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Abstract

Natural auditory scenes possess highly structured statistical regularities, which are dictated by the physics of sound production in
nature, such as scale-invariance. We recently identified that natural water sounds exhibit a particular type of scale invariance, in
which the temporal modulation within spectral bands scales with the centre frequency of the band. Here, we tested how neurons
in the mammalian primary auditory cortex encode sounds that exhibit this property, but differ in their statistical parameters. The
stimuli varied in spectro-temporal density and cyclo-temporal statistics over several orders of magnitude, corresponding to a
range of water-like percepts, from pattering of rain to a slow stream. We recorded neuronal activity in the primary auditory cortex
of awake rats presented with these stimuli. The responses of the majority of individual neurons were selective for a subset of
stimuli with specific statistics. However, as a neuronal population, the responses were remarkably stable over large changes in
stimulus statistics, exhibiting a similar range in firing rate, response strength, variability and information rate, and only minor varia-
tion in receptive field parameters. This pattern of neuronal responses suggests a potentially general principle for cortical encoding
of complex acoustic scenes: while individual cortical neurons exhibit selectivity for specific statistical features, a neuronal popula-

tion preserves a constant response structure across a broad range of statistical parameters.

Introduction

Natural environmental sounds span a broad range of frequencies,
and possess characteristic spectro-temporal statistical regularities in
their structure (Voss & Clarke, 1975; Singh & Theunissen, 2003).
Encoding information about these statistical regularities is an impor-
tant processing step in the central auditory pathway, required for
accurate analysis of an auditory scene (Bregman, 1990; Chan-
drasekaran ef al., 2009). Spectro-temporal statistical regularities in
sounds can be used by the auditory system to recognize specific
sounds and distinguish them from each other (Woolley et al., 2005;
Geffen et al., 2011; McDermott & Simoncelli, 2011; McDermott
et al., 2013; Gervain et al., 2014).

The power spectrum of natural sounds scales inversely with the
frequency, following the 1/f statistics law (Voss & Clarke, 1975;
Attias & Schreiner, 1997; Singh & Theunissen, 2003). Furthermore,
the overall power spectrum and the temporal modulation spectrum
also obey scale-invariant statistics. Neurons in the central auditory
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pathway encode small variations in spectro-temporally modulated
stimuli (Elhilali ef al., 2004) and respond preferentially to sounds
exhibiting natural characteristics (Nelken et al., 1999; Woolley
et al., 2005), and 1/f frequency spectrum in particular (Escabi &
Read, 2005; Garcia-Lazaro et al., 2006; Rodriguez et al., 2010).
Changes in the statistical structure of stimuli, including the spectro-
temporal density, or the spectro-temporal range, affect response
properties of cortical neurons, leading to gain adaptation in their fir-
ing rate (Blake & Merzenich, 2002; Valentine & Eggermont, 2004;
Asari & Zador, 2009; Pienkowski & Eggermont, 2009; Eggermont,
2011; Rabinowitz et al., 2011; Natan et al., 2015).

Recently, we identified an additional form of scale-invariance in
environmental sounds (Geffen et al., 2011; Gervain et al., 2014). In
sounds of running water, a subset of environmental sounds, the
temporal modulation spectrum across spectral bands scales with the
centre frequency of the band (Geffen er al., 2011; Gervain et al.,
2014). When the recording of running water was stretched or com-
pressed temporally, it was still perceived as a natural, water-like
sound (Geffen er al., 2011). Such a relationship corresponds to the
optimal representation of a sound waveform under sparse coding
assumptions (Lewicki, 2002; Garcia-Lazaro et al., 2006; Smith &
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Lewicki, 2006). Sounds that obeyed the invariant scaling relation-
ship but which varied in cyclo-temporal coefficients and spectro-
temporal sound density evoked different percepts, ranging from
pattering of rain to sound of a waterfall to artificial ringing. In the
present study, we adapted this set of stimuli to the hearing range of
rats to examine how changing spectro-temporal statistical properties
affect responses of neurons in the primary auditory cortex (Al), an
essential area for encoding complex and behaviourally meaningful
sounds (Nelken, 2004; Aizenberg & Geffen, 2013; Carruthers et al.,
2013, 2015; Mizrahi et al., 2014; Aizenberg et al., 2015).

We recorded the responses of neurons in Al of awake rats to nat-
uralistic, scale-invariant sounds, designed to mimic the variety of
natural water sounds, as their statistical structure was varied. We
found that individual neurons exhibited tuning for a specific cyclo-
temporal coefficient and spectro-temporal density of the stimulus,
yet over the population of neurons, sounds with vastly different
statistics evoked a similar range of response parameters.

Materials and methods

This study was performed in strict accordance with the recommen-
dations in the Guide for the Care and Use of Laboratory Animals of
the National Institutes of Health. The protocol was approved by the
Institutional Animal Care and Use Committee of the University of
Pennsylvania.

Animals

Subjects in all experiments were adult male rats. Rats were housed
in a temperature- and humidity-controlled vivarium on a reversed
24- light—dark cycle with food and water provided ad libiditum.

Surgery

Sprague Dawley or Long Evans adult male rats (n = 5) were anaes-
thetized with an intraperitoneal injection of a mixture of ketamine
(60 mg per kg body weight) and dexmedetomidine (0.25 mg/kg).
Buprenorphine (0.1 mg/kg) was administered as an operative anal-
gesic with ketoprofen (5 mg/kg) as post-operative analgesic. Rats
were implanted with chronic custom-built multi-tetrode microdrives
as previously described (Otazu et al., 2009). The animal’s head was
secured in a stereotactic frame (David Kopf Instruments, Tujunga,
CA, USA). Following the recession of the temporal muscle, a cran-
iotomy and durotomy were performed over the location of the pri-
mary auditory cortex. A microdrive housed eight tetrodes, of which
two were used for reference and six for signal channels. Each tetrode
consisted of four polyimide-coated Nichrome wires (Kenthal-Palm-
Coast, FL, USA; wire diameter of 12 um) twisted together, and was
controlled independently with a turn of a screw. Two screws (one
reference and one ground) were inserted in the skull at locations dis-
tal from Al. The tetrodes were implanted 4.5-6.5 mm posterior to
bregma and 6.0 mm left of the midline, covered with agar solution
(3.5%) and secured to the skull with dental acrylic (Metabond) and
dental cement. The location of the electrodes was verified based on
the stereotaxic coordinates, the electrode position in relation to brain
surface blood vessels, and through histological reconstruction of the
electrode tracks post-mortem. The electrodes were gradually
advanced below the brain surface in daily increments of 40-50 pm.
The location was also confirmed by identifying the frequency tuning
curve of the recorded units. The recorded units’ best frequency,
which elicited the highest firing rate, spanned the range of rat hearing
and was consistent with previous studies (Sally & Kelly, 1988).

Stimulus construction

To generate scale-invariant sounds, the sound waveform, y(r), was
modelled as a sum of droplets, where each droplet, x,(«;, f;, Q, i )
was modelled as a gammatone function (Geffen er al., 2011):

(1) = in(ai,fi,Q,ri;t)

= Eaié (t — ©)e 7=/ sin(2nfi(t — ;)

with parameters amplitude, a;, frequency, f;, onset time, t,, and cycle
constant of decay, O, drawn at random from distinct probability dis-
tributions. f; was uniform random in log-frequency space, between
400 and 80000 Hz; onset time was uniform random with mean rate
r. Five distinct 7-s stimuli were generated, each comprising a differ-
ent set of values of Q and r (in units of droplets/octave/s), chosen
from: Stimulus 1: Q =2, rpeq = 530; Stimulus 2: Q =0.5,
Fmed = 330; Stimulus 3: Q =8, ryeq = 530; Stimulus 4: Q = 2,
Tow = 33; Stimulus 5: Q = 2, ryjgn = 5300. The resulting wave-
forms were normalized for equal root-mean-square sound pressure
level. Further, to make the signal punctate within each spectral band,
the amplitude distribution of the droplets was drawn from an inverse
square distribution, p(z) NZ% (Geffen et al., 2011). The distributions
of droplet amplitude and frequencies were exactly matched between
the stimuli — all sounds generated at the same rate were produced
with the same random seed.

Each stimulus was 7 s long, and repeated at least 40 times with
an inter-stimulus interval of 1 s.

Neural recordings

Neural signals were analysed as previously described (Carruthers
et al., 2013, 2015; Aizenberg et al., 2015; Natan et al., 2015). Neu-
ronal signals were acquired daily from 24 chronically implanted elec-
trodes in awake, freely moving rats using a Neuralynx Cheetah
system. The neuronal signal was filtered between 0.6 and 6.0 kHz,
digitized and recorded at 32 kHz. Discharge waveforms were clus-
tered into single-unit and multi-unit clusters using either Neuralynx
Spike Sort 3D or Plexon Off-line Spike Sorter software (Carruthers
et al., 2013). Discharge waveforms had to form a visually identifiable
distinct cluster in a projection onto a three-dimensional subspace
(Otazu et al., 2009; Bizley et al., 2010; Brasselet ez al., 2012).

The acoustical stimulus was delivered via a magnetic speaker
(MF-1, Tucker-Davis Technologies, Alachua, FL, USA) positioned
above the recording chamber. The speaker output was calibrated
using Bruel and Kjaer 1/4-inch free-field microphone type 4939,
which was placed at the location that would normally be occupied
by the animal’s ear, by presenting a recording of repeated white
noise bursts and tone pips between 400 and 80 000 Hz. From these
measurements, the speaker transfer function and its inverse were
computed. The input to the microphone was adjusted using the
inverse of the transfer function such that the speaker output was
70 dB (sound pressure level relative to 20 pP, SPL) tones, within
3 dB, between 400 and 80 000 Hz. Spectral and temporal distortion
products were measured in response to tone pips between 1 and
80 kHz, and were found to be >50 dB below the SPL of the funda-
mental (Carruthers et al., 2013). All stimuli were presented at
400 kHz sampling rate, using custom-built software based on a
commercially available data acquisition toolbox (Mathworks, Inc.,
Natick, MA, USA), and a high-speed data acquisition card (National
Instruments, Inc., Austin, TX, USA).
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Frequency response analysis

We first presented a stimulus designed to map the frequency response
function of the recorded units: consisting of 50 tones, each 50 ms
long, between 400 and 80 000 Hz, logarithmically spaced, at 70 dB
SPL, repeated five times. The response strength, which combined
onset and offset responses, was computed as the mean firing rate of
neurons during 0-80 ms after tone onset. The best frequency was
computed as the frequency of the tone that evoked the maximum
response strength (Brown & Harrison, 2009; Carruthers et al., 2013).

Droplet stimulus representation

The stimulus, s(f, 1), was represented either as the spectrogram of
the sound waveform (2048-point spectrogram computed in Matlab)
or as a matrix of droplet onset time/magnitude. The droplet onset
matrix was computed from the stimulus design matrix, by binning
the droplet onset time into 5-ms bins, and droplet centre frequency
into 0.0772-octave windows. The value of each point of the
matrix was the sum of magnitudes of all droplets originating in
that bin.

Firing rate and response strength

The discharge times in each trial were histogrammed in 1-ms bins
after stimulus onset (0-8 s), averaged across trials, and smoothed
with a Gaussian filter with 3-ms standard deviation. Mean firing rate
was computed as the response averaged across the first 7 s of stimu-
lus presentation. The response strength was computed as the differ-
ence between the firing rate during the stimulus and that during the
baseline, divided by the standard error of the mean of the firing rate
at the baseline over trials. The response was considered significant
if the response strength exceeded 6.

Selectivity index and sparseness

For each neuron, the selectivity index was computed as the differ-
ence between the strongest and the mean response strength to the
five stimuli for each unit, normalized by the strongest response.

For each neuron, sparseness, S, was computed using the following
formula (Weliky et al., 2003):

(Zi3)’
S=1- et

Zfﬁ

where v; is the firing rate (spikes/s) of a single neuron to the ith
stimulus, and n is the total number of stimuli (n = 5). S takes a
value between O and 1, where a higher value indicates that the neu-
ron responds to a narrow range of stimuli and a lower value indi-
cates that the neuron responds to a broad range of stimuli.

Linear-non-linear model fit

The response of each unit, 7(f), was computed as the probability of
emitting a discharge within a 5-ms temporal bin relative to the onset
of the stimulus. We fitted a linear — non-linear model (LN model)
computed using a standard reverse correlation technique (Theunissen
et al., 2001; Baccus & Meister, 2002; Escabi & Read, 2003; Geffen
et al., 2007), using a spectrogram or the droplet-based representation
as an input.

To determine the droplet-temporal receptive field (DTRF), the
stimulus was represented in terms of the onset time and maximum
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amplitude of each droplet within its frequency band. One hundred
uniformly, logarithmically distributed frequency bands were used
(range: 0.4-80 kHz). DTRF was computed as the normalized aver-
age of the stimulus preceding each discharge.

To determine the spectrogram-based spectro-temporal receptive
field (STRF), the stimulus was represented as a spectrogram of the
waveform. We used the Auditory Toolbox to compute a cochlea-
gram-based representation of the stimulus (Lyon, 1982; Meddis
et al., 1990; Slaney, 1998) with sampling rate of 400 kHz and deci-
mation factor 100. STRF and cochleagram-based receptive fields
were computed as reverse-correlation between discharge times and
the spectrogram or cochleagram of the stimulus, using ridge regres-
sion (Theunissen et al., 2001).

The linear prediction of the firing rate was computed as the con-
volution of the stimulus with DTRF, cochleagram-based receptive
field or STRF. The instantaneous non-linearity was computed
directly from firing rate vs. linear prediction plot (Baccus & Meister,
2002; Geffen et al., 2007).

The model parameters were fitted to the data over randomly
selected 50% of trials. The remaining 50% of trials were used to
test the prediction accuracy of the model (Ahn ef al., 2014). The
prediction accuracy of the LN model was assessed by computing
the coefficient of correlation between the predicted and recorded
firing rate. Only neurons with correlation coefficient above 0.13
for either droplet-based or spectrogram-based prediction for at least
one stimulus were included in the comparisons for model predic-
tion quality over different variants of the model (Figs 5 and 7).
This value was chosen as the elbow in the histogram of model
prediction correlation coefficients, followed by visual inspection of
the predicted and actual firing rates for the cases close to the cho-
sen threshold.

Receptive field measurement

The spectral width, temporal width, time to peak and peak fre-
quency of the positive lobe of the DTRF were computed using stan-
dard methods (Woolley et al., 2006; Shechter & Depireux, 2007;
Schneider & Woolley, 2010). DTRF was denoised by setting all val-
ues outside of a significant positive cluster of pixels to 0. To deter-
mine the significance of the cluster, the z-score of pixels was
computed relative to the baseline values from a DTRF generated
with scrambled spike trains, using the Statd4ci toolbox (Chauvin
et al., 2005). To measure temporal parameters of the receptive field,
the positive portion of the cluster-corrected DTRF was averaged
across frequencies, and fitted with a one-dimensional gaussian filter.
Delay to peak was defined as the centre of the gaussian fit. Tempo-
ral width was defined as twice the standard deviation of the gaussian
fit. Likewise, to measure spectral parameters of the DTRF, the
DTRF was averaged across time, and fitted with a one-dimensional
gaussian. Peak frequency and spectral width were defined as the
centre and 2 x standard deviation of the gaussian fit, respectively.
Only DTRFs that produced prediction accuracy of 0.13 or higher
over the full set of trials for at least one of the stimuli were included
in the analysis.

Fano factor

A Fano factor was computed as the mean of the variance of the
firing rate over individual trials (in 50-ms bins), divided by the
mean firing rate in each bin. Because of the sparseness of
responses, only ten bins with the highest firing rates were used for
each neuron.
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Information measured

Mutual information was computed between the response and the
stimulus as previously described (Magri et al., 2009; Kayser et al.,
2010). The mutual information between stimuli S and neural
responses V' is defined as:

P(vls)
P(v)

1(S;V) = P(s)P(v]s) log,

where P(s) is the probability of presenting stimulus s, P(v|s) is the
probability of observing response v when stimulus s is presented,
and P(v) is the probability of observing response v across all trials
to any stimulus. A value of zero would indicate that there is no rela-
tionship between the stimulus and the response.

The 7-s stimulus was separated into seven ‘chunks’, each 1 s
long. Mutual information was computed for 50 randomly selected
responses to each of the stimulus ‘chunks’, and averaged. Each
instance of the response was a randomly selected spike count in six
consecutive 2-ms bins to a stimulus chunk (Kayser et al., 2010).
These parameters were selected following a pilot calculation of
mutual information on a subset of data with variable timing and
number of bins.

Statistical comparisons

Samples with n < 50 that did not pass the Shapiro-Wilk test for
normality were compared using a Wilcoxon signed rank test. Mea-
surements across different stimulus conditions with n > 50 were
compared via paired Student’s t-test, with a post-hoc Bonferroni
multiple-comparison correction when appropriate unless otherwise
noted. P < 0.05 was considered significant, unless otherwise noted.

Results

We characterized the responses of neurons in the auditory cortex to
acoustic stimuli designed to capture the statistical properties of natu-
ral water sounds. To construct these stimuli, we adapted the random
droplet stimuli that were originally constructed to mimic the sound
percept of water sounds (Geffen et al., 2011; Gervain et al., 2014),
for presentation in the electrophysiological recordings to rats by
expanding the frequency range and sample rate. The stimulus con-
sisted of a superposition of gammatones, which can be thought of
as individual droplet sounds, that are uniformly distributed in log-
frequency space, and in time (Fig. 1A). The amplitude of each dro-
plet sound was drawn from a random probability distribution, as
described in the Methods. The length of each droplet sound was
scaled relative to its frequency, to mimic the statistical structure of
environmental sounds (Fig. 1B) (Geffen et al., 2011).

We varied two stimulus parameters: the cyclo-temporal coeffi-
cient, Q, and the droplet density, r (Geffen et al., 2011). Q denotes
the ratio between the time constant of decay for the individual dro-
plets, and their centre frequency. As such, it regulates how many
cycles are contained within each droplet. Sounds with high Q have
a sustained quality to them, sounding metallic. Sounds with Q =2
sound natural, water-like. Sounds with low Q sound like pattering
of rain. For very low Q, sounds are static-like, resembling fire crack-
ling or similar fire-like sounds. r specifies how many droplets per
second are combined to generate the stimulus. Sounds with g, and
O = 2 sound like a fast waterfall, and with r, and Q = 2 sound
like dripping water (Geffen et al., 2011).

To cover the range of variability expected from natural sounds,
we selected three values of Q and r to construct five random

droplet stimuli (Geffen er al., 2011) (Fig. 1A). The probability
density of the stimulus gammatone transform exhibited a logarith-
mic relationship within distinct spectral bands. The density curves
overlapped across a vast range of frequencies, demonstrating that
the stimulus preserved the self-similar scaling structure, from 1 to
40 kHz (Fig. 1C). Furthermore, these stimuli had a logarithmic
power spectrum (Fig. 1D). This indicates that these sounds pos-
sessed scale-invariance not just in the power spectrum, but also in
temporal statistics across spectral channels. The random droplet
stimulus allowed us to measure not only the response strength,
but also the temporal and spectral time course of the dependency
of the responses on the stimulus for the different statistical
parameters.

The stimulus reliably drives auditory-evoked responses in the
primary auditory cortex

We recorded the activity of 654 units in the primary auditory cor-
tex in awake rats, in response to the five variants of the random
droplet stimulus. We used the stimulus with Q = 2, ryeq, as the
baseline stimulus, as this stimulus was perceived as most natural
by human listeners (Geffen et al., 2011). Individual units reliably
followed the stimulus, repeated 50 times, exhibiting a significantly
modified level of activity during the stimulus presentation, as com-
pared with baseline responses (n =368 out of 654, response
strength > 6, Fig. 2A-C).

The types of responses ranged from sparse, time-locked responses
to sustained responses (Fig. 2B and C). Two representative neuronal
responses are depicted in Fig. 2B and C. Neuron 1 exhibited ele-
vated responses throughout the stimulus presentation (Fig. 2B),
whereas neuron 2 exhibited sparse responses (Fig. 2C).

The recorded units spanned a broad range of best frequencies,
corresponding to the hearing range of rats. Neurons across the full
range of best frequencies exhibited significant responses to the stim-
ulus (Fig. 2D, n = 368), as expected for a broadband stimulus.

Selectivity of neuronal responses for specific stimulus
statistics

We next tested whether and how changing the spectro-temporal sta-
tistical structure of the stimulus affected neuronal response patterns.
The responses of the same neuron to variants of the stimuli included
time-locked excitatory responses, elevated sustained responses or
suppressed responses (Fig. 3).

The majority of recorded units exhibited selectivity for a subset
of the stimuli. Time-locked responses to a subset of stimuli were
more common (Fig. 3A). Figure 3A depicts a neuron that exhibited
time-locked, sparse responses to stimuli of Q = 2, rjoy OF Fyeq, and
QO = 8, rate rygp. The faster fluctuating (Q = 0.5) or more dense
(Tnign) stimuli were less efficient in driving this neuron. Some neu-
rons exhibited sustained responses (Fig. 3B). The neuron whose
response is depicted in Fig. 3B exhibited an elevated firing rate, but
not precise time locking to the stimulus. It was most responsive for
the stimulus with Q = 0.5, rpeq. Some neurons responded signifi-
cantly to all five stimuli (Fig. 3C and D). While elevated responses
(Fig. 3C) were more common, some suppressed responses were also
observed (Fig. 3D).

To assay selectivity in neuronal responses to different stimuli, we
computed the selectivity index and the sparseness index. The selec-
tivity index was measured as the difference between the strongest
and the mean response strength to the five stimuli for each unit, nor-
malized by the strongest response (Fig. 4A). This measure is 1 if
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gammatone transform of the Q = 2, ry,eq stimulus. (D) Power spectrum density for each of the five stimuli in eight frequency bands.

the neuron responds to only one stimulus and O if it responds to all
stimuli with equal strength. The sparseness index quantified how
specific the neuronal responses were to a particular stimulus
(Fig. 4B). We found that, typically, neurons were responsive to
more than a single stimulus. Still, most neurons exhibited a non-zero
selectivity ratio (mean selectivity index = 0.24) and sparseness
index (mean sparseness index = 0.069). These values were higher
than when responses were randomly shuffled across stimuli (Fig. 4,
selectivity: P = 1.9e-9; sparseness, P = 4.1e-57, Wilcoxon sign rank
test), such that ~50% of neurons were above the 5% significance
threshold for the shuffled data. These results indicate that most neu-

rons exhibited higher selectivity for a subset of stimuli than would
be expected by chance.

Did selectivity for a specific stimulus imply that a neuron
encoded more information about its structure? We estimated
the information conveyed about the stimulus by neuronal responses
across different stimulus conditions. We applied an information-
theoretic calculation following a previously developed procedure
(Magri et al., 2009; Kayser et al., 2010) by estimating the informa-
tion (in bits) in six successive 2-ms bins between the neuronal
responses and the stimulus over seven 1-s stimulus ‘chunks’. Neu-
rons exhibited significantly higher mutual information for stimuli to
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black line denotes an action potential produced by the neuron at a particular
delay from stimulus onset (x-axis) in a particular trial (y-axis). Bottom panel:
mean firing rate of the neuron. (D) Mean response strength of recorded units
to the stimulus vs. their centre frequency (n = 368).

which they responded most strongly as compared with those that
they responded to least strongly (Fig. 4C, n = 304, P = 0.009).

Mutual information may be increased due to an increase in relia-
bility of neuronal responses (Kayser e al., 2010). Consistently, we
found a positive correlation between mutual information and the
inverse of the Fano factor for responses of neurons to both most
and least preferred stimuli (most preferred: correlation coeffi-
cient = 0.12, P =0.04; least preferred: correlation coeffi-
cient = 0.31, P = 2.1e-8). However, there was no difference in the
Fano factor between responses to the most preferred and the least
preferred stimulus (sign rank test, P > 0.05). Therefore, the increase
in mutual information may be attributed to increased responses of
individual neurons to the preferred stimuli.

Droplet onset and spectrogram fits of the linear/non-linear
model to neuronal responses

We next sought to characterize which parameters of neuronal
responses change with the spectro-temporal statistics of the stimuli.
Responses of neurons in the auditory cortex to an acoustic stimu-
lus have previously been successfully modelled through a linear/
non-linear (LN) model (Eggermont et al., 1983b; deCharms et al.,
1998; Depireux et al., 2001; Escabi & Read, 2003; Linden et al.,
2003; Gourevitch et al., 2009). This model is used to predict the
firing rate of a neuron in response to a new stimulus by first con-
volving the stimulus with a linear filter, and then passing the linear
prediction through an instantaneous non-linearity (Geffen ez al.,
2007, 2009). The linear filter can be thought of as the receptive
field of the neuron, and the instantaneous non-linearity to represent
the transformation from inputs that change membrane voltage to
neuronal spiking.

We fitted the parameters of the linear and non-linear components
of the responses of each neuron to the stimulus. There was, how-
ever, an important problem in comparing these parameters. Typi-
cally, the receptive field of the neuron is computed as the reverse
correlation of the firing rate of the neuron to the spectrogram of the
stimulus. In the case of a white noise stimulus, this operation is
equivalent to a spike-triggered average of the stimulus. The chang-
ing cyclo-temporal coefficient of the stimulus introduces dependen-
cies across time within spectro-temporal channels, resulting in
temporal correlat