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The kidney functions through the coordination of approximately one million
multifunctional nephrons in 3-dimensional space. Molecular understanding of the
kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney
homogenate, but these approaches do not resolve cellular identity and spatial
context. Mass spectrometry analysis of isolated cells retains cellular identity but
not information regarding its cellular neighborhood and extracellular matrix. Spatially
targeted mass spectrometry is uniquely suited to molecularly characterize kidney
tissue while retaining in situ cellular context. This review summarizes advances in
methodology and technology for spatially targeted mass spectrometry analysis of
kidney tissue. Profiling technologies such as laser capture microdissection (LCM)
coupled to liquid chromatography tandem mass spectrometry provide deep molecular
coverage of specific tissue regions, while imaging technologies such as matrix assisted
laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile
regularly spaced tissue regions with greater spatial resolution. These technologies
individually have furthered our understanding of heterogeneity in nephron regions such
as glomeruli and proximal tubules, and their combination is expected to profoundly
expand our knowledge of the kidney in health and disease.

Keywords: mass spectrometry, kidney, proteomics, metabolomics, lipidomics, multimodal imaging, HuBMAP,
KPMP

INTRODUCTION

The kidney is a complex and vital organ that filters waste products from the blood, stabilizes
electrolyte and water content, and secretes essential hormones (Tryggvason and Wartiovaara, 2005;
Ferraro and Fuster, 2021). It functions through nuanced coordination of approximately one million
nephrons in 3-dimensional space. Nephrons can be further sub-divided into functional tissue
units (FTUs) including vasculature, ducts, tubules, and glomeruli, each with unique molecular
functions. FTUs are influenced by proximity to other structures and location within the organ.
Individual glomeruli and tubules vary in vascular architecture, molecular environment and drug

Abbreviations: MS, mass spectrometry; FTU, functional tissue unit; PT, proximal tubule; Glom, glomerular; CD, collecting
duct; microPOTS, microliter processing in one pot for trace samples; LCM, laser capture microdissection; microLESA,
micro, liquid extraction surface analysis; MALDI, matrix assisted laser desorption/ionization; DESI, desorption electrospray
ionization; IMS, imaging mass spectrometry.
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distributions (Kang et al., 2005; Postnov et al., 2015; Kafarov
et al., 2020). This heterogeneity is especially important in the
context of renal disease, which can uniquely impact individual
FTUs (Weening et al., 2004; Fogo, 2015; Aguayo-Mazzucato
et al., 2017). Traditionally, our molecular understanding of
renal disease comes from global transcriptomic, proteomic, and
metabolomic analyses of kidney lysates. These bulk analyses offer
deep and comprehensive molecular coverage and are invaluable
for sample profiling and disease biomarker identification (Mayer
et al., 2012). However, cell identity and spatial context are
lost when tissues are homogenized, and molecular changes at
the cellular or FTU level are diluted in bulk tissue analyses.
This can result in the lack of detection of inter-individual
and disease-associated variation, as well as inability to identify
rare cell populations. Molecular characterization of dissociated
cells provides cellular information lacking in bulk analyses
but does not retain spatial context (Koehler et al., 2020).
In addition, enzymatic dissociation of tissues can disrupt the
cellular environment and preclude analysis of extracellular
matrix molecules that can be relevant in fibrotic kidney disease
(Autengruber et al., 2012). Recently, spatially targeted mass
spectrometry (MS) technologies have emerged that provide a
deeper understanding of the role localized cell types, cellular
neighborhoods, and FTUs play in underlying pathomechanisms
(Autengruber et al., 2012; Ryan et al., 2019). Each of these MS
technologies has unique benefits and drawbacks for the study
of human organs. This review highlights the application and
potential of spatially targeted MS to illuminate the underlying
molecular drivers of kidney health and disease.

SPATIAL MASS SPECTROMETRY
TECHNOLOGIES

Spatially targeted MS technologies are characterized as either
profiling experiments, where a single spectral signature is
collected from a discrete cell type or FTU, or as imaging
experiments where MS data are collected from an array of
measurement locations (i.e., pixels) to visualize molecular
distributions in situ (Figure 1). Micro-liquid extraction surface
analysis (microLESA) is a profiling approach using a robotic
fluidic printer to deposit trypsin droplets to specific tissue regions
for surface protein digestion (Ryan et al., 2019; Guiberson et al.,
2021). Peptides are then recovered using a larger droplet and
subjected to liquid chromatography-tandem MS (LC-MS/MS)
for protein identification. Laser capture microdissection (LCM)
is also commonly employed in profiling experiments and
involves dissection of specific sample regions using a cutting
laser and subsequent collection into a sample tube using laser
propulsion. Collected regions can be analyzed individually or
pooled for protein, lipid, or small metabolite profiling (Datta
et al., 2015; Knittelfelder et al., 2018; Sigdel et al., 2020). Although
the achievable spatial resolution is limited, LCM can also be
integrated into quasi-imaging workflows by dissecting tissue
in a grid pattern in which each collected square becomes a
voxel (Piehowski et al., 2020). Each region can be subjected to
proteomic analysis using methods specialized for low sample

input such as nanodroplet processing in one pot for trace
samples (NanoPOTS), and voxels can be reconstructed to show
intensity variation throughout the sample (Zhu et al., 2018;
Piehowski et al., 2020).

Imaging mass spectrometry (IMS) is a powerful technology
to construct spatial maps of analytes without labeling and in
an untargeted manner (Caprioli et al., 1997; Gode and Volmer,
2013; Norris and Caprioli, 2013; Wu et al., 2013; Nilsson et al.,
2015; Spengler, 2015). The most common IMS methods use
soft ionization such as matrix-assisted laser desorption (MALDI)
and desorption electrospray ionization (DESI) (Roach et al.,
2010; Eberlin et al., 2011). In MALDI IMS workflows, tissue
samples are coated with a matrix that assists with desorption and
ionization of endogenous analytes (Franz and Michael, 2000).
The tissue surface is then ablated using a laser in a raster pattern,
where each laser spot produces a spectrum detecting hundreds
to thousands of ions (Caprioli et al., 1997; Norris and Caprioli,
2013; Spraggins et al., 2019; Martín-Saiz et al., 2021). Spectral
information from each laser spot (i.e., pixel) is reconstructed
to show relative analyte intensity and distribution throughout
the sample (Caprioli et al., 1997; Norris and Caprioli, 2013;
Spraggins et al., 2019; Martín-Saiz et al., 2021). DESI and nano-
DESI workflows use ambient liquid extraction of small tissue
regions at regularly spaced measurement regions followed by
introduction to a mass spectrometer inlet or primary capillary
for electrospray ionization (Roach et al., 2010; Eberlin et al.,
2011). MS data from sampled tissue coordinates can similarly
be reconstructed into spatial maps in DESI and nano-DESI
IMS workflows. Secondary-ion mass spectrometry (SIMS) has
achieved the highest spatial resolution to date, but the high
energy required for ionization limits the size of molecule that
can be analyzed, making this technique more widely applied for
analysis of elements and smaller biomolecules (<1,000 Da) rather
than larger lipids, peptides, and proteins (Wu and Odom, 1996;
Heeren et al., 2006; McDonnell et al., 2006).

Each of these strategies requires a trade-off between spatial
resolution and sensitivity, where methods approaching cellular
or subcellular resolution often detect fewer analytes. Sample
preparation and ionization methods also impact the molecular
class that can be analyzed. This continuum is especially notable
in spatially targeted MS, and researchers must use their judgment
to select the technology most suited to their experimental
goals (Figure 1).

PROTEOMICS

Proteomics offers direct information about downstream effects of
transcriptional and translational regulation on cellular function
and does not require extrapolation from transcript data (Gry
et al., 2009). MS-based proteomics provides an advantage
over antibody-based techniques in that it is untargeted, highly
multiplexed, and requires no a priori knowledge of antibody
targets. It also retains information about truncated and post-
translationally modified proteoforms that can be impacted by
renal disease (Yassine et al., 2016). Spatial proteomics is uniquely
advantageous since it can specifically assess protein regulation
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FIGURE 1 | Summary of spatial MS technologies and the trade-offs between spatial resolution and molecular coverage. Technologies are characterized based on
their spatial resolution from the level of anatomical structure (>500 µm), Functional Tissue Unit (FTU, ∼50–500 µm), cellular (∼10–50 µm), and subcellular
(<10 µm). Triangles indicate technologies for analysis of bulk or homogenate tissues, circles indicate profiling experiments, and rectangles indicate imaging
experiments. Methods for analyzing small metabolites, lipids, and proteins are shown in blue, purple, and green, respectively.

in individual kidney FTUs and cell types, and has been used to
show that adjacent nephrons vary at the proteomic level (Höhne
et al., 2018). Both profiling and imaging MS approaches have been
applied to the study of the kidney.

Spatial proteomics profiling experiments rely on the ability
to analyze increasingly small amounts of starting material,
requiring advances in sample preparation, chromatography, and
instrumentation. Protocols employing filters, magnetic beads, or
micro-volumes minimize sample loss by performing enzymatic
digestion in one tube or droplet (Hughes et al., 2014; Kulak et al.,
2014; Moggridge et al., 2018; Xu et al., 2019). NanoPOTS and
MicroPOTS have facilitated near-single cell proteomics and are
designed for low-input samples (Xu et al., 2019). Polished sample
tubes and mass-spectrometry compatible detergents additionally
minimize sample loss and the need for detergent removal (Norris
et al., 2003, 2005; Grzeskowiak et al., 2016). Ultra-low flow
chromatography and fractionation, and capillary electrophoresis
can improve protein separation and address the wide range of
protein concentrations found in biological samples (Waanders
et al., 2008; Aebersold and Mann, 2016; Greguš et al., 2020; Kelly,
2020; Xiang et al., 2020). Pairing these sample preparation and
separation techniques with high-resolution MS instrumentation
can further facilitate low-input proteomics analysis (Norris et al.,
2005). In addition, nanopore sequencing can now be used for
single-cell proteomics and will likely be integrated into low-input
proteomics workflows (Brinkerhoff et al., 2021).

These advances enabled multiple studies to characterize renal
FTU proteomes. The combination of LCM with low-loss sample
preparation and chromatography for LC-MS/MS proteomics has
been especially successful for analysis of kidney FTUs. Thousands
of proteins can be identified from single human or murine

glomeruli or 30–40 single microdissected cells (Waanders et al.,
2009; Sigdel et al., 2020). One study identified 67 proteins
only detected in glomeruli and 25 unique to proximal tubules,
with many additional proteins shared by both regions being
conserved housekeeping and cytoskeletal proteins (Sigdel et al.,
2020). Notably, this study found that proximal tubule proteins
comprised a greater fraction of the homogenate proteome than
glomerular proteins, and known glomerular markers such as
podocin, eva-1 homolog B, and claudin-5 could be identified in
dissected glomeruli but not in kidney homogenate (Guiberson
et al., 2021). This underscores the value of a spatially targeted
approach to study glomeruli (Sigdel et al., 2020). Another
LCM-based study investigated proteomic changes associated
with proteinuric kidney disease in glomeruli and tubules from
murine and human samples. This work implicated a suite of
proteins including lysosomal-associated membrane protein 1,
cathepsin proteases, albumin, and extracellular matrix proteins
in proteinuric kidney disease and proposed further research into
cathepsins as potential therapeutic targets (Höhne et al., 2018).
Analyses of single glomeruli and glomerular extracellular matrix
consistently identify cathepsin proteases and proteins associated
with vesicular transport and cellular component organization
as differentially abundant in diseased kidney tissue (Hobeika
et al., 2017; Höhne et al., 2018; Sigdel et al., 2020). Proteins
enriched in proximal tubules were consistently involved in solute
transport and small molecule metabolic processing, offering the
intriguing possibility of measuring corresponding differences in
metabolite abundance and localization (Hobeika et al., 2017;
Höhne et al., 2018). Taken together, spatially targeted proteomics
of kidney FTUs are invaluable to understanding renal FTU
heterogeneity.
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Imaging mass spectrometry is a powerful and complementary
technology to spatially map proteins and peptides in tissue
sections in an untargeted manner and with greater proteomic
coverage than antibody-based imaging (Caprioli et al., 1997).
Protein imaging requires minimal sample preparation and can
be used to visualize proteins under ∼60 kDa depending on MS
instrumentation (Chaurand et al., 2006; Norris and Caprioli,
2013). Although its spatial resolution is far superior to profiling-
based technologies, a large proportion of the proteome is not
available for analysis by this technique. In contrast, peptide
imaging provides better proteomic coverage but requires more
sample preparation and can suffer from delocalization during on-
tissue enzymatic digestion of endogenous proteins (Judd et al.,
2019). A major challenge for protein and peptide IMS is ion
identification. Most protein IMS experiments rely on exact mass
matching within a certain ppm error for identification. Recent
computational tools allow for high throughput matching of m/z
values with candidate identifications based upon intact mass and
spatial correlation (Guo et al., 2021). Thus, advances in sample
preparation, instrumentation, and computation are improving
the feasibility and interpretation of protein and peptide IMS.

Imaging mass spectrometry has been applied to image kidney
proteins and peptides, and has great potential as a tool for
biomarker discovery and disease characterization (Caprioli et al.,
1997; Lalowski et al., 2013; Jones et al., 2014; Casadonte et al.,
2015; Srinivasu et al., 2021). Protein IMS was used to identify
accumulated cortical transthyretin as a protein biomarker for
gentamicin-induced kidney toxicity, and to spatially characterize
angiotensin metabolism in murine kidneys (Meistermann et al.,
2006; Grobe et al., 2012). Peptide IMS was used to determine
that amyloid P component, apolipoprotein E, and vitronectin co-
localize with renal amyloid deposits in human biopsy samples
(Casadonte et al., 2015). Yet another study found differences in
localization of α-enolase peptides in rat kidneys after treatment
with nanoparticles commonly found in cosmetic and medical
products (Srinivasu et al., 2021). Peptide IMS signal can be
enhanced through secondary ionization (MALDI-2) and has
been used to show localization of hemoglobin subunit proteins,
glutathione-S-transferase, and pyruvate kinase to glomeruli,
cortex, and medulla, respectively (McMillen et al., 2021). These
IMS studies have benefited from the ability to visualize changes
in analyte localization in broad tissue areas, and have leveraged
microextraction or homogenate analyses with deeper proteomic
coverage to confirm protein identifications (Grobe et al., 2012).

SMALL MOLECULE METABOLOMICS

Mass spectrometry-based metabolomics is essential in basic and
clinical renal research (Abbiss et al., 2019). Here, metabolites
are defined as small (<1,000 Da) molecules such as amino
acids, nucleotides, mono- and disaccharides, and steroids that
can be hydrophilic, hydrophobic, or amphipathic (Bijlsma et al.,
2006). Liquid or gas chromatography-based metabolomics are
routinely used to assess aminoaciduria in clinical samples or
tissue homogenates (Rhee, 2018; Abbiss et al., 2019). Early work
on the kidney profiled patient samples for disease biomarkers and

resulted in the clinical tests now available to physicians (Cisek
et al., 2016; Luft, 2021). However, general metabolic markers
do not provide information about inter-nephron variation, and
there is a gap in understanding sources of metabolic dysfunction
on a spatial level and relating these to specific proteins. For
example, amino acid transporters have been found to differ in
proximal tubules within the same tissue section, implying that
solute transport may be performed differently among nephrons
and may be contributing uniquely to aminoaciduria and other
kidney dysfunctions (Höhne et al., 2018).

Imaging mass spectrometry is uniquely powerful for kidney
metabolomics because it is one of few methods that can spatially
map metabolites within tissue, since these molecules are not
amenable to antibody-based visualization (Prentice et al., 2017).
Metabolite IMS has been used to characterize drug distribution
in murine kidneys (Römpp et al., 2011), adenosine triphosphate
and monophosphate in diabetic murine kidneys (Miyamoto et al.,
2016), N-linked glycans in murine kidney (Gustafsson et al.,
2015), and is extensively reviewed in Prentice et al. (2017).
Metabolites can be routinely imaged with pixel sizes as small
as 10 µm and their detection can be enhanced by gas-phase
separation approaches such as trapped ion mobility separation
(TIMS) (Djambazova et al., 2020; Neumann et al., 2020). Small
metabolite IMS in human kidney samples was performed at
a spatial resolution of 20 µm and allowed for the detection
of >200 unique species using a timsTOF mass spectrometer
in qTOF mode only (i.e., without TIMS activated) and >350
species after applying TIMS (Neumann et al., 2020). This study
revealed unique distributions of metabolites including argininic
acid, acetylcarnitine, and choline in the cortex, medulla, and
renal pelvis, respectively (Neumann et al., 2020). Nano-DESI IMS
was similarly used to show localization of propionylcarnitine,
methylhistidine, sorbitol to the cortex, outer medulla, and
inner medulla, respectively (Bergman et al., 2019). Acylcarnitine
was shown to accumulate in the cortex of early-diabetic mice
(Bergman et al., 2019). These approaches illustrate the excellent
spatial resolution achievable by metabolite IMS and provide
robust methods to visualize these molecules that cannot routinely
be imaged using antibodies or affinity reagents. Future work
could integrate metabolomic analyses of isolated FTUs with IMS
to leverage the molecular coverage of the former with the spatial
resolution of the latter.

LIPIDOMICS

Lipids play crucial and diverse roles in the kidney from
establishment of cellular structure and stability to cell-cell
interactions (Kinnunen et al., 2012; Balla, 2013). Lipids are
metabolized in the kidney via receptor-mediated uptake of
plasma lipids in proximal tubules (Moestrup and Nielsen,
2005). Chronic renal disease is associated with abnormal lipid
metabolism, elevated apolipoprotein abundance, and elevated
plasma lipid levels (Trevisan et al., 2006). Oxidative stress and
insulin resistance have been implicated in lipid-mediated renal
damage, but the underlying genetic, proteomic, and metabolomic
mechanisms are not understood (Trevisan et al., 2006).
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FIGURE 2 | Nephron showing select molecular groups observed in the cortex, outer medulla, inner medulla, glomeruli (Glom), proximal tubules (PT), and collecting
ducts (CD). Molecular observations made using imaging mass spectrometry (MS) and profiling MS experiments are shown in rectangles and ovals, respectively.
Proteins, small metabolites, and lipids, are shown in green, blue, and purple text, respectively. Biological processes are indicated as follows: * Solute transport,
** Toxins and detoxification, 1 Lipid synthesis, modification, and metabolism, ± Mitochondrial energy metabolism, 9 Cell death regulation, θ Glucose metabolism
and diabetes.

Additionally, altered renal lipid distribution has been associated
with nephron dysfunction resulting from pathogen infection
(Perry et al., 2019), polycystic kidney disease (Ruh et al., 2013),
early diabetes and obesity (Miyamoto et al., 2016; Sugimoto et al.,
2016; Bergman et al., 2019), and kidney injury (Rao et al., 2016).
MS-based lipidomics globally characterizes how lipid class and
the molecular structure influence these processes, and is uniquely
informative in the context of renal disease.

Lipid IMS has been widely applied to the kidney
and is further reviewed in Miyamoto et al. (2016).
Gangliosides, sulfoglycosphingolipids, lysophospholipids,
and phosphatidylethanolamines, sphingolipids, and lysolipids
were shown to accumulate and spatially relocalize in the
kidney due to diabetic nephropathy and severe ischemic
injury in murine and porcine samples (Grove et al., 2014;
Miyamoto et al., 2016; van Smaalen et al., 2019). Two ether-
linked phospholipids were implicated as biomarkers for acute
kidney injury in a murine model using sequential window
acquisition of all theoretical spectra (SWATH) lipidomics and
IMS (Rao et al., 2016). These phospholipids were shown to
accumulate in proximal tubules, supporting the combination of
profiling and imaging MS to characterize lipid abundance and
localization (Rao et al., 2016). Another study showed that the
ganglioside NeuGc-GM3, but not other ganglioside species, and
several lysophospholipids accumulated in glomeruli of diabetic
mice, while long-chain sulfoglycolipids accumulated in renal
tubules of diabetic mice (Grove et al., 2014). Amadori-modified

phosphatidylethanolamines were also detected in the renal cortex
of diabetic mice, providing insight into the metabolic impacts of
diabetes (Grove et al., 2014). Each of these approaches showed
profound redistribution of lipid species in response to renal
disease. To provide further insight into the lipidome and disease,
technologies are linking specific lipid species with kidney FTUs
based upon histology-informed segmentation of lipid IMS data
(Martín-Saiz et al., 2021). These studies illustrate the utility of
IMS to detect global lipidomic changes in disease and implicate
diverse lipid classes in normal kidney function and pathogenesis.

CONCLUSION AND PERSPECTIVE

Technological advancement fundamentally changes the scale
and strategy of scientific research. High-performance mass
spectrometry and spatial technologies have moved us into an
era of “big data” where the amount of molecular information
collected from a single sample would have been previously
inconceivable (Beckmann and Lew, 2016). To move beyond
simply collecting big data to comprehensive interpretation of
complex datasets, we assert that we are beginning an era
focused on “multimodal data integration.” Scientists will need
to cooperatively link and automatically mine large datasets
to understand intricate networks of cellular and molecular
interactions across vast spatial scales (e.g., anatomical regions
to single cells) and wide-ranging molecular classes (e.g., RNA,
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proteins, lipids, and metabolites). Multi-institutional consortia
are working to address this challenge by constructing molecular
atlases of human cells and organs that integrate imaging and
omics technologies using spatial anchors through common
coordinate frameworks and/or anatomical links (Abbasi, 2017;
Hu, 2019; Rozenblatt-Rosen et al., 2020; El-Achkar et al., 2021).
These consortia are prioritizing the establishment of broadly
accepted standards and quality control for data collection,
precise recording of biopsies and tissue sections locations within
intact organs, and recording thorough donor metadata data in
accessible and stable repositories (Lynch, 2008; Hu, 2019; El-
Achkar et al., 2021).

These large-scale kidney research projects are balancing
the application of established multi-omic technologies with
continued development of cutting-edge spatially targeted MS
approaches. Spatially targeted proteomics utilizing profiling
strategies has been more widely applied to the kidney than other
technologies, and therefore individual glomerular and tubule
proteomes are more well characterized (Betsholtz et al., 2007;
Höhne et al., 2018; Hoyer et al., 2019; Späth et al., 2019; Koehler
et al., 2020; Sigdel et al., 2020; Banki et al., 2021). Metabolomics
has been applied to patient samples and kidney homogenates
to great effect, and IMS has broadly characterized the spatial
distribution of select small metabolites (Abbiss et al., 2019;
Neumann et al., 2020; Zhang et al., 2020). Similarly, lipidomics
has been used to characterize kidney homogenates, and IMS has
generated spatial lipid maps (Rao et al., 2016; Lukowski et al.,
2020; Zhang et al., 2020; Martín-Saiz et al., 2021). The next
challenge will be to integrate these analytical modalities into
workflows combining multiple spatially targeted MS technologies
and to develop tools necessary to perform these analyses at scale
across statistically relevant numbers of samples. The integration
of these modalities in a systems-biology approach can provide
us with a more comprehensive understanding of kidney biology
(Figure 2; Mayer et al., 2012; Cisek et al., 2016; Rhee, 2018; Zhang
et al., 2018; Neumann et al., 2021a).

High performance computing and development of necessary
machine learning algorithms are playing an important role
in technology integration. In addition to combining spatially
targeted MS approaches, we anticipate that it will become more
common for these data to be combined with other advanced
molecular imaging technologies such as microscopy and spatial
transcriptomics. Examples of this have already demonstrated
integration of spatially targeted MS data with autofluorescence
microscopy and multiplexed immunohistochemistry approaches

such as imaging mass cytometry (IMC) and co-detection by
indexing (CODEX) to molecularly characterize and discover
markers for kidney FTUs and cell types (Patterson et al., 2018;
Singh et al., 2019; Martín-Saiz et al., 2021; Neumann et al.,
2021a,b). To enable these multimodal approaches, computational
tools are emerging that automatically annotate, integrate, and
mine molecular imaging data from orthogonal technologies
for unbiased data interpretation and identification of candidate
biomarkers (Van de Plas et al., 2015; Palmer et al., 2017; Vollnhals
et al., 2017; Balluff et al., 2019; Race et al., 2020; Martín-Saiz et al.,
2021; Tideman et al., 2021).

In summary, spatially targeted MS is a powerful set
of technologies for the discovery of molecular profiles of
critical FTUs and cell types in the kidney. As the field
matures, multimodal data integration will certainly become
more common requiring interdisciplinary, and often multi-
institutional collaborations bringing together researchers with
a wide array of expertise including cell biologists, pathologists,
analytical chemists, computer scientists, and mathematical
engineers. The application of this diverse set of expertise and
technological capabilities is expected to dramatically enhance
our understanding of the cellular and molecular makeup of the
kidney to personalize medical care and improve health outcomes.
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