained neuronal responses. This suggests that rather than
scaling the receptive field’s temporal response with changing Q and
droplet rate, over the population of neurons, the receptive fields
cover the same range of parameters despite the change in the statis-
tical structure of the stimulus.
We also tested whether over repeated presentations of the same

stimulus there was adaptation in the receptive field parameters over
time. We computed DRTFs separately for both the first and the last
20 trials and the first and last five trials of each stimulus repeat. We
found no significant differences for any parameters for any stimulus
over the first and last halves of stimulus blocks (P > 0.06 for all com-
parisons). These results demonstrate that there is no adaptation to
stimulus repeats over time within presentation of the same stimulus.
Nonetheless, we found that the prediction accuracy for each neu-

ron’s response was significantly higher using the LN parameters
from the corresponding stimulus (same condition) than from the
baseline condition (cross-prediction) (Fig. 7, n = 165, P = 4e-12
over all five stimuli, P < 0.05 for stimuli 2 and 4). This analysis
demonstrates that while there are no systematic changes over the
neuronal population, at the level of individual units, the LN parame-
ters differ between the stimuli.

Fig. 4. Neurons in primary auditory cortex exhibit selectivity for specific
spectro-temporal statistics. (A) Histogram of stimulus selectivity index across
the recorded neuronal population (grey) and for randomly shuffled responses
(black). Many units exhibit selective responses to a subset of stimuli. The
selectivity index is higher for recorded than for shuffled responses. (B) His-
togram of the sparseness of responses across the recorded neuronal popula-
tion (grey) and for randomly shuffled responses (black). Sparseness is higher
for the recorded population than for shuffled responses. (C) Mutual informa-
tion between the responses and the stimulus is higher for the stimulus, for
which the neuron exhibits high selectivity. P = 0.009, paired t-test.
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Neuronal population maintains stable mean response profiles
across varying stimulus statistics

Whereas for individual neurons there were large differences in response
strength for different stimuli, across the population there were no signif-
icant differences in the response strength or mean firing rate between
stimuli. Over the population of neurons, the mean response strength
(Fig. 8A) did not change significantly with Q or rate as compared with
the baseline stimulus (n = 368, P > 0.05 for each comparison, Stimu-
lus 1: Q = 2, rmed; Stimulus 2: Q = 0.5, rmed; Stimulus 3: Q = 8, rmed;
Stimulus 4: Q = 2, rlow; Stimulus 5: Q = 2, rhigh). The mean firing rate
was also remarkably stable: it did not differ from baseline for stimuli 2,
3 and 4 (Fig. 8B, n = 368), and was only marginally smaller for stimu-
lus 5 (Q = 2, rhigh: difference 8.8%, P = 0.0068).

We next assayed the variability of the firing rate of neuronal
responses. We calculated the Fano factor, which indicates how
variable the discharge count is over trials relative to the mean fir-
ing rate. For a Poisson neuron, the standard deviation of the
response is equal to the mean, and Fano factor is 1. Typical Fano
factors for neurons recorded in the awake mammalian cortex
exceed 1. Indeed, our calculations of the Fano factor demonstrate
that it exceeded 1 on average for all stimuli. The mean Fano fac-
tor did not differ from the baseline for stimuli 2, 3 and 4 (Fig. 8C,
n = 368, P > 0.05), and was only marginally increased for stimu-
lus 5 (Q = 2, rhigh: difference 7.5%, P = 0.026). Importantly, the
mutual information was not significantly different in a population
pairwise comparison across all neurons tested (Fig. 8D, n = 304,
P > 0.05) between the stimuli, further underlining the stability of

Fig. 5. LN model based on droplet-onset matrix predicts responses to the stimulus better than spectrogram-based LN model. (A) Representation of the acoustic
waveform of the droplet stimulus as a droplet-onset matrix. (B) Representation of the acoustic waveform of the droplet stimulus as a spectrogram. (C) Represen-
tation of the acoustic waveform of the droplet stimulus as a cochleagram. (D) Prediction quality based on the droplet, spectrogram, or cochleagram-based pre-
diction. Prediction quality is significantly higher for droplet and cochleagram-based prediction than spectrogram (for droplet: P (all stimuli) = 2.2e-15; for
cochleagram: P (all stimuli) = 5.8e-43]. (E) LN prediction and recorded firing rate (black) for the spectrogram-based (blue), droplet-based (red) and cochlea-
gram-based (yellow) model for a representative neuron. (F) Quartile plot for the prediction quality for the droplet, spectrogram and cochleagram based predic-
tion (filled bars: droplet-temporal receptive field-based prediction, open bars: spectro-temporal receptive field-based prediction, cross-hatched bars: cochleagram-
based prediction). **P < 0.01, ***P < 0.001, ****P < 0.0001, Wilcoxon sign rank test, corrected for multiple comparisons.
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the distribution of neuronal response parameters across different
stimulus statistics.
Overall, our data demonstrate that stimuli with different cyclo-

temporal statistics or density are stable in their representation over
the neuronal population.

Discussion

Natural water sounds exhibit spectro-temporal regularities in their
structure, which are characterized by scale-invariant statistics. The
goal of this study was to establish how populations of neurons in

Fig. 6. Spectro-temporal receptive fields of neurons do not exhibit consistent changes with the stimulus statistics. (A) Droplet-temporal receptive field of a rep-
resentative neuron for the five stimuli. (B) Firing rate of the neuron to five stimuli. (C) Parameters of droplet-temporal receptive field for each measured neuron
for stimuli with different statistics vs. baseline (Q = 2, rmed) stimulus: temporal width, spectral width, delay to peak and peak frequency of the DTRF.
*P < 0.05, **P < 0.01, Wilcoxon signed-rank test.
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the auditory cortex respond to sounds across a wide range of spec-
tro-temporal parameters that correspond to a range of acoustic per-
cepts (Geffen et al., 2011). We focused on two statistical quantities,
which we had previously identified as perceptually relevant for dis-
tinguishing water-like sounds. Cyclo-temporal coefficient, Q, refers
to the ratio of temporal change within a particular frequency band to

its centre frequency. Droplet rate corresponds to the spectro-tem-
poral density of sounds. We found that most units recorded in A1
exhibited tuning for specific combinations of Q and droplet rate.
However, over the neuronal population, the responses and response
parameters were stable across the broad range of the spectro-
temporal statistics of the stimulus. These results suggest that tuning
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to spectro-temporal statistics in neurons may be distributed in such a
way as to preserve the mean responses over the population, rather
than individual neurons.

Even population responses across changed stimulus statistics

Spectro-temporal statistics vary greatly between different acoustic
environments. Within different water sounds, the statistics can differ
over several orders of magnitude, from a loud gurgling brook to rain
pattering on the roof to droplets falling from a slowly melting icicle.
Yet our auditory system needs to be able to represent the multitude
of sounds with a limited set of resources. This limited set of
resources is generally constrained by the range of the firing rate of
neurons, as well as their noise level. Our results demonstrate that,
for the group of water-like sounds, the response properties are
matched over the neuronal population across a large range of stimu-
lus statistics. Conservation of the mean firing rate and other
response characteristics of neurons is considered an important orga-
nizational principle for sensory systems. Neuronal selectivity can be
thus thought of as a process that enables neurons to preserve mean
response parameters in the context of stimuli with vastly different
statistical structure. The specialization of response properties of indi-
vidual neurons to specific subsets of spectro-temporal stimulus
statistics may arise from a combination of inputs tuned to relatively
simple statistics of the stimulus (McDermott & Simoncelli, 2011),
and facilitate perceptual discrimination of acoustic environmental
sounds (McDermott et al., 2013).

Naturalistic stimulus to probe spectro-temporal receptive field
properties of auditory neurons under naturalistic conditions

Typically, responses of neurons in the auditory cortex to sounds are
characterized by identifying their spectro-temporal receptive fields
(Depireux et al., 2001; Escabi & Schreiner, 2002; Theunissen et al.,
2004). The stimuli that are used to map the spectro-temporal recep-
tive field include random pip and random chord sequences (Egger-
mont et al., 1983b; deCharms et al., 1998; Blake & Merzenich,
2002; Escabi & Read, 2003; Linden et al., 2003; Gourevitch &
Eggermont, 2008). These stimuli differ from the scale-invariant
stimulus set because the temporal dynamics are at the same time-
scale within each spectral band. Similarly, white noise (Eggermont
et al., 1983a) or dynamic ripple stimuli (Klein et al., 2000; Depir-
eux et al., 2001; Elhilali et al., 2004), designed to measure the
responses of neurons for sound with continuously changing temporal
modulations, apply temporal modulations uniformly across all spec-
tral channels. By contrast, the random droplet stimuli probe the
auditory system within the statistical regime characteristic of water-
like sounds, in which the temporal modulation of the structure of
sounds scales with the centre frequency of the droplet (Geffen et al.,
2011; Gervain et al., 2014).
Numerous studies have shown that the response properties of

neurons depend on the statistical make-up of the stimuli with
which they are probed. A receptive field measured with a white-
noise stimulus can differ from that measured with a stimulus with
scale-invariant statistics (Sharpee et al., 2004). Therefore, the use
of the droplet stimulus is advantageous in measuring the receptive
fields of neurons in that it reflects an important property of natural
sounds. In estimating the linear receptive field of neurons, using a
stimulus that follows a random distribution of parameters is fur-
thermore of an advantage for practical reasons: as the stimulus
space is sampled uniformly, the optimal filter can be constructed
without a correction for stimulus auto-correlation. The present

stimulus provides such a representation in the droplet-based matrix
because the timing of the droplets as well as their amplitude are
picked from a random distribution that does not have correlations
in either time or frequency.
Changing Q modulates both the rise/fall time of the amplitude of

each droplet as well as the bandwidth, and therefore can affect audi-
tory responses through several mechanisms at different stages of
auditory processing. Temporal envelope and modulation frequency
are important parameters that have previously been shown to be
important for psychoacoustic (Irino & Patterson, 1996) and physio-
logical responses to sounds (Heil et al., 1992; Heil, 1997; Lu et al.,
2001; Krebs et al., 2008; Lesica & Grothe, 2008; Zheng & Escabi,
2008; Lin & Liu, 2010). Therefore, the selective responses for dif-
ferent Q–r combinations may be a result of integration of changes
in the auditory periphery (Lu et al., 2001; Lin & Liu, 2010; Heil &
Peterson, 2015) as well as central processing (Blake & Merzenich,
2002; Valentine & Eggermont, 2004).

Variability of neuronal responses and time course of spectro-
temporal receptive fields

The temporal width of the receptive fields that we identified in
the study is very tight – some of the receptive fields contained a
positive lobe with a width of <10 ms (Fig. 6C). This is consistent
with several previous studies that have demonstrated that neuronal
responses in A1 provide important information about the stimulus
at the time scale of 1–3 ms (Yang et al., 2008; Kayser et al.,
2010). Remarkably, our analysis revealed that as the droplet pre-
sentation rate slowed, the temporal integration window of the
receptive field became longer. This suggests that under the regime
of slower modulations, the droplet onsets trigger more sustained
responses than under the regime with fast scale of modulations. It
is plausible that higher-order statistics, which differ between stim-
uli with short and long Q parameters, may account for this
change.

Non-linear transformation of the stimulus

The droplet-based LN model belongs to a greater family of non-lin-
ear linear – non-linear models as the droplet-onset matrix can be
thought of as a non-linear transformation of the stimulus (Mar-
marelis & Marmarelis, 1978; Butts et al., 2011; McFarland et al.,
2013). We note that this stimulus representation differs from the
commonly used cochlear gammatone-like filter bank, constructing a
cochleagram (Klein et al., 2000; Elhilali et al., 2004) in that the
gammatone onsets are specified during stimulus construction, and
rather than being used as filters, are components of the stimulus. In
a recent study, we found that for A1 responses to another class of
stimuli, rat ultrasonic vocalizations, a non-linear transformation of
the stimulus into a dominant amplitude- and frequency-modulated
parametrized tone led to a more accurate prediction of the LN model
(Carruthers et al., 2013). Similarly, in the present study, the repre-
sentation of the stimulus as a droplet-based matrix provides a more
accurate prediction than a spectrogram-based representation for all
but the most sluggish stimulus. A similar stimulus was used to
model the receptive fields of neurons in response to sounds with
constant temporal statistics across different frequency bands
(deCharms et al., 1998), but that approach did not extend to scale-
invariant sounds, in which the spectro-temporal coefficient Q is pre-
sented across frequency bands. While our representation probably
oversimplifies the operations that are performed within the auditory
periphery, it is consistent with previous predictions and experimental
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observations for processing of acoustic stimuli by the cochlea and
the auditory nerve (Robles & Ruggero, 2001).
Although LN models have been successfully used to study the

linear components and receptive fields of neurons throughout the
auditory pathway, these models carry significant limitations, which
pose constraints on the interpretation of our results. In using a sin-
gle-stage model, it is difficult to pinpoint at which stage of the path-
way the transformation takes place. On the other hand, more
complex models that include several linear and non-linear terms
may preclude a summary of the effect of statistics of the stimulus
on a subset of response parameters (Ahrens et al., 2008; Christian-
son et al., 2008). Adding the pre-processing step for representing
the stimulus as an ensemble of gammatones expands the ability of
the LN model to predict the stimulus responses, while simplifying
the representation of the stimulus.

Generalization of the random droplet stimulus to probe speech
and other communication signals

An additional advantage of this stimulus is that the droplet-like rep-
resentation can be used to construct a representation of an arbitrary
complex sound, and that such a representation is optimal for spar-
sely firing neurons (Smith & Lewicki, 2006; Carlson et al., 2012).
It has been previously demonstrated that the optimal sparse code for
representing natural sounds consists of unitary scale-invariant
impulses that correspond to the auditory revcorr filters (Smith &
Lewicki, 2006). The random droplet stimulus can be modified to
probe specificity of neuronal responses to speech and communica-
tion signals. To represent a speech signal, the acoustic waveform
could be projected on the impulse functions, used as band-passed
filters, and represented as ‘spikes’. The droplets used in the present
stimulus can be viewed as a simplified, generalizable version of
such impulses, and would produce a similar representation of differ-
ent environmental sounds, beyond the range of measured water
sounds. Decomposing a speech acoustic waveform on spectro-tem-
poral channels will then allow us to compute the cross-correlation
functions across those channels. A random droplet signal can be
constructed to match the cross-correlation functions, and the
responses across different statistical dependencies can be compared.
Speech contains important information at different time scales,

which is relevant for different aspects of speech comprehension
(Rosen, 1992; Poeppel, 2003). Introducing the dependencies at vary-
ing time scales into the random droplet stimulus would allow us to
test neuronal responses to different aspects of speech and vocaliza-
tion processing.

Acknowledgements

We thank Drs Yale Cohen, Stephen Eliades, James Hudspeth, Diego
Laplagne, Sneha Narasimhan and members of the Geffen laboratory for help-
ful discussions of the research, and Laetitia Mwilambwe-Tshilobo, Lisa Liu,
Liana Cheung, Andrew Davis, Anh Nguyen, Andrew Chen and Danielle
Mohabir for technical assistance with experiments. This work was supported
by NIH NIDCD R01DC014479, R03DC013660, Klingenstein Foundation
Award in Neurosciences, Burroughs Wellcome Fund Career Award at Scien-
tific Interface, Human Frontiers in Science Foundation, Pennsylvania Lions
Club Fellowship, Raymond and Beverly Sackler Fellowship in Physics and
Biology and Center for Physics and Biology Fellowship to M.N.G.

Abbreviations

A1, primary auditory cortex; DTRF, droplet-temporal receptive field; LN
model, linear non-linear model; SPL, sound pressure level; STRF, spectro-
temporal receptive field.

References

Ahn, J., Kreeger, L.J., Lubejko, S.T., Butts, D.A. & MacLeod, K.M. (2014)
Heterogeneity of intrinsic biophysical properties among cochlear nucleus
neurons improves the population coding of temporal information. J. Neu-
rophysiol., 111, 2320–2331.

Ahrens, M., Linden, J. & Sahani, M. (2008) Nonlinearities and contextual
influences in auditory cortical responses modeled with multilinear spec-
trotemporal methods. J. Neurosci., 28, 1929–1942.

Aizenberg, M. & Geffen, M.N. (2013) Bidirectional effects of auditory aver-
sive learning on sensory acuity are mediated by the auditory cortex. Nat.
Neurosci., 16, 994–996.

Aizenberg, M., Mwilambwe-Tshilobo, L., Briguglio, J.J., Natan, R.G. & Gef-
fen, M.N. (2015) Bi-directional regulation of innate and learned behaviors
that rely on frequency discrimination by cortical inhibitory interneurons.
PLoS Biol., 13, e1002308.

Asari, H. & Zador, A. (2009) Long-lasting context dependence constrains
neural encoding models in rodent auditory cortex. J. Neurophysiol., 102,
2638–2656.

Attias, H. & Schreiner, C. (1997) Temporal low-order statistics of natural
sounds. Adv. Neural Inf. Process Syst., 9, 27–33.

Baccus, S.A. & Meister, M. (2002) Fast and slow contrast adaptation in reti-
nal circuitry. Neuron, 36, 909–919.

Bizley, J.K., Walker, K.M., King, A.J. & Schnupp, J.W. (2010) Neural
ensemble codes for stimulus periodicity in auditory cortex. J. Neurosci.,
30, 5078–5091.

Blake, D.T. & Merzenich, M.M. (2002) Changes of AI receptive fields with
sound density. J. Neurophysiol., 88, 3409–3420.

Brasselet, R., Panzeri, S., Logothesis, N.K. & Kayser, C. (2012) Neurons
with stereotyped and rapid responses provide a reference frame for relative
temporal coding in primate auditory cortex. J. Neurosci., 32, 2998–3008.

Bregman, A.S. (1990) Auditory Scene Analysis: The Perceptual Organization
of Sound. MIT Press, Cambridge, MA.

Brown, T.A. & Harrison, R.V. (2009) Responses of neurons in chinchilla
auditory cortex to frequency-modulated tones. J. Neurophysiol., 101,
2017–2029.

Butts, D.A., Weng, C., Jin, J., Alonso, J.M. & Paninski, L. (2011) Temporal
precision in the visual pathway through the interplay of excitation and
stimulus-driven suppression. J. Neurosci., 31, 11313–11327.

Carlson, N.L., Ming, V.L. & Deweese, M.R. (2012) Sparse codes for speech
predict spectrotemporal receptive fields in the inferior colliculus. PLoS
Comput. Biol., 8, e1002594.

Carruthers, I.M., Natan, R.G. & Geffen, M.N. (2013) Encoding of ultrasonic
vocalizations in the auditory cortex. J. Neurophysiol., 109, 1912–1927.

Carruthers, I.M., Laplagne, D.A., Jaegle, A., Briguglio, J., Mwilambwe-Tshi-
lobo, L., Natan, R.G. & Geffen, M.N. (2015) Emergence of invariant rep-
resentation of vocalizations in the auditory cortex. J. Neurophysiol., 114,
2726–2740.

Chandrasekaran, C., Trubanova, A., Stillittano, S., Caplier, A. & Ghazanfar,
A.A. (2009) The natural statistics of audiovisual speech. PLoS Comput.
Biol., 5, e1000436.

deCharms, R., Blake, D. & Merzenich, M. (1998) Optimizing sound features
for cortical neurons. Science, 280, 1439–1443.

Chauvin, A., Worsley, K.J., Schyns, P.G., Arguin, M. & Gosselin, F. (2005)
Accurate statistical tests for smooth classification images. J. Vision, 5,
659–667.

Christianson, G.B., Sahani, M. & Linden, J.F. (2008) The consequences of
response nonlinearities for interpretation of spectrotemporal receptive
fields. J. Neurosci., 28, 446–455.

Depireux, D.A., Simon, J.Z., Klein, D.J. & Shamma, S.A. (2001) Spectro-
temporal response field characterization with dynamic ripples in ferret pri-
mary auditory cortex. J. Neurophysiol., 85, 1220–1234.

Eggermont, J.J. (2011) Context dependence of spectro-temporal receptive
fields with implications for neural coding. Hear. Res., 271, 123–132.

Eggermont, J.J., Aertsen, A.M. & Johannesma, P.I. (1983a) Quantitative
characterisation procedure for auditory neurons based on the spectro-tem-
poral receptive field. Hear. Res., 10, 167–190.

Eggermont, J.J., Johannesma, P.M. & Aertsen, A.M. (1983b) Reverse-corre-
lation methods in auditory research. Q. Rev. Biophys., 16, 341–414.

Elhilali, M., Fritz, J.B., Klein, D.J., Simon, J.Z. & Shamma, S.A. (2004)
Dynamics of precise spike timing in primary auditory cortex. J. Neurosci.,
24, 1159–1172.

Escabi, M.A. & Read, H.L. (2003) Representation of spectrotemporal sound
information in the ascending auditory pathway. Biol. Cybern., 89,
350–362.

© 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
European Journal of Neuroscience, 43, 751–764

Stable encoding of sounds with varying statistics 763



Escabi, M.A. & Read, H.L. (2005) Neural mechanisms for spectral analysis
in the auditory midbrain, thalamus, and cortex. Int. Rev. Neurobiol., 70,
207–252.

Escabi, M.A. & Schreiner, C.E. (2002) Nonlinear spectrotemporal sound
analysis by neurons in the auditory midbrain. J. Neurosci., 22, 4114–4131.

Garcia-Lazaro, J., Ahmed, B. & Schnupp, J. (2006) Tuning to natural stimu-
lus dynamics in primary auditory cortex. Curr. Biol., 16, 264–271.

Geffen, M.N., de Vries, S.E. & Meister, M. (2007) Retinal ganglion cells
can rapidly change polarity from Off to On. PLoS Biol., 5, e65.

Geffen, M.N., Broome, B.M., Laurent, G. & Meister, M. (2009) Neural
encoding of rapidly fluctuating odors. Neuron, 61, 570–586.

Geffen, M.N., Gervain, J., Werker, J.F. & Magnasco, M.O. (2011) Auditory
perception of self-similarity in water sounds. Front. Integr. Neurosci., 5, 15.

Gervain, J., Werker, J.F. & Geffen, M.N. (2014) Category-specific process-
ing of scale-invariant sounds in infancy. PLoS ONE, 9, e96278.

Gourevitch, B. & Eggermont, J.J. (2008) Spectro-temporal sound density-
dependent long-term adaptation in cat primary auditory cortex. Eur. J.
Neurosci., 27, 3310–3321.

Gourevitch, B., Norena, A., Shaw, G. & Eggermont, J.J. (2009) Spectrotem-
poral receptive fields in anesthetized cat primary auditory cortex are con-
text dependent. Cereb. Cortex, 19, 1448–1461.

Heil, P. (1997) Auditory cortical onset responses revisited. II. Response
strength. J. Neurophysiol., 77, 2642–2660.

Heil, P. & Peterson, A.J. (2015) Basic response properties of auditory nerve
fibers: a review. Cell Tissue Res., 361, 129–158.

Heil, P., Rajan, R. & Irvine, D.R. (1992) Sensitivity of neurons in cat pri-
mary auditory cortex to tones and frequency-modulated stimuli. I: effects
of variation of stimulus parameters. Hear. Res., 63, 108–134.

Hromadka, T., Deweese, M.R. & Zador, A.M. (2008) Sparse representation
of sounds in the unanesthetized auditory cortex. PLoS Biol., 6, e16.

Irino, T. & Patterson, R.D. (1996) Temporal asymmetry in the auditory sys-
tem. J. Acoust. Soc. Am., 99, 2316–2331.

Kayser, C., Logothetis, N. & Panzeri, S. (2010) Millisecond encoding precision
of auditory cortex neurons. Proc. Natl. Acad. Sci. USA, 107, 16976–16981.

Klein, D.J., Depireux, D.A., Simon, J.Z. & Shamma, S.A. (2000) Robust
spectrotemporal reverse correlation for the auditory system: optimizing
stimulus design. J. Comput. Neurosci., 9, 85–111.

Krebs, B., Lesica, N.A. & Grothe, B. (2008) The representation of amplitude
modulations in the mammalian auditory midbrain. J. Neurophysiol., 100,
1602–1609.

Lesica, N.A. & Grothe, B. (2008) Dynamic spectrotemporal feature selectiv-
ity in the auditory midbrain. J. Neurosci., 28, 5412–5421.

Lewicki, M.S. (2002) Efficient coding of natural sounds. Nat. Neurosci., 5,
356–363.

Lin, F.G. & Liu, R.C. (2010) Subset of thin spike cortical neurons preserve
the peripheral encoding of stimulus onsets. J. Neurophysiol., 104,
3588–3599.

Linden, J.F., Liu, R.C., Sahani, M., Schreiner, C.E. & Merzenich, M.M.
(2003) Spectrotemporal structure of receptive fields in areas AI and AAF
of mouse auditory cortex. J. Neurophysiol., 90, 2660–2675.

Lu, T., Liang, L. & Wang, X. (2001) Neural representations of temporally
asymmetric stimuli in the auditory cortex of awake primates. J. Neuro-
physiol., 85, 2364–2380.

Lyon, R.F. (1982) A computational model of filtering, detection, and com-
pression in the cochlea. In Acoustics, Speech, and Signal Processing, IEEE
International Conference on ICASSP ‘82. vol. 7, pp. 1282–1285.

Magri, C., Whittingstall, K., Singh, V., Logothetis, N.K. & Panzeri, S.
(2009) A toolbox for the fast information analysis of multiple-site LFP,
EEG and spike train recordings. BMC Neurosci., 10, 81.

Marmarelis, P.Z. & Marmarelis, V.Z. (1978) Analysis of Physiological Sys-
tems: the White Noise Approach. Plenum Press, New York, NY.

McDermott, J.H. & Simoncelli, E.P. (2011) Sound texture perception via
statistics of the auditory periphery: evidence from sound synthesis. Neu-
ron, 71, 926–940.

McDermott, J.H., Schemitsch, M. & Simoncelli, E.P. (2013) Summary statis-
tics in auditory perception. Nat. Neurosci., 16, 493–498.

McFarland, J.M., Cui, Y. & Butts, D.A. (2013) Inferring nonlinear neuronal
computation based on physiologically plausible inputs. PLoS Comput.
Biol., 9, e1003143.

Meddis, R., Hewitt, M.J. & Shackleton, T.M. (1990) Implementation details
of a computation model of the inner hair-cell/auditory-nerve synapse. J.
Acoust. Soc. Am., 87, 1813–1816.

Mizrahi, A., Shalev, A. & Nelken, I. (2014) Single neuron and population
coding of natural sounds in auditory cortex. Curr. Opin. Neurobiol., 24,
103–110.

Natan, R.G., Briguglio, J.J., Mwilambwe-Tshilobo, L., Jones, S., Aizenberg,
M., Goldberg, E.M. & Geffen, M.N. (2015) Complementary control of
sensory adaptation by two types of cortical interneurons. eLife, 4, e09868.

Nelken, I. (2004) Processing of complex stimuli and natural scenes in the
auditory cortex. Curr. Opin. Neurobiol., 14, 474–480.

Nelken, I., Rotman, Y. & Bar Yosef, O. (1999) Responses of auditory-cortex
neurons to structural features of natural sounds. Nature, 397, 154–157.

Otazu, G.H., Tai, L.H., Yang, Y. & Zador, A.M. (2009) Engaging in an
auditory task suppresses responses in auditory cortex. Nat. Neurosci., 12,
646–654.

Pienkowski, M. & Eggermont, J. (2009) Effects of adaptation on spectrotem-
poral receptive fields in primary auditory cortex. NeuroReport, 20, 1198–
1203.

Poeppel, D. (2003) The analysis of speech in different temporal integration
windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech
Commun., 41, 245–255.

Rabinowitz, N.C., Willmore, B.D., Schnupp, J.W. & King, A.J. (2011) Con-
trast gain control in auditory cortex. Neuron, 70, 1178–1191.

Robles, L. & Ruggero, M.A. (2001) Mechanics of the mammalian cochlea.
Physiol. Rev., 81, 1305–1352.

Rodriguez, F.A., Chen, C., Read, H.L. & Escabi, M.A. (2010) Neural modu-
lation tuning characteristics scale to efficiently encode natural sound statis-
tics. J. Neurosci., 30, 15969–15980.

Rosen, S. (1992) Temporal information in speech: acoustic, auditory and lin-
guistic aspects. Philos. T. Roy. Soc. B, 336, 367–373.

Sally, S. & Kelly, J. (1988) Organization of auditory cortex in the albino rat:
sound frequency. J. Neurophysiol., 59, 1627–1638.

Schneider, D.M. & Woolley, S.M. (2010) Discrimination of communication
vocalizations by single neurons and groups of neurons in the auditory mid-
brain. J. Neurophysiol., 103, 3248–3265.

Sharpee, T., Rust, N. & Bialek, W. (2004) Analyzing neural responses to
natural signals: maximally informative dimensions. Neural Comput., 16,
223–250.

Shechter, B. & Depireux, D.A. (2007) Stability of spectro-temporal tuning
over several seconds in primary auditory cortex of the awake ferret. Neu-
roscience, 148, 806–814.

Singh, N. & Theunissen, F. (2003) Modulation spectra of natural sounds and
ethological theories of auditory processing. J. Acoust. Soc. Am., 114,
3394–3411.

Slaney, M. (1998) Auditory toolbox: Version 2. Technical Report, 1998-010.
Interval Research Corporation.

Smith, E.C. & Lewicki, M.S. (2006) Efficient auditory coding. Nature, 439,
978–982.

Theunissen, F.E., David, S.V., Singh, N.C., Hsu, A., Vinje, W.E. & Gallant,
J.L. (2001) Estimating spatio-temporal receptive fields of auditory and
visual neurons from their responses to natural stimuli. Network, 12, 289–
316.

Theunissen, F.E., Woolley, S.M., Hsu, A. & Fremouw, T. (2004) Methods
for the analysis of auditory processing in the brain. Ann. NY. Acad. Sci.,
1016, 187–207.

Valentine, P.A. & Eggermont, J.J. (2004) Stimulus dependence of spectro-
temporal receptive fields in cat primary auditory cortex. Hear. Res., 196,
119–133.

Voss, R.F. & Clarke, J. (1975) ‘1/f noise’ in music and speech. Nature, 258,
317–318.

Weliky, M., Fiser, J., Hunt, R.H. & Wagner, D.N. (2003) Coding of natural
scenes in primary visual cortex. Neuron, 37, 703–718.

Woolley, S., Fremouw, T., Hsu, A. & Theunissen, F. (2005) Tuning for
spectro-temporal modulations as a mechanism for auditory discrimination
of natural sounds. Nat. Neurosci., 8, 1371–1379.

Woolley, S., Gill, P. & Theunissen, F. (2006) Stimulus-dependent auditory
tuning results in synchronous population coding of vocalizations in the
songbird midbrain. J. Neurosci., 26, 2499–2512.

Yang, Y., DeWeese, M., Otazu, G. & Zador, A. (2008) Millisecond-scale
differences in neural activity in auditory cortex can drive decisions. Nat.
Neurosci., 11, 1262–1263.

Zheng, Y. & Escabi, M.A. (2008) Distinct roles for onset and sustained
activity in the neuronal code for temporal periodicity and acoustic envel-
ope shape. J. Neurosci., 28, 14230–14244.

© 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
European Journal of Neuroscience, 43, 751–764

764 J. M. Blackwell et al.


