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Abstract

Critical aspects of HIV-1 infection occur in mucosal tissues, particularly in the gut, which contains large numbers of HIV-1
target cells that are depleted early in infection. We used electron tomography (ET) to image HIV-1 in gut-associated
lymphoid tissue (GALT) of HIV-1–infected humanized mice, the first three-dimensional ultrastructural examination of HIV-1
infection in vivo. Human immune cells were successfully engrafted in the mice, and following infection with HIV-1, human T
cells were reduced in GALT. Virions were found by ET at all stages of egress, including budding immature virions and free
mature and immature viruses. Immuno-electron microscopy verified the virions were HIV-1 and showed CD4 sequestration
in the endoplasmic reticulum of infected cells. Observation of HIV-1 in infected GALT tissue revealed that most HIV-1–
infected cells, identified by immunolabeling and/or the presence of budding virions, were localized to intestinal crypts with
pools of free virions concentrated in spaces between cells. Fewer infected cells were found in mucosal regions and the
lamina propria. The preservation quality of reconstructed tissue volumes allowed details of budding virions, including
structures interpreted as host-encoded scission machinery, to be resolved. Although HIV-1 virions released from infected
cultured cells have been described as exclusively mature, we found pools of both immature and mature free virions within
infected tissue. The pools could be classified as containing either mostly mature or mostly immature particles, and analyses
of their proximities to the cell of origin supported a model of semi-synchronous waves of virion release. In addition to HIV-1
transmission by pools of free virus, we found evidence of transmission via virological synapses. Three-dimensional EM
imaging of an active infection within tissue revealed important differences between cultured cell and tissue infection
models and furthered the ultrastructural understanding of HIV-1 transmission within lymphoid tissue.
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Introduction

HIV-1 remains a significant public health concern with over 33

million people infected world-wide [1]. Most HIV-1 transmissions

occur across an epithelial barrier, resulting in generation of a

founder population within the mucosa, viral dissemination to

lymphatic tissue, and exponential viral replication throughout the

lymphatic system [2]. These events result in depletion of most

CD4-positive T cells in mucosal compartments, and establishment

of a reservoir of resting cells with integrated provirus that is not

susceptible to antiretroviral therapy. In the absence of therapy,

progressive immune system collapse and progression towards

AIDS ensue in most infected persons.

Accumulating evidence indicates that both acute and chronic

HIV-1 infection profoundly affect the gastrointestinal (GI) tract

[3,4]. Studies of SIV infection in non-human primates demonstrat-

ed that intestinal CD4 T cell depletion occurs within days, even

before T cell depletion can be detected in the peripheral blood or

lymph nodes [5]; similar events occur in HIV-1–infected humans

[2,6]. Several features of the GI tract facilitate its susceptibility to

HIV-1 infection: (i) the GI mucosa includes high levels of pro-

inflammatory, HIV-1–stimulatory cytokines produced by exposure

to antigens in the external environment, (ii) a dense clustering of

cells that facilitates cell-to-cell transmission, and (iii) a majority of the

activated memory T cells expressing CD4 and CCR5 that serve as

the preferred target cells for HIV-1 infection [7,8]. Indeed, the gut-

associated lymphoid tissue (GALT) harbors the greatest concentra-

tion of potential HIV-1 target cells in the human body [9]; .50% of

CD4 T cells from the lamina propria in the lower GI tract are

destroyed during acute HIV-1 infection, and early infection of the

GALT is believed to be central to chronic HIV-1 infection and

disease progression [10,11]. Furthermore, the presence of CD4 and

CD8 T cells, dendritic cells, and macrophages in the GALT make

this tissue an integral site for HIV-mediated immune depletion.
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Mouse models with humanized immune systems are emerging

as a tractable, cost-effective means by which to study HIV-1

infection in mucosal lymphoid tissue [12]. One such model,

humanized bone marrow/liver/thymus (BLT) mice, are individ-

ually created by transferring human fetal thymic and liver

organoid tissues, along with CD34-positive human stem cells, into

immunocompromised mice. BLT mice reconstitute significant

levels of human lymphoid immune cells; e.g., T and B cells,

monocytes, dendritic cells and macrophages in peripheral blood

and organs including the GI tract [13,14]. Important aspects of

human HIV-1 infection are recapitulated in this system, including

T cell depletion in the gut and peripheral blood, and both systemic

and mucosal virus transmission during the course of the disease

[15,16]. Furthermore, BLT mice exhibit high levels of human

immune cell engraftment at mucosal sites and significant antigen

specific immune responses by multiple cell types [17,18].

Electron microscopy (EM) was instrumental in the original

identification of HIV-1 [19,20]. Subsequently, diagnostic EM

analyses of biopsies from infected patients revealed important

aspects of HIV-1 transmission in humans at varying stages of

infection, from early acute disease to AIDS progression [21]. More

recently, 3-D EM, specifically electron tomography (ET), cryoe-

lectron tomography (cryoET) and ion-abrasion scanning electron

microscopy, have been applied at increasingly higher resolutions,

facilitating improved understanding of HIV-1 virion structure

[22–24], virus budding [25,26], and virus transmission between

immune cells [27,28]. 3-D EM of isolated virions and infected cells

can provide a detailed understanding of HIV-1 ultrastructure and

transmission between cultured cells, but does not address the

complex cellular environment found in mucosal tissues within an

organism experiencing an active infection.

Here we used ET to analyze GALT from humanized HIV-1–

infected BLT mice in order to visualize HIV-1 infection in

mucosal tissues in 3-D at ultrastructural resolution. These analyses

allowed us to localize infected substructures within intestinal tissue,

classify virions as mature or immature, identify infected cells,

visualize structures we interpreted as components of the host cell

machinery involved in viral budding, and assess the propensity for

viral spread by cell-to-cell versus free virus routes of infection. In

parallel studies, we used immunofluorescence (IF) and immuno-

electron microscopy (immunoEM) to verify the identities of viral

particles, locations of infected tissue, and to distinguish human

from murine and infected from uninfected cells.

Results

Immunofluorescence (IF) Characterization of HIV-1
Infection in BLT GALT

Human hematopoietic cells derived from transplanted human

stem cells have been shown to repopulate the GALT of BLT mice,

and HIV-1 infection of these mice results in CD4 T cell depletion,

initially in GALT and then systemically [13,16]. Following

established protocols [13], BLT mice were infected with HIV-1

approximately 20 weeks after transfer of human immune tissues

and cells, using only mice that met the following criteria for

adequate human immune reconstitution: .25% of peripheral

blood cells were within a lymphocyte gate on forward-versus-side

scatter plots; .50% of cells in the lymphocyte gate were human

(human CD45+/mouse CD452); and .40% of human cells in the

lymphocyte gate were T cells (human CD3+). Ten to twenty weeks

post infection, mice were sacrificed and segments of small intestine

and colon were excised. IF was used to survey locations of HIV-1–

infected cells in GALT (Figure 1A,B). Following infection with

HIV-1, human CD4 T cells were depleted from the lamina

propria (Figure 1B), as previously reported [13,16]. Staining for

the p24 capsid protein of HIV-1 localized primarily in CD4+ cells

in regions near the crypts (Figure 1B, inset), which harbor

significant populations of immune cells and multipotent stem cells

[29]. No evidence of human cells or HIV-1 infection was found in

non-humanized infected controls (data not shown).

Ultrastructural Characterization of HIV-1–Infected BLT
GALT

We next analyzed GALT samples in parallel by ET and

immunoEM/ET. Tomography of frozen hydrated tissue samples

by cryoET was not possible because the samples were too thick for

imaging without sectioning and were infectious biohazards. We

therefore imaged fixed and sectioned samples, either positively-

stained plastic-embedded or negatively-stained methylcellulose-

embedded sections. For ET alone, preservation quality was

improved by lightly fixing HIV-1–infected tissue with aldehydes

and then further processing them by high-pressure freezing and

freeze substitution fixation [30]. This ‘‘hybrid’’ fixation method

allowed for safe handling of infectious material and obviated the

most structurally damaging steps of traditional chemical fixation

[31], yielding well-preserved positively-stained samples. Tomo-

grams were reconstructed from 200 nm or 300 nm sections, often

in montaged serial sections of volumes up to

6.1 mm66.1 mm61.2 mm. Although these samples could not be

used for immunoEM because antibody epitopes are rarely

accessible in epoxy-embedded, positively-stained samples [32],

analogous GALT samples generated from the same animal were

prepared for immunoEM/ET as negatively-stained methylcellu-

lose-embedded sections [33]. Measurements of virions and other

structures reflected proportional thinning typical of plastic-

embedded and negatively-stained samples [34]. Consequently

most structures were ,30% smaller than counterparts from

cryoEM studies or virions in solution or in cultured cells [22–

24,35,36].

Author Summary

HIV/AIDS remains a global public health problem with over
33 million people infected worldwide. High-resolution
imaging of infected tissues by three-dimensional electron
microscopy can reveal details of the structure of HIV-1, the
virus that causes AIDS, how it infects cells, and how and
where the virus accumulates within different tissue sub-
structures. Three-dimensional electron microscopy had
previously only been performed to image infected
cultured cells or purified virus. Here we used three-
dimensional electron microscopy to examine an active
infection in the gastrointestinal tract of HIV-1–infected
mice with humanized immune systems, allowing visuali-
zation of the interplay between the virus and host immune
cells. Recapitulating the course of infection in humans,
immune cells were depleted in infected humanized mouse
gut-associated lymphoid tissue, and individual HIV-1
particles were detected as they budded from host cells
and accumulated in pools between cells. HIV-1 was
mapped to different substructures and cell types within
the gut, and free virions were found to accumulate in
pools between cells and also to infect adjacent cells via
regions of cell-to-cell contact called virological synapses.
Our three-dimensional imaging of an HIV-1 infection in
tissue uncovered differences between cultured cell and
tissue models of HIV-1 infection and therefore furthered
our understanding of HIV-1/AIDS as a disease of mucosal
tissues.

Electron Tomography of HIV-1 in GALT
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ET surveys of HIV-1–infected BLT mouse GALT revealed

budding virions (Figure 2A,B; Figure S1A) and free mature and

immature particles (Figure 1C, Figure 2C–D, Figure S1B). Virions

were detected in all HIV-1–infected mice, while none were found

in mock-infected controls (data not shown). The virions were

verified as HIV-1 using antibodies against HIV-1 p24 and the

envelope spike (Figure 2E,F). Virions were imaged in tissue at all

stages of egress, from early plasma membrane Gag assembly to

nearly completed buds and fully mature, free HIV-1 (Figure S2).

Budding profiles and immature free virions were distinguished by

core structures that exhibited radial layers and often appeared as

an incomplete internal sphere (a ‘‘C’’ shape in projection) [24,26].

Mature HIV-1 particles were distinguished from immature

particles by the collapse of their cores into a variety of conical

shapes, typically ‘‘bullet-shaped’’ cones but often cylinders or

ellipsoids [23,37] (Figure S2). Although envelope spikes on HIV-1

and SIV can be distinguished in positively-stained samples [38],

we observed few projections emanating from virion surfaces,

consistent with biochemical and cryoET studies of purified HIV-1

virions that demonstrated a low number of envelope spikes: an

average of ,14 (ranging from 4–35) per virus particle [39,40].

After establishing that HIV-1 could be identified in infected

BLT GALT by ET and immunoEM, we surveyed GALT samples

to determine locations of infection. Plastic-embedded sections of

small intestine (jejunum and ileum) and large intestine (colon) were

examined to find HIV-1 and infected cells, which were identified

by budding profiles at their surfaces. Within a given animal, the

extent of infection and the distribution of virions were similar

between the small and large intestine. However, virions were

found in differing amounts amongst sub-structures in the intestinal

mucosa. The largest populations of HIV-1 virions and infected

cells identified by EM were located in crypts (Figure 1A,C),

consistent with IF (Figure 1B). Approximately one in ten crypts

showed evidence of HIV-1 infection. The mucosal region

surrounding the villus base and the crypts contained few free

virions or infected cells (,1 in .100); when present, infected cells

were often near a capillary or venule (Figure S1A). The numbers

of free virions and infected cells in the lamina propria were less

than in the crypts (Figure S1B). Typically, infected lamina propria

were in villi continuous with infected crypts. Few infected cells or

virions were found in the smooth muscle layer surrounding the

intestine. In addition, free virions were rarely found in blood

Figure 1. IF and EM imaging of BLT mouse GALT. (A) Histological overview, indicating primary GALT-containing regions. (B) Tissue sections
from the small intestine of uninfected or HIV-1–infected humanized BLT mice, stained with antibodies recognizing human CD3 and CD4, CD68, and
DC-SIGN (blue = DAPI nuclear stain). The top two panels are longitudinal sections of villi, showing the lamina propria (LP); the bottom four panels are
cross-sections showing crypts. Staining for human CD4 revealed depletion of CD4 T cells in both LP and crypts of HIV-1–infected BLT mice, and
staining for HIV-1 p24 localized virions to the crypts. Inset: An infected cell co-labeled for CD4 and HIV-1 p24. (C) Left: EM overview of the lower
portion of a crypt from BLT-mouse colon. Middle: A pool of free virions (red arrowhead) between two cells. Right: A tomographic slice of the pool
with modeled virions (blue, membrane; purple, cores; average diameter = 99.3+/24.7 nm; n = 50). Figure S1 shows HIV-1 in GALT substructures.
doi:10.1371/journal.ppat.1003899.g001

Electron Tomography of HIV-1 in GALT
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vessels because even the high viral loads of the HIV-1–infected

BLT mice from which the samples were derived (up to 126,000/

mL in peripheral blood) translated to only ,161027 virions/mm3.

Thus at the scale of individual EM images or even large-format

tomograms, HIV-1 virions would be rarely seen, and our imaging

of .50 blood vessels contained within tomograms yielded only two

examples of free virions (data not shown).

To identify potential human target cells of HIV-1 infection, we

conducted immunoEM (Figure S3A–D) using antibodies specific for

human proteins. Human CD4 localized primarily to the plasma

membrane in uninfected cells (Figure S3A), but we found extensive

CD4 labeling in the endoplasmic reticulum (ER) of CD4-positive cells

with budding virions or nearby free virions (Figure S3B), correlating

with the finding that HIV-1 Vpu induces cell surface CD4 to

redistribute to the ER to avoid surface retention of newly-forming

virions [41]. Double labeling with antibodies against HIV-1 Nef and

human CD4 (Figure S3C) or class I human leukocyte antigen (HLA)

and human CD4 (Figure S3D) confirmed that cells exhibiting a

predominantly ER localization of CD4 were human cells infected with

HIV-1. No instances of Nef expression were found in uninfected or

non-human cells (data not shown), which served as an internal control

for the specific of the antibodies and further validated the BLT model

of HIV-1 infection.

Structural Details of Immature HIV-1 Virions in GALT
Tomograms of immature virions derived from negatively-

stained infected tissue revealed detailed structural information.

With the exception of the widening of lipid bilayer membranes,

presumably caused by obligatory light fixation associated with this

method, the overall architecture of the Gag shell in immature

virions conformed to known properties of HIV-1 determined from

studies of viruses isolated from cultured cells [22,24,35,36,42]

(Figure 3; Figure S4). Indeed, the immature virions in our tissue

samples (Figure 3, S4A,B) exhibited features observed in cryoET

analyses of purified frozen hydrated HIV-1 [22,24] (Figure S4C);

e.g., individual layers of the Gag shell, including the hexagonal

lattice of the capsid (CA) portion (Figure 3). The symmetry of the

CA layer was confirmed by hexagonal features in the Fourier

transforms of immature virions, but not in transforms of adjacent

cytoplasm (Figure 3B; Figure S4A).

Identification and Quantification of Intercellular Pools of
HIV-1 Virions

More than 50 crypts of Lieberkühn were imaged in the course

of this study. In the ,10% of crypts that were infected, HIV-1

virions were found primarily in pools within dilated regions of

Figure 2. Virion structures in HIV-1–infected GALT. (A, B) Slices from tomographic reconstructions of immature budding virions extending
from filopodia in positively-stained (A) and negatively-stained (B) HIV-1–infected jejunum. (C, D) Details from tomographic slices, showing mature and
immature (insets) virions in positively-stained (C) and negatively-stained (D) samples. (E, F) Immunolabeling (projection images) of virions labeled
with antibodies against the HIV-1 capsid (anti-p24) (E) or the HIV-1 envelope (anti-Env) (F), which localized to the expected regions of the virions: anti-
p24 to the interior and anti-Env to the exterior. Figure S3 shows immunoEM of human cell markers.
doi:10.1371/journal.ppat.1003899.g002

Electron Tomography of HIV-1 in GALT
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intercellular spaces (Figure 1C; Figure 4; Figure S5; Movie S1).

Pools were defined as a population of virions within an

intercellular space that was continuous within a given 3-D volume.

Multiple intercellular spaces could be present within the volume,

but unless the spaces were visually continuous, virions within them

were regarded as separate pools (Figure 4B,C). The numbers of

free virions in intercellular pools ranged from 5 to .200. In single-

frame tomograms (3.2 mm63.2 mm6200 nm), most pools con-

tained 10–40 particles. Larger pools were observed in serial-

section reconstructions encompassing greater tissue volumes. In

longitudinal sections of crypts, most pools were found between the

base and middle. Infected human immune cells, identified by the

presence of budding virions, were often found near virion pools.

Virions within a given pool were distinguished as mature or

immature based on the presence of a cone-shaped core in mature

particles and radial Gag layers in immature particles (Figure S2).

The numbers of mature and immature particles in intercellular

pools were quantified within reconstructed volumes of infected

crypts. Pools could be classified as either ‘‘mostly mature’’ or

‘‘mostly immature’’ (Figure S5A). Of .100 pools containing many

hundreds of virions, approximately 90% of pools were classified as

mostly mature and 10% were mostly immature.

Potential HIV-1 target cells and pools of virions were plentiful

in GALT, particularly in crypts, thus it was not always possible to

determine from which cell a particular virion population

originated. In order to quantify virions from a particular cell

and infer temporal data with respect to virion pools, we imaged

regions of the intestinal smooth muscle layer (Figure 1A), which

contains few HIV-1 target cells. Figure S5B shows an HIV-1-

infected cell in the smooth muscle. The surface of this cell

exhibited several HIV-1 budding profiles, and groups of free

virions were located both in close proximity to and at varying

distances from it. There were no other infected cells within several

microns, thus we could be confident that nearby free virions had

originated from that cell. We found that 62% of virions (n = 16) in

immediate proximity (#0.5 mm) to the cell were immature, while

73–75% of virions in groups located 0.8 mm (n = 15) and 1.3 mm

(n = 32) away were mature.

Of .100 virion pools that were imaged, most were in obvious

extracellular spaces. Some pools (,5%) appeared to be intracel-

lular, but were revealed by ET to be connected to the

extracellular space by narrow channels that averaged ,27 nm

in width (range = 23–32 nm; n = 6) (Figure 4D–E) and contained

2–20 mature virions. A few of the budding regions were large

enough that potential continuities with the plasma membrane

were outside of the reconstructed volume. The presence of

seemingly intracellular virion pools connected to microchannels

could identify the cell as an infected macrophage, a cell type in

which internal virus-containing compartments were proposed to

represent specialized domains of the plasma membrane that

were sequestered intracellularly [43,44] and/or endosomal

compartments [45,46].

Figure 3. Structural details in negatively-stained images of HIV-1 in infected GALT. (A, B) Tomographic reconstructions of budding HIV-1
virions, showing Gag layers (A; slice through equator) and hexagonal lattice (B; slice through surface). Hexagonal symmetry was confirmed by Fourier
transformation of the Gag lattice region in a single tomographic slice (upper inset in B). A similar transform of a region of cytoplasm adjacent to the
bud (lower inset) shows only the inherent Friedel symmetry of a Fourier transform. (C, D) Tomographic slice (C) and model (D) of a budding profile.
The identities of the layers in the budding profile cannot be definitively assigned, but a proposed assignment of features visible in tomogram is as
follows: black, plasma membrane; light blue, MA; red, CA-NTD; orange, CA-CTD; magenta dots, NC; gold, RNA genome; green, ESCRT. The white space
between the plasma membrane and first Gag layer (see also panels A–C) is an artifact of preservation. Figure S4 shows a gallery of Fourier transforms
and a comparison with cryoET.
doi:10.1371/journal.ppat.1003899.g003

Electron Tomography of HIV-1 in GALT
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Pools of Free Virions Versus Cell-to-Cell Transmission of
HIV-1

ET surveys of HIV-1 infected GALT showed evidence of

virological synapses for direct cell-to-cell virus transmission, a

route of HIV-1 transmission within tissues whereby a virus buds

from an infected cell and directly contacts and infects an adjacent

uninfected cell [47]. Formation of a virological synapse results

from interaction of gp120 on an infected cell with its receptors on

a target and also involves other host proteins such as LFA-1 and

ICAM proteins on the surfaces of both the donor and target cells

[48,49]. A large format reconstruction (263-frame montage) of

GALT revealed an HIV-1–infected cell, likely a dendritic cell or

macrophage based on the convoluted processes intercalating

between neighboring cells (Figure 5A; Movie S2). A presumptive

virological synapse was visualized as a region of contact between a

budding virion and an adjacent cell (Figure 5B; Movie S2).

Although this positively-stained sample could not be examined by

immunoEM, we found similar features in negatively-stained

samples that labeled with antibodies against LFA-1 and ICAM-1

(Figure 5C,D), supporting the identification of these regions as

Figure 4. Intercellular pools of HIV-1. (A) Tomographic slice of a GALT region near the edge of a crypt. Two pools of mature HIV-1 virions,
indicated in gray boxes, occupied dilated regions of the intercellular space (IS) between two cells (N, nucleus). Collagen fibrils (Coll) were visible at the
outer boundary of the crypt. (B) Montaged overview of four cells within GALT. Red dashed lines demark the intercellular spaces. Pools of virions
within GALT were defined as a population within an intercellular space that was continuous throughout a given volume of a tomographic
reconstruction. Virus pools within intercellular spaces that did not connect within the volume were considered distinct. (C) Region shown in B with
modeled HIV virions in three pools containing 59, 17 and 38 virions, respectively. (D) Pool of HIV-1 in a dilated domain associated with a thin channel
(red arrowheads) that opened to the mucosa. (E) Segmented model of the microchannel shown in D. The width of the channel remained relatively
constant through an ,600 nm volume, suggesting that morphological changes would be necessary for virions to escape. (A: jejunum; B–E; colon).
doi:10.1371/journal.ppat.1003899.g004

Electron Tomography of HIV-1 in GALT
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Figure 5. Intercalating infected cell with a budding profile contacting an adjacent cell. (A) Tomographic slice (9 nm) from a six-frame montaged
tomogram near the edge of a crypt in colon. The field contained two cells (N, nucleus) with an intercalating HIV-1–infected cell (presumably a dendritic cell;
green outline). Four HIV-1 budding profiles were forming from the presumptive dendritic cell at different positions in the volume (magenta dots and black
arrow). Dots indicate the approximate position of free mature virions at different positions in the volume (upper cell: light blue; lower cell magenta); the black
arrow indicates a budding profile potentially involved in a virological synapse. (B) Eight tomographic slices (9 nm each) detailing the approach of the bud in
panel A (black arrows) to the adjacent cell. Red arrowheads indicate the points of contact with the adjacent cell. (C) Immunolocalization of ICAM-1 near a
presumptive virological synapse. A budding virion (arrow) is shown projecting from an infected cell and contacting the surface of an adjacent cell across an
intercellular space (IS). The surfaces of both cells labeled for ICAM-1 (arrowheads). (D) Immunolocalization of LFA-1 near a presumptive forming virological
synapse. The budding profile (arrow) extending from the infected cell was nearing the surface of the adjacent cell. LFA-1 (arrowheads) was present on the
surface and proximal underlying compartments of the infected cell. Details of this interaction are shown in the latter part of Movie S1. Other examples of
potential virological synapses are shown in Figure S6.
doi:10.1371/journal.ppat.1003899.g005

Electron Tomography of HIV-1 in GALT
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virological synapses. In another example, an infected cell that

showed numerous budding profiles included one that closely

approached the surface of an adjacent cell although still attached

to its host cell via a ,50 nm neck (Figure S6A). The surface region

of the cell proximal to the approaching bud was denser than

surrounding surface regions and extended toward the bud. In a

third example, a budding profile from an infected cell appeared to

project into an invagination in the plasma membrane of an

adjacent cell (Figure S6B,C). Tomographic views through the

volume containing this region showed the boundaries of the

invagination followed the contours of the budding profile (Figure

S6C), suggesting a dynamic response to the approaching nascent

virion.

By reconstructing a large 3-D volume of infected tissue, we

could address whether direct cell-to-cell transmission was an

obligatory means of virion transfer between two adjacent cells.

Movie S1 shows a 1.4 mm62.9 mm61.2 mm tomogram in which

the outlines of two adjacent cells were distinguished. Both cells

were identified as infected by the presence of budding virions and

were therefore HIV-1 targets. A region resembling a virological

synapse was not observed in the reconstructed volume, however a

large accumulation of free mature virions were present in the

space between the cells, suggesting that direct cell transfer is not a

required mechanism of HIV-1 transmission between closely

apposed infected cells. The lack of an observed virological synapse

in such cases could be the consequence of CD4 down-regulation in

the infected cells. However the existence of natural recombinant

HIV-1 strains, which could result from infection by one HIV-1

strain of a cell already infected with a different viral strain [50],

suggests that residual CD4 remaining at an infected cell surface

can allow for infection via free virus or direct cell-to-cell transfer.

Characteristics of Budding Virions
The large number of budding virions within BLT GALT

tomograms offered the opportunity to characterize structural

aspects of HIV-1 budding in infected tissue (Figure S7). Actin

filaments were often found near forming buds (Figure S7A) similar

to those previously observed at HIV-1 budding sites in cultured

cells [25]. Budding profiles exhibited varying lengths of necks,

including some with no neck (Figure 3C,D; Figure S7B). In the

colon, early budding virions without necks were often observed

forming from surfaces that were not obviously plasma membrane.

However, serial-section tomography revealed that these domains

were usually continuous with the plasma membrane proper,

indicating that they were convoluted regions of the cell surface and

not distinct cytoplasmic compartments. Some budding virions

exhibited necks with 50–80 nm lengths and varying widths (Figure

S7C), with narrower necks likely representing those approaching

scission. Virions were also observed budding at the ends of

extremely long cellular projections (Figure 2A,B) that were likely

filopodia extending from dendritic cells, as observed in culture

[27,51].

ET analyses of HIV-1 budding in cultured cells revealed a

subset of RNA-free immature virions with a novel ‘‘thinner’’ Gag

lattice lacking the nucleocapsid-RNA layer, which were suggested

to represent aberrant, noninfectious virions resulting from

premature activation of HIV-1 protease [25]. Using our measur-

ing convention, the previously-described thin Gag lattice [25]

measured 9–10 nm. Analysis of 100 free or budding immature

virions from tissue samples yielded no examples with a thin (9–

10 nm) Gag lattice that lacked discernable RNA densities. Instead,

we found that the Gag lattice widths in all of the immature virions

we surveyed (n = 100) within infected tissue was 14.660.8 nm

(Figure S4B, Figure S7D,E); significantly different than the thin 9–

10 nm Gag lattices previously described [25]. In addition, there

were no systematic structural differences in Gag lattices correlating

with the type of budding profile: the Gag shell thicknesses measured

in 30 long-necked and 30 neck-free buds were similar and

presumptive RNA densities were present in all cases (Figure S7D).

Localization of ESCRT Pathway Components at Sites of
HIV-1 Budding

Release of HIV-1 virions from infected cells involves recruit-

ment of the host endosomal sorting complexes required for

transport (ESCRT) machinery to sites of virus assembly by the

Gag polyprotein [52]. These interactions culminate with the

polymerization of ESCRT-III proteins, recruitment of vacuolar

protein sorting-associated protein 4 (VPS4) ATPase oligomers,

fission of the cellular membrane attaching the virion to the host

cell, and disassembly of the ESCRT machinery.

We used antibodies against ESCRT-III proteins, human

charged multivesicular body proteins (hCHMPs) 1B and 2A, and

ALG2-interacting protein X (ALIX), an ESCRT adaptor protein

that facilitates the transport of Gag to the cell membrane [53] and

can mediate interactions between ESCRT-I and ESCRT-III

complexes [54], to detect components of the ESCRT pathway in

infected tissue by immunoEM. We found that hCHMP1B,

hCHMP2A and hALIX localized predominantly to the neck

regions of budding HIV-1 virions (Figure 6A-C). The labeling was

specific, but sparse due to the small number of epitopes and their

availability only at section surfaces.

At scission regions of budding virions in which the neck of the

bud was greater than half the diameter of the bud, clusters of 4–6

spoke-like projections nearly 20 nm in length radiating from a

centralized origin at the base of the budding virion were

sometimes observed (Figure 3C,D; Figure 6D; Figure S8A; Movie

S3). As the larger neck diameter may define these buds as being at

an initial stage of egress, these radial projections could represent

components of the early portions of the ESCRT pathway such

ESCRT-I or ALIX recruited by assembling HIV-1 Gag

molecules. Indeed, the size and shape of the structures approx-

imate models for the ESCRT-I-II supercomplex determined by a

combination of spectral techniques [55]. By contrast, in tomo-

grams of budding virions with narrower necks (less than half the

diameter of the bud itself), we observed parallel electron dense

striations circumscribing the neck of the bud in both positively-

and negatively-stained sections (Figure 7A–E; Figure S8B,C;

Movie S4) suggestive of ESCRT-III components polymerizing at

membranes [56,57]. Similar electron dense striations were

detected at the necks of budding virions arrested at a late stage

by expression of dominant-negative ESCRT-III or VPS4 proteins

[58]. In addition, budding profiles in positively-stained samples

often showed 1–5 electron-dense ‘‘spots’’ in the neck or base of a

bud (Figure 7F,G; Movie S5). The spots were observed in over half

of ,50 budding profiles in which the diameter of the neck was half

or less of the diameter of the budding virion; presumably a late

stage of budding. Available antibodies against VPS4 did not stain

efficiently by immunoEM, however their interpretation as VPS4

oligomers was consistent with fluorescence imaging showing

recruitment of 2–5 VPS4 dodecamers to the sites of viral budding

just prior to virion abscission [59,60]. In addition, the size and

relative shape of the putative VPS4 densities (Figure 7G)

correlated with cryoEM reconstructions of VPS4 [61].

Discussion

Many aspects of the pathologies related to HIV-1 infection,

including immune cell death and tissue destruction, occur in

Electron Tomography of HIV-1 in GALT
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GALT. However, 3-D ultrastructural details of a natural GALT

infection were unknown because ET had not been applied to in

vivo infection in GALT or other lymphatic tissues. BLT

humanized mice are an emerging model for studying HIV-1

infection, and BLT GALT maintains cellular architecture, cell-cell

interactions, immune cell populations and signaling more accu-

rately than cell culture infection models [12]. As such, the BLT

mouse system is a reliable model for structural studies of HIV-1

infection in a tissue environment. In addition, the inclusion of

human thymic tissue in BLT mice allows for T cell maturation in

the context of human, rather than murine, MHC proteins; an

aspect that is not present in humanized mouse model systems

produced with human hematopoietic stem cells but without

thymic tissue.

Dense areas of HIV-1–infected cells, including CD4 T cells,

macrophages and dendritic cells, and free HIV-1 virions were

found in crypts within BLT GALT by IF, ET and immunoEM

(Figure 1B,C). Blood vessels were imaged in mice with a wide

range of viral loads; however, we were unable to correlate the

relative abundance of virions detected in GALT with the viral load

measured in the blood. In fact, only two examples of virions within

blood vessels of BLT mice were detected as compared with

hundreds of virions within mucosal tissue. This finding is

consistent with reports highlighting a discrepancy between blood

viral load and HIV-1 levels in tissues [62,63]. Thus analysis of

HIV-1–infected tissues by methods such as ET may provide

valuable information in addition to blood viral load measurements

when evaluating treatment regimens.

Potentially relevant to infection and immune cell recognition

mechanisms, large pools of free HIV-1 were found within infected

GALT (Figures 1C, Figure 4, Figure S5). Although most pools

contained mainly mature virions, some pools contained a majority

of immature virions (Figure S5A), a phenomenon not observed in

EM studies of HIV-1 infection of cultured cells. Pools of virions

were usually found between cells, but also in compartments that

appeared to reside within cells. These compartments were often

connected to the cell surface by microchannels 20–30 mm in width

(Figure 4D). These narrow channels likely undergo dynamic

changes in morphology, as their width would be too narrow to

accommodate passage of HIV-1 to the extracellular space. We

interpreted such channels as invaginations of the plasma

membrane, consistent with reports that macrophages can assemble

HIV-1 in intracellular virus-containing compartments created by

internally sequestered plasma membrane [43,44,64]. In infected

tissue, we found that pools of HIV-1 virions located between two

cells could contain mature or immature virions (Figure S5A),

whereas the intracellular pools connected by microchannels

contained only mature virions (Figure 4D). One possibility for

Figure 6. ImmunoEM of ESCRT pathway proteins at sites of HIV-1 budding in GALT. (A–C) Immunolabeling (projection images) of budding
virions using antibodies against CHMP1B (A), CHMP2A (B), and ALIX (C). Antibodies localized to the necks of budding virions or to the adjacent
plasma membrane. (D) Cluster of spoke-like projections (red arrowheads) radiating from a common origin (see also Figure 3C,D). These types of
striations, suggested to represent components of ESCRT-I and/or ESCRT-II, were only seen when the neck diameter was more than half of the
diameter of the bud. Figure S8 shows galleries of electron dense structures from both ‘‘early’’ and ‘‘late’’ budding HIV-1 virions.
doi:10.1371/journal.ppat.1003899.g006
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the difference in maturation states of inter- versus intracellular

pools of HIV-1 is that intracellular virions connected to the

extracellular space by microchannels are not subject to movement

by interstitial fluid through intestinal tissue and could remain in a

single location long enough to complete maturation, perhaps

representing viral reservoirs that allow low levels of de novo

infection to proceed in the presence of anti-retroviral therapy and/

or antibodies [65].

Although the discovery of virion pools suggested that infection

by free virus could occur within infected tissue, we also found

evidence of direct cell-to-cell transmission of HIV-1 in infected

GALT (Figure 5; Movie S2). The virological synapse is a

mechanism of cell-to-cell transmission in which juxtaposition of

an infected and uninfected cell promotes infection by directing

viral assembly, budding, maturation, and fusion machinery to

discrete locations of cellular contact between cells [47]. In a large

3-D reconstruction of two adjacent HIV-1–infectable target cells

(Movie S1), we found a large pool of mature virions but no

evidence for a virological synapse, suggesting that formation of

virion pools and infection by free virus can occur even when

adjacent cells are both infectable by HIV-1, or had been infectable

prior to down-regulation of CD4. In addition, this result validated

Figure 7. Electron dense striations in tomograms of the scission regions of budding virions. (A–E) Parallel electron dense striations (red
arrowheads) circumscribing the necks of budding virions in positively-stained, plastic-embedded samples (A,B,D) and in negatively-stained samples
(C,E). Parallel striations, suggested to be portions of the polymerized ESCRT-III complex, were observed only when the diameter of the neck was half
or less than the diameter of the bud. (B) Higher magnification view of the bud in (A), rotated to optimize visualization of the striations. (F)
Tomographic slice of a positively-stained budding profile displaying five dense spots (red arrows) in the neck region that may correspond to VPS4
complexes recruited to facilitate scission of the bud. Ribosomes in cytoplasm distal from the budding virion appeared slightly smaller and typically
less electron dense than the presumptive VPS4 structures. (G) Galleries of HIV-1 budding profiles bearing presumptive VPS4 spots (row 1) and
individual presumptive VPS4 spots and cytoplasmic ribosomes, extracted from tomograms and viewed at high magnification (rows 2 and 3,
respectively). The VPS4 spots were pleomorphic and solidly dense, with an average width of 13.360.8 nm; n = 10). The spots appeared to be slightly
larger than ribosomal densities (11.960.8 nm; n = 10), which were less dense and often showed a characteristic ‘‘groove’’ between the 30S and 50S
subunits. Note that the ribosomes in this and previous ET studies involving positively-stained, plastic embedded samples [72] appear smaller than
their 25–30 nm diameter.
doi:10.1371/journal.ppat.1003899.g007
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our frequent finding of large pools of free virions in HIV-1–

infected tissue, demonstrating that this phenomenon was not

necessarily the consequence of the juxtaposition of a human

infected cell and a murine cell, as may occur in BLT GALT.

EM studies of HIV-1 virions produced in cultured cells

suggested that maturation is a rapid process, because intermediate

maturation states were not detected and because virions found

near cells were predominantly mature [66]. However, our finding

of pools containing immature virions in proximity to infected cells

in tissue suggested maturation dynamics and/or virion diffusion

properties differ between cells organized within tissue versus those

cultured in vitro. In addition, we never found examples of RNA-

negative budding virions with a thin Gag lattice in tissue samples,

as had been observed in ,18% of immature particles in cryoET

analyses of HIV-1 produced in cultured cells [25]. Thus, higher

numbers of aberrant particles and of exclusively mature virions in

close proximity to producer cells could be artifacts of producing

virions in cultured cells, suggesting that the BLT model of in vivo

infection more accurately recapitulates the HIV-1 lifecycle than

cell culture models.

Although ET relies on fixed tissue and cannot directly

recapitulate virion dynamics in live cells, our studies provided a

glimpse into temporal aspects of HIV-1 maturation. We deter-

mined that an isolated infected cell within a large tissue volume

was the sole producer of several populations of imaged virions

located at varying distances from the cell. This allowed us to

determine that a single infected cell can produce at least 63 viruses

(the number of virions in the three pools in Figure S5B). The total

number of virions produced per cell is likely far larger, as regions

above and below the cell were not represented in the reconstruc-

tion. Using a predicted rate of interstitial fluid movement in

intestinal tissue of 0.1–2 mm/sec [67], a virion would travel 2 mm

in 1–20 sec, indicating that maturation could occur just seconds

after release from an infected cell. This argues that, in tissue,

virions found ,2 mm away from a producer cell budded only

seconds earlier, supporting an assumption of rapid virus matura-

tion. Furthermore, our finding of mostly immature virion pools in

close proximity to the infected cell and mostly mature virion pools

further away from the cell (Figure S5B) is consistent with

synchronous release and subsequent maturation of HIV-1. The

trigger(s) for and/or block(s) to maturation that could promote

synchronized virus maturation in tissue could include proximity to

an infected producer cell, lack of an adjacent target cell to form a

virus synapse, and/or contact with a non-infectable cell.

Late events in HIV-1 budding had been visualized by

fluorescence microscopy [59,60] and ET of cultured cells

[25,26,66,68] but not yet in infected tissue. In our infected tissue

samples, we detected distinct electron dense structures near virions

at various stages of budding that may represent aspects of the host

cell ESCRT machinery at sites of HIV-1 egress (Figures 6,7,S8).

Although we could not identify the structures conclusively, our

assignments of their possible identities are consistent with what is

known temporally about the involvement of host cell machinery in

HIV-1 budding and release from infected cells. Tomograms

revealed that virions in the initial stages of budding contained 4–6

spoke-like projections emanating from the center of the forming

neck of the budding virion (Figure 3C–D, Figure 6D, Figure S8A),

potentially representing components of host ESCRT-I or ALIX

recruited by assembled HIV-1 Gag. The shape, size, and temporal

occurrence of these structures agree with a proposed model for

vesicle budding and fission based on biophysical analyses of the

ESCRT-I-II supercomplex in solution [55]. Virions at later stages

of budding that were connected to the host cell membrane by

thinner (,50 nm) elongated necks showed parallel, electron dense

striations along the membrane surface of the neck (Figure 7A–E,

Figure S8B) that we interpreted as features of polymerized

ESCRT-III proteins [56,57]. These late budding profiles often

displayed dense spots along the center of the neck (Figure 7F,G)

that we suggest were VPS4 oligomers recruited immediately prior

to fission of the new virion from the cell membrane, consistent

with fluorescence microscopy studies [59,60]. ET of budding

virions within tissue allowed a spatial and temporal interpretation

of HIV-1 budding. First, the Gag lattice reached a sufficient point of

closure, which allowed formation of a spoke-like structure at the base of

the early budding virion. Next, the virion formed an elongated neck;

concomitant with polymerization of host cell factors in a spiral around

the inside of the membrane [56,57]. In tomographic slices of budding

profiles, these presumptive spirals appeared as two or more parallel

lines bisecting the neck region (Figure 7A–E). Finally, the recruitment

of large oligomers, possibly VPS4, coincided with the separation of the

virion from the infected cell [59,60], completing the budding process

(Figure 7F,G).

In summary, our 3-D ultrastructural characterization of HIV-1–

infected GALT identified dense regions of virus transmission,

provided insights into the temporal nature of virus maturation,

revealed HIV-1 transmission occurring by both free virus and

direct cell-to-cell mechanisms, and demonstrated important

differences between cultured cell and tissue HIV-1 infection

models. Differences included the identification of free immature

virions and the scarcity of aberrantly formed viral particles during

an active infection. The high resolution of our positively- and

negatively-stained tissue samples allowed 3-D visualization of

HIV-1 transmission within lymphoid tissue, providing a new

approach for understanding HIV-1 infection in vivo.

Materials and Methods

HIV-1 Infection of BLT Mice
Humanized mice were prepared and cared for in an AAALAC-

certified animal care facility at the Massachusetts General Hospital

(OLAW Assurance #A3596-01), in accordance with a protocol

approved by the MGH IACUC (Protocol #2009N000136/25).

The protocol as submitted and reviewed conforms to the USDA

Animal Welfare Act, PHS Policy on Humane Care and Use of

Laboratory Animals, the ‘‘ILAR Guide for the Care and Use of

Laboratory Animals’’ and other applicable laws and regulations.

Every effort was made to minimize animal suffering throughout all

experiments. Human tissue for preparing the humanized mice was

procured and used in accordance with a protocol approved by the

local Institutional Review Board (Partners Human Research

Committee, Protocol #2012-P-000409/5).

NOD/SCID/IL2Rc2/2 mice (The Jackson Laboratory) were

reconstituted with human tissue as described [13]. Approximately

20 weeks after transfer of human immune tissues and cells, mice

were infected intraperitoneally with 16105 TCID50 of JR-CSF

HIV-1. Every 2 weeks after infection, ,200 ml of blood was

obtained through puncture of the retro-orbital sinus or subman-

dibular vein for determination of HIV-1 plasma viral load. Viral

RNA was isolated using the QIAamp Viral RNA Mini Kit

(Qiagen) and viral loads were determined by quantitative RT-

PCR using primers for HIV-1 Gag [69]. Immunofluorescence

experiments were conducted using tissues from a mouse with a

blood viral load of 940,000 copies/mL. ImmunoEM experiments

were conducted using tissues from a mouse with a viral load of

100,000/mL. The remaining mice had blood viral loads as

follows: 0 (control) 9,800, 8,400, 18,500 and 126,000 copies/mL.

As previously shown, the range of blood viral loads did not

correlate with virus populations found in tissue samples [62,63].

Electron Tomography of HIV-1 in GALT
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Infected mice were sacrificed 10–20 weeks post infection, and then

necropsied with segments of small intestine and colon excised and

fixed. Immunofluorescence (IF) studies were conducted as

described in the Supplementary Methods (Text S1).

Electron Tomography
For positively-stained samples, HIV-1–infected tissue was

prepared by a hybrid method that employed primary chemical

fixation followed by high-pressure freezing/freeze substitution

fixation (see Text S1). Negatively-stained samples were prepared

as described [33] and in the Supplementary Methods (Text S1).

200 nm positively-stained sections and 90 nm negatively-

stained sections were imaged in a Tecnai-12 G2 transmission

electron microscope at 120 KeV, and 300 nm sections were

imaged in a Tecnai G2 TF30-FEG microscope at 300 KeV (FEI

Company, Holland) in a dual-axis tomography holder (2040;

Fischione Instruments, Export, PA). Dual axis tilt series (+/260u;
1u intervals), including multi-frame montaged datasets, were

acquired automatically using the SerialEM software package

[70]. Tomographic data were aligned, backprojected, analyzed

and segmented using IMOD [71].

Gag Lattice Analyses
The Gag lattice in the tomographic slice closest to the equator

of each virion or budding profile slice was measured in five

randomly selected areas as a line from the base of the innermost

layer to the outside of the outermost layer (green lines in Figures

S3B and S6D) using IMOD [71]. The values were combined to

give an average Gag thickness for each virion. The symmetry of

the Gag lattice was evaluated by Fourier transformation of Gag

regions in negatively-stained tomograms. Budding profiles were

viewed in tomographic slices taken near the surfaces of their Gag

layers (Figure 3B) and images were displayed using the Slicer tool

in IMOD, which allowed for 3-D rotation. When the Gag

structure was optimally oriented, the image was transformed to

Fourier space using an FFT algorithm within IMOD.

On-line Availability of Tomographic Datasets
Selected tomographic datasets are available at http://www.br.

caltech.edu/bjorker/ladinsky, on the Electron Microscopy Data-

bank (http://www.emdatabank.org) under submission number

28207, or will be provided upon request.

Supporting Information

Figure S1 Distribution of HIV-1 virions in intestinal
mucosa and lamina propria. (A) Top: An infected cell within

the general mucosa (red oval) adjacent to a venule (BV) (identified

by the presence of a red blood cell; rbc). Bottom: Tomographic

slice of the infected cell, displaying budding profiles and free

virions (red arrowheads). N = nucleus; M = mitochondrion. (B)

Top: An infected cell within the lamina propria of an intestinal

villus (red oval). Bottom: Detail of the infected cell, likely a T cell

because of its large nucleus. Two budding profiles (red

arrowheads) were present on either side of the cell.

(TIF)

Figure S2 Gallery of budding and free HIV-1 virions,
imaged by tomography in both positive and negative
stain. Virions could be identified at all stages of egress by both

staining methods. Budding virions were continuous with the

plasma membrane of a host cell and confirmed as HIV-1 by the

presence of a partially formed (‘‘C-shaped’’) core structure in

positively-stained samples and by multi-layered Gag lattice in

negatively-stained samples. Immature free virions retained these core

characteristics. Mature virions were identified in both positive- and

negative-stained samples by their cone-shaped or cylindrical cores.

(TIF)

Figure S3 ImmunoEM of human antigens in uninfected
and HIV-1–infected cells in BLT GALT. (A) An uninfected T

cell showing human CD4 localized to the plasma membrane

(arrowheads). (B) An HIV-1–infected T cell showing CD4

localized to the endoplasmic reticulum (ER). (C) An HIV-1–

infected cell, double-labeled for CD4 and HIV-1 Nef (arrow-

heads). Both markers localized to the ER. (D) An HIV-1–infected

cell, double-labeled for CD4 and HLA class I. CD4 localized to

the ER while HLA (arrow and inset) sparsely labeled the plasma

membrane adjacent to an intercellular space (PM). (E) Intercellular

pool of HIV-1 particles showing LFA-1 (arrows) localized to virion

surfaces. (F) Overview of two cells in a region of HIV-1 infected

crypt. An HIV-1 budding profile (bud) emanated from the lower

cell, indicating it was actively infected. Left inset: Tomographic

slice of the budding profile showing contact with the upper cell,

suggesting a potential virological synapse. ICAM-1 was localized

to domains of the lower cell’s plasma membrane (right inset). A

pool of mature HIV-1 particles (far left) may have originated from

the lower infected cell (IS, intercellular space; N, nucleus).

(TIF)

Figure S4 Negatively-stained immature virions in GALT
and comparison with cryoET. (A) Tomographic slices at the

surfaces of immature virions and associated Fourier transforms.

Twelve nascent virions were selected from negative-stain tomo-

grams and viewed in slices that optimally displayed the hexagonal

layer of the Gag lattice. Each slice was converted to Fourier space

to confirm the hexagonal symmetry of the lattice structure. Display

of the Gag lattice in both real and Fourier space demonstrated that

negative-stain tomography was sufficient for resolving fine

structural details of HIV-1 particles in tissue. (B,C) Comparison of

negatively-stained images of HIV-1 virions in infected tissue (this

study) versus cryoET of isolated virions [24]. Tomographic slices

showing the hexagonal Gag lattice (left panels in B and C) and Gag

layers (right panels in B and C) from immature virions in negatively-

stained infected tissue (B) or in purified frozen hydrated samples (C).

The width of the Gag layer in budding virions from negatively-

stained infected tissues (e.g., green bar in panel B) was measured in

five places in each virion, and the measurements were averaged. A

green bar placed in the analogous position in panel C demonstrates

the similar width of the Gag layers in immature virions in purified

frozen hydrated samples. Panel C was modified from Figure 1B,D in

[24] and were used with permission from Nature Publishing Group.

Black bars in panel C indicate the boundaries of one ordered region

of the Gag lattice; arrows point into the ordered region; the

arrowheads point to regions of the membrane-MA layer that

appeared bilaminar (black) or unilaminar (white).

(TIF)

Figure S5 Intercellular pools of HIV-1. (A) Classifications

of free virion pools. Tomographic slices from a negatively-stained

sample showing a pool containing 6 mature and 28 immature

virions (upper panel) and a pool containing 49 mature virions with

no immature particles (lower panel). Color-coded maps are shown

to the right of each slice (Blue, mature virions; pink, immature

virions). The immature virion indicated by a green star in the

upper left panel and encircled in green in the corresponding map

was associated with a ‘‘tail-like’’ structure that could suggest it is

attached to a host cell. Careful scrutiny of this region in all three

dimensions confirmed that it was indeed a free particle. (B) An

isolated productively-infected cell in the smooth muscle layer of

Electron Tomography of HIV-1 in GALT
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the colon near a venule (BV). Tomographic reconstructions of the

cell and adjacent volumes indicated that the majority of free

virions in close proximity to the cell were immature (62%), while

most of the free virions in two groups distal from the cell (0.8 mm

and 1.3 mm) were mature (73% and 75%, respectively). These

results suggested that a given infected cell produced virions in

semi-synchronous waves and that virions matured quickly once

released from the host cell.

(TIF)

Figure S6 Examples of potential cell-to-cell HIV-1 trans-
mission in GALT. (A) Detail of a HIV-1 budding profile in

jejunum, attached to the infected cell (top) via a thin ,50 nm long

neck. The surface of the bud contacted the plasma membrane of an

adjacent cell. Density at the point of association (red arrow)

suggested a receptor-mediated event. (B) Overview of an actively

infected region in a crypt. A pool of mature virions was present in

the intercellular space (IS) between the three cells in the image. The

upper (infected) cell was producing a virion bud that extended into a

domain of the lower cell that was invaginating (red arrowhead). (C)

Four sequential tomographic slices detailing the budding event (red

arrowheads) at different levels of the tomogram.

(TIF)

Figure S7 Galleries of HIV-1 budding profiles. (A)

Bundles of actin filaments (arrowheads) near an HIV-1 bud. (B)

Examples of HIV-1 buds with a limited neck or no neck. Buds

were observed at obvious points along the plasma membrane, but

were often seen budding into highly convoluted surface domains

that appeared to be intracellular compartments in particular views.

(C) Examples of HIV-1 buds with long necks projecting from the

surfaces of infected cells into the intercellular space or mucosa.

Neck diameters decreased as buds approached scission. (D)

Comparison of Gag lattice width in budding profiles with or

without necks. Examples of tomographic slices of negatively-

stained images of a budding profile with (left) or without (right) a

neck. Thirty examples of each category were selected and the

width of the Gag lattices within each bud was measured in five

places (green bars), yielding the tabulated results. (E) Histogram of

the measured budding profiles. The Gag shells of necked profiles

had an average diameter of 14.760.9 nm while buds without

necks had an average diameter of 14.661.1 nm.

(TIF)

Figure S8 Galleries of budding virions displaying
presumptive ESCRT structures. (A) Gallery of six ‘‘early’’

budding HIV-1 virions displaying structures suggestive of ESCRT

proteins. Budding profiles with relatively wide necks (.1/2 the

bud diameter; likely at early stages of bud formation) were selected

from negatively-stained tomograms and optimally oriented in 3-D.

Each bud displayed 4–6 fine lines (red arrowheads) radiating in a

spoke-like pattern from a central point in the neck, just below the

forming bud. These spokes were interpreted as components of

ESCRT-1 or -II, or the ESCRT adaptor ALIX, which function at

early stages of neck contraction prior to scission of the nascent

virion. (B,C) Gallery of ‘‘late’’ budding HIV-1 virions displaying

structures interpreted as components of ESCRT-III. Budding

profiles with neck diameters ,1/2 that of the virion bud itself

(panel B from tomograms of positively-stained, plastic-embedded

GALT tissue; panel C from tomograms of negatively-stained

cryosections) were selected and optimally oriented in 3-D. In each

case, one to three thin lines (red arrowheads) bisected the neck

region just below the forming bud. These lines were interpreted as

polymerized ESCRT-III complex that formed a coil around the

bud neck to facilitate scission at late stages of HIV-1 egress.

(TIF)

Movie S1 Large-area tomographic reconstruction of an
intercellular space near the edge of an HIV-1–infected
crypt from BLT mouse colon. The movie begins with a

summary of the region defined in the volume: an intercellular

space separating two adjacent cells (dark green and brown) near

the edge of an HIV-1–infected crypt. HIV-1 buds (blue with

magenta cores) were present on both cells, demonstrating that

both were infected human cells. The tomographic reconstruction

of the same area shown after the summary consisted of four serial

300 nm sections, each imaged as two-frame dual-axis tomograms

to encompass a volume of 1.4 mm62.9 mm61.2 mm. The

intercellular space contained $300 free, mature HIV-1 virions

and no free immature virions. No structural evidence of direct cell-

to-cell viral transmission was present in the volume. This

reconstruction supports the assumption that virion pools were

not necessarily a consequence of the juxtaposition of human and

murine cells within the BLT mouse system. Instead pool formation

and infection by free virus may occur even when adjacent cells

were HIV-1 targets, further suggesting that maturation of HIV-1

occurs quickly following scission from the host cell.

(MOV)

Movie S2 Intercalating infected cell with budding
profile contacting an adjacent cell. A large-area tomo-

graphic reconstruction comprising a 5.4 mm63.6 mm60.35 mm

volume of a colon crypt. The region contained three cells: two

crypt cells and a third cell intercalating between them. The

intercalating cell is presumably a dendritic cell or macrophage

due to its convoluted projections (see Figure 5B). It was HIV-1–

infected and displayed four budding profiles within the

reconstructed volume. One such bud (black arrow), shown in

detain in the latter half of the movie, crossed the intercellular

space to form a presumptive virological synapse by directly

contacting the adjacent cell (red arrowheads).

(MOV)

Movie S3 Potential ESCRT components at an early
stage of HIV-1 budding. Detail from a negatively-stained

tomographic reconstruction of BLT mouse colon, showing a

nascent HIV-1 virion at an early stage of budding. Slices from the

tomogram move laterally through the neck region of the budding

profile and reveal five fine lines (red arrowheads) radiating in a

spoke-like manner from a central point in the neck. The lines can

be followed through approximately half of the shown volume.

These spokes are interpreted as components of host-encoded

ESCRT-1 or -II, or the ESCRT adaptor ALIX. Detail from this

movie is shown in Figure S8A, panel 5. Bar = 50 nm.

(MOV)

Movie S4 Potential ESCRT components at a late stage
of HIV-1 budding. Detail from a negatively-stained tomogram

of BLT mouse colon, showing an HIV-1 virion at a later stage of

budding, nearer to scission. Slices from the tomogram reveal three

lines that bisect the neck of the budding profile. The structures lie

near the inner surface of the neck and can be followed through the

last half of the shown volume. These lines are interpreted as

components of ESCRT-III. Detail from this movie is shown in

Figure S8C, panel 5. Bar = 50 nm.

(MOV)

Movie S5 Comparison of a presumptive VPS4 spot and
a ribosome at high magnification. Tomographic slices

through a presumptive VPS4 structure (part 1) shows a larger,

pleomorphic electron-dense structure. It is distinguishable from a

cytoplasmic ribosome, selected at random from the same

reconstruction (part 2), which appears smaller, less dense and

Electron Tomography of HIV-1 in GALT
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shows a characteristic ‘‘groove’’ between subunits. Examples of

these structures are detailed in Figure 7. Bar = 20 nm.

(MOV)

Text S1 Supplementary methods and extended experi-
mental procedures. Including immunofluorescence microsco-

py procedure, detailed description of EM sample preparation for

both positively- and negatively-stained tissues and protocol for

immuno-electron microscopy.

(DOCX)

Acknowledgments

We thank Wes Sundquist for providing anti-ESCRT and other antibodies;

Yunji Wu and the Caltech Protein Expression Center for purified 2G12;

Drs. Grant Jensen and Julia Greer for use of the Tecnai T12 and F30

electron microscopes, respectively, and Dr. Alasdair McDowall and Carol

Garland for help maintaining the microscopes. We thank Ariane Briegel,

Wes Sundquist, Bruce Walker, Cora Woodward and Mark Yeager for

helpful discussions, and Bruce Walker, Grant Jensen and Cora Woodward

for critical reading of the manuscript.

Author Contributions

Conceived and designed the experiments: MSL DSK PJB. Performed the

experiments: MSL GO. Analyzed the data: MSL CK GO DSK PJB.

Contributed reagents/materials/analysis tools: GO MD VV AMT DSK.

Wrote the paper: MSL CK DSK PJB.

References

1. UNAIDS (2012) http://www.unaids.org/en/media/unaids/contentassets/

documents/epidemiology/2012/gr2012/20121120_UNAIDS_Global_Report_

2012_with_annexes_en.pdf.

2. Haase AT (2011) Early events in sexual transmission of HIV and SIV and

opportunities for interventions. Annu Rev Med 62: 127–139.

3. Brenchley JM, Douek DC (2008) HIV infection and the gastrointestinal immune

system. Mucosal Immunol 1: 23–30.

4. Douek DC, Roederer M, Koup RA (2009) Emerging concepts in the

immunopathogenesis of AIDS. Annu Rev Med 60: 471–484.

5. Veazey RS, DeMaria M, Chalifoux LV, Shvetz DE, Pauley DR, et al. (1998)

Gastrointestinal tract as a major site of CD4+ T cell depletion and viral

replication in SIV infection. Science 280: 427–431.

6. Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH,

et al. (2004) CD4+ T cell depletion during all stages of HIV

disease occurs predominantly in the gastrointestinal tract. J Exp Med 200:

749–759.

7. Lackner AA, Lederman MM, Rodriguez B (2012) HIV Pathogenesis: The Host.

Cold Spring Harb Perspect Med 2: a007005.

8. Haase AT (2005) Perils at mucosal front lines for HIV and SIV and their hosts.

Nat Rev Immunol 5: 783–792.

9. Guy-Grand D, Vassalli P (1993) Gut intraepithelial T lymphocytes. Curr Opin

Immunol 5: 247–252.

10. Douek D (2007) HIV disease progression: immune activation, microbes, and a

leaky gut. Top HIV Med 15: 114–117.

11. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, et al. (2006)

Microbial translocation is a cause of systemic immune activation in chronic HIV

infection. Nat Med 12: 1365–1371.

12. Denton PW, Garcia JV (2012) Mucosal HIV-1 transmission and prevention

strategies in BLT humanized mice. Trends in microbiology 20: 268–274.

13. Brainard DM, Seung E, Frahm N, Cariappa A, Bailey CC, et al. (2009)

Induction of robust cellular and humoral virus-specific adaptive immune

responses in human immunodeficiency virus-infected humanized BLT mice.

J Virol 83: 7305–7321.

14. Denton PW, Garcia JV (2011) Humanized mouse models of HIV infection.

AIDS Rev 13: 135–148.

15. Denton PW, Estes JD, Sun Z, Othieno FA, Wei BL, et al. (2008) Antiretroviral

pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized

BLT mice. PLoS Med 5: e16.

16. Sun Z, Denton PW, Estes JD, Othieno FA, Wei BL, et al. (2007) Intrarectal

transmission, systemic infection, and CD4+ T cell depletion in humanized mice

infected with HIV-1. J Exp Med 204: 705–714.

17. Lan P, Tonomura N, Shimizu A, Wang S, Yang YG (2006) Reconstitution of a

functional human immune system in immunodeficient mice through combined

human fetal thymus/liver and CD34+ cell transplantation. Blood 108: 487–

492.

18. Rajesh D, Zhou Y, Jankowska-Gan E, Roenneburg DA, Dart ML, et al. (2010)

Th1 and Th17 immunocompetence in humanized NOD/SCID/IL2rgamma-

null mice. Human immunology 71: 551–559.

19. Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, et al. (1983)

Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired

immune deficiency syndrome (AIDS). Science 220: 868–871.

20. Gallo RC, Sarin PS, Gelmann EP, Robert-Guroff M, Richardson E, et al. (1983)

Isolation of human T-cell leukemia virus in acquired immune deficiency

syndrome (AIDS). Science 220: 865–867.

21. Orenstein JM (2007) Replication of HIV-1 in vivo and in vitro. Ultrastruct

Pathol 31: 151–167.

22. Briggs JA, Riches JD, Glass B, Bartonova V, Zanetti G, et al. (2009) Structure

and assembly of immature HIV. Proc Natl Acad Sci U S A 106: 11090–11095.

23. Benjamin J, Ganser-Pornillos BK, Tivol WF, Sundquist WI, Jensen GJ (2005)

Three-dimensional structure of HIV-1 virus-like particles by electron cryotomo-

graphy. J Mol Biol 346: 577–588.

24. Wright ER, Schooler JB, Ding HJ, Kieffer C, Fillmore C, et al. (2007) Electron
cryotomography of immature HIV-1 virions reveals the structure of the CA and

SP1 Gag shells. EMBO J 26: 2218–2226.

25. Carlson LA, de Marco A, Oberwinkler H, Habermann A, Briggs JA, et al. (2010)

Cryo electron tomography of native HIV-1 budding sites. PLoS Pathog 6:

e1001173.

26. Carlson LA, Briggs JA, Glass B, Riches JD, Simon MN, et al. (2008) Three-

dimensional analysis of budding sites and released virus suggests a revised model
for HIV-1 morphogenesis. Cell Host Microbe 4: 592–599.

27. Felts RL, Narayan K, Estes JD, Shi D, Trubey CM, et al. (2010) 3D
visualization of HIV transfer at the virological synapse between dendritic cells

and T cells. Proc Natl Acad Sci U S A 107: 13336–13341.

28. Sougrat R, Bartesaghi A, Lifson JD, Bennett AE, Bess JW, et al. (2007) Electron

tomography of the contact between T cells and SIV/HIV-1: implications for

viral entry. PLoS Pathog 3: e63.

29. Walker MR, Patel KK, Stappenbeck TS (2009) The stem cell niche. J Pathol

217: 169–180.

30. McIntosh JR, Nicastro D, Mastronarde DN (2005) New views of cells in 3D: an

introduction to electron tomography. Trends Cell Biol 15: 43–51.

31. Gilkey JC, Staehelin LA (1986) Advances in Ultrarapid Freezing for the

Preservation of Cellular Ultrastructure. J Elect Microsc Tech 3: 177–210.

32. Morphew M, He W, Bjorkman PJ, McIntosh JR (2008) Silver enhancement of

Nanogold particles during freeze substitution for electron microscopy. J Microsc
230: 263–267.

33. Ladinsky MS, Howell KE (2007) Electron tomography of immunolabeled

cryosections. Methods Cell Biol 79: 543–558.

34. Luther PK, Lawrence MC, Crowther RA (1988) A method for monitoring the

collapse of plastic sections as a function of electron dose. Ultramicroscopy 24: 7–
18.

35. Fuller SD, Wilk T, Gowen BE, Krausslich HG, Vogt VM (1997) Cryo-electron
microscopy reveals ordered domains in the immature HIV-1 particle. Curr Biol

7: 729–738.

36. Wilk T, Gross I, Gowen BE, Rutten T, de Haas F, et al. (2001) Organization of

immature human immunodeficiency virus type 1. J Virol 75: 759–771.

37. Ganser BK, Li S, Klishko VY, Finch JT, Sundquist WI (1999) Assembly and

analysis of conical models for the HIV-1 core. Science 283: 80–83.

38. Hockley DJ, Wood RD, Jacobs JP, Garrett AJ (1988) Electron microscopy of

human immunodeficiency virus. J Gen Virol 69: 2455–2469.

39. Zhu P, Liu J, Bess J, Jr., Chertova E, Lifson JD, et al. (2006) Distribution and
three-dimensional structure of AIDS virus envelope spikes. Nature 441: 847–

852.

40. Chertova E, Bess Jr JW, Jr., Crise BJ, Sowder IR, Schaden TM, et al. (2002)

Envelope glycoprotein incorporation, not shedding of surface envelope
glycoprotein (gp120/SU), Is the primary determinant of SU content of purified

human immunodeficiency virus type 1 and simian immunodeficiency virus.

J Virol 76: 5315–5325.

41. Magadan JG, Perez-Victoria FJ, Sougrat R, Ye Y, Strebel K, et al. (2010)

Multilayered mechanism of CD4 downregulation by HIV-1 Vpu involving
distinct ER retention and ERAD targeting steps. PLoS Pathog 6: e1000869.

42. Briggs JA, Simon MN, Gross I, Krausslich HG, Fuller SD, et al. (2004) The
stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol 11: 672–675.

43. Deneka M, Pelchen-Matthews A, Byland R, Ruiz-Mateos E, Marsh M (2007) In
macrophages, HIV-1 assembles into an intracellular plasma membrane domain

containing the tetraspanins CD81, CD9, and CD53. J Cell Biol 177: 329–341.

44. Bennett AE, Narayan K, Shi D, Hartnell LM, Gousset K, et al. (2009) Ion-

abrasion scanning electron microscopy reveals surface-connected tubular

conduits in HIV-infected macrophages. PLoS Pathog 5: e1000591.

45. Pelchen-Matthews A, Kramer B, Marsh M (2003) Infectious HIV-1 assembles in

late endosomes in primary macrophages. J Cell Biol 162: 443–455.

46. Raposo G, Moore M, Innes D, Leijendekker R, Leigh-Brown A, et al. (2002)

Human macrophages accumulate HIV-1 particles in MHC II compartments.
Traffic 3: 718–729.

Electron Tomography of HIV-1 in GALT

PLOS Pathogens | www.plospathogens.org 14 January 2014 | Volume 10 | Issue 1 | e1003899



47. Jolly C, Kashefi K, Hollinshead M, Sattentau QJ (2004) HIV-1 cell to cell

transfer across an Env-induced, actin-dependent synapse. J Exp Med 199: 283–
293.

48. Hioe CE, Chien PC, Jr., Lu C, Springer TA, Wang XH, et al. (2001) LFA-1

expression on target cells promotes human immunodeficiency virus type 1
infection and transmission. J Virol 75: 1077–1082.

49. Rizzuto CD, Sodroski JG (1997) Contribution of virion ICAM-1 to human
immunodeficiency virus infectivity and sensitivity to neutralization. J Virol 71:

4847–4851.

50. Robertson DL, Anderson JP, Bradac JA, Carr JK, Foley B, et al. (2000) HIV-1
nomenclature proposal. Science 288: 55–56.

51. Aggarwal A, Iemma TL, Shih I, Newsome TP, McAllery S, et al. (2012)
Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected

dendritic cells. PLoS Pathog 8: e1002762.
52. Sundquist WI, Krausslich HG (2012) HIV-1 Assembly, Budding, and

Maturation. Cold Spring Harb Perspect Med 2: a006924.

53. Votteler J, Iavnilovitch E, Fingrut O, Shemesh V, Taglicht D, et al. (2009)
Exploring the functional interaction between POSH and ALIX and the

relevance to HIV-1 release. BMC Biochem 10: 12.
54. Carlson LA, Hurley JH (2012) In vitro reconstitution of the ordered assembly of

the endosomal sorting complex required for transport at membrane-bound

HIV-1 Gag clusters. Proc Natl Acad Sci U S A 109: 16928–16933.
55. Boura E, Rozycki B, Chung HS, Herrick DZ, Canagarajah B, et al. (2012)

Solution structure of the ESCRT-I and -II supercomplex: implications for
membrane budding and scission. Structure 20: 874–886.

56. Lata S, Schoehn G, Jain A, Pires R, Piehler J, et al. (2008) Helical structures of
ESCRT-III are disassembled by VPS4. Science 321: 1354–1357.

57. Hanson PI, Roth R, Lin Y, Heuser JE (2008) Plasma membrane deformation by

circular arrays of ESCRT-III protein filaments. J Cell Biol 180: 389–402.
58. von Schwedler UK, Stuchell M, Muller B, Ward DM, Chung HY, et al. (2003)

The protein network of HIV budding. Cell 114: 701–713.
59. Baumgartel V, Ivanchenko S, Dupont A, Sergeev M, Wiseman PW, et al. (2011)

Live-cell visualization of dynamics of HIV budding site interactions with an

ESCRT component. Nat Cell Biol 13: 469–474.
60. Jouvenet N, Zhadina M, Bieniasz PD, Simon SM (2011) Dynamics of ESCRT

protein recruitment during retroviral assembly. Nat Cell Biol 13: 394–401.

61. Yu Z, Gonciarz MD, Sundquist WI, Hill CP, Jensen GJ (2008) Cryo-EM

structure of dodecameric Vps4p and its 2:1 complex with Vta1p. J Mol Biol 377:
364–377.

62. Anton PA, Mitsuyasu RT, Deeks SG, Scadden DT, Wagner B, et al. (2003)

Multiple measures of HIV burden in blood and tissue are correlated with each
other but not with clinical parameters in aviremic subjects. AIDS 17: 53–63.

63. Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, et al. (1997)
Quantification of latent tissue reservoirs and total body viral load in HIV-1

infection. Nature 387: 183–188.

64. Welsch S, Keppler OT, Habermann A, Allespach I, Krijnse-Locker J, et al.
(2007) HIV-1 buds predominantly at the plasma membrane of primary human

macrophages. PLoS Pathog 3: e36.
65. Chu H, Wang JJ, Qi M, Yoon JJ, Wen X, et al. (2012) The intracellular virus-

containing compartments in primary human macrophages are largely
inaccessible to antibodies and small molecules. PLoS One 7: e35297.

66. de Marco A, Muller B, Glass B, Riches JD, Krausslich HG, et al. (2010)

Structural analysis of HIV-1 maturation using cryo-electron tomography. PLoS
Pathog 6: e1001215.

67. Swartz MA, Fleury ME (2007) Interstitial flow and its effects in soft tissues. Annu
Rev Biomed Eng 9: 229–256.

68. Welsch S, Habermann A, Jager S, Muller B, Krijnse-Locker J, et al. (2006)

Ultrastructural analysis of ESCRT proteins suggests a role for endosome-
associated tubular-vesicular membranes in ESCRT function. Traffic 7: 1551–

1566.
69. Boutwell CL, Rowley CF, Essex M (2009) Reduced viral replication capacity of

human immunodeficiency virus type 1 subtype C caused by cytotoxic-T-
lymphocyte escape mutations in HLA-B57 epitopes of capsid protein. J Virol 83:

2460–2468.

70. Mastronarde DN (2005) Automated electron microscope tomography using
robust prediction of specimen movements. J Struct Biol 152: 36–51.

71. Mastronarde DN (2008) Correction for non-perpendicularity of beam and tilt
axis in tomographic reconstructions with the IMOD package. J Microsc 230:

212–217.

72. Ladinsky MS, Wu CC, McIntosh S, McIntosh JR, Howell KE (2002) Structure
of the Golgi and distribution of reporter molecules at 20 degrees C reveals the

complexity of the exit compartments. Mol Biol Cell 13: 2810–2825.

Electron Tomography of HIV-1 in GALT

PLOS Pathogens | www.plospathogens.org 15 January 2014 | Volume 10 | Issue 1 | e1003899


