Immunology Technical comment

[DOI: 10.1002/eji.201344323]

Unbiased transcriptomes of resting human CD4⁺CD45RO⁺ T lymphocytes

Gene expression profiling of cells of the immune system isolated ex vivo is a unique tool to assess gene expression in vivo. Exemplified for CD4⁺CD45RO⁺ effector/memory T helper ($T_{E/M}$) lymphocytes of human peripheral blood, we have analyzed the influence of different isolation procedures and storage conditions on the gene expression profile [1], and describe a method for the generation of unbiased transcriptomes.

T_{E/M} lymphocytes were isolated from fresh human peripheral blood to >98% purity by FACS as CD3+CD4+CD45RO+ CD45RA⁻ cells. Prior to this, cells were enriched either by MACS with whole-blood CD4 beads (CD4 MACS), density gradient centrifugation (FICOLL), alone or in combination with CD3 MACS, or by lysis of erythrocytes (LYSIS) followed by MACS depletion of CD15⁺ cells. A total of 7 different protocols were compared among each other and to T cells stimulated for 3 h after isolation with PMA and Ionomycin (Fig. 1A and Supporting Information File 1). Cell isolation procedures lasted for 45-120 min, and were carried out according to manufacturer's instructions at 4°C, unless indicated otherwise. Preparationinduced de novo transcription was blocked

in one of the protocols by the addition of 2 μ g/mL Actinomycin D (ActD). The transcriptomes of T_{E/M} cells from two unrelated healthy donors (D1, D2) were determined on Affymetrix HG-U133 Plus 2.0 arrays (Affymetrix, Inc) that contain 54 675 probe sets representing approximately 47 400 transcripts and variants including 38 500 genes [2]. The data were evaluated using the High Performance Chip Data Analysis (HPCDA) [3] and Genes@Work software [4].

The nonstimulated samples clustered by donor, irrespective of the isolation protocol used, demonstrating that the interindividual differences exceeded those induced by the isolation procedures (Fig. 1B). Natural genome-wide variation in human gene expression has been shown to be able to account for significant fold changes between individuals in a population [5, 6] and should be taken into account during experimental planning. Genes encoding CD8, CD14, CD16, CD19, CD20, or CD56, indicating contamination of the CD4⁺ T cells with CD8⁺ T cells, monocytes, granulocytes, B lymphocytes, and NK cells confirmed the purity of the preparations (Fig. 1D). An exception was the contamination of CD4 T cells isolated by LYSIS with residual erythrocytes, as indicated by expression of the globin genes HBA and HBB (Fig. 1D).

Comparing the different protocols, up to 759 Affymetrix probe set IDs (AffyIDs) were differentially expressed, by a factor of 1.5 or more (Fig. 1C and Supporting Information File 2). Cells isolated by CD4 MACS in the presence of ActD showed the lowest expression of genes indicating activation or stress, such as *JUN* and *FOS* [7], very similar to cells isolated by CD4 MACS in the absence of ActD (Fig. 1D). Sixteen AffyIDs

were differentially expressed between cells isolated by CD4 MACS in the presence versus absence of ActD. Of these, only the pseudogene POLR2J4 showed an absolute fold change of \geq 1.5 (1.6). These subtle differences could also reflect technical variation between the same cells, RNA prepared, amplified, and hybridized in parallel [8]. Thus, in cells isolated by CD4 MACS and FACS neither the degradation of RNA, nor the de novo transcription ex vivo skewed the in vivo transcriptomes. In general terms, ActD might qualify as a tool to prevent de novo transcription ex vivo in any kind of isolation protocol, but it cannot prevent degradation of transcripts, and thus is no alternative to isolation technologies preserving the in vivo transcriptome.

Compared with cells isolated by the CD4 MACS protocol, cells isolated by the FICOLL or LYSIS procedures showed differential expression of more than 100 AffyIDs at an absolute fold change of ≥ 1.5 (Fig. 1C). Among them were immediate response genes like *JUN* and *FOS*, the *EIF1* gene encoding a translation factor [9], and the genes encoding the antiand proapoptotic proteins Bcl-2 and Bcl10 (Fig. 1D) [10]. In the LYSIS samples the differences in expression were most pronounced.

The $T_{E/M}$ cells that were stimulated after isolation cluster on a completely different branch clearly separated from the branches of the nonstimulated data of the two donors (Fig. 1B). They are set apart from each of the two donors by over 11 000 differentially expressed AffyIDs (absolute fold change \geq 1.5) (Fig. 1C), revealing that changes induced by stimulation outweigh technical and biological variability.

Decisive factors for the conservation of in vivo transcriptomes are the time

NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

[@] 2014 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

A						/										в				Г	_		٦
 //	CD4 / ActD	↓ MAC:	S /o ActE) FIC	Dens OLL ^a	→ sity Gr. FICOLL	adient		Er RT	CD1	→ bcyte L 4°C 5 MAC	ysis 4°C S						COLL ^b + CD3 MACS D2 CD4 MACS + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	LU4 MACS + Actu U2 LYSIS RT D2	LYSIS 4°C D1	FICOLL ^b + CD3 MACS D1	CD4 MACS D1	LYSIS 4°C stimulated D1
	CD34	CD4	+CD45	RO+CD	45RA-	Fluor	escen	ice-Ac	tivated	d Cell	Sortin	ıg											
			ļ		ļ			ļ			ļ	 Stimulation 											
					Microa	array A	Analys	is															
c		CD4	MACS						b					IVER	4.0								
		w/o	ActD	FICO	LL ^a	FICO	LL ^b	CD3 M	ACS	LYSI	SRT	LYSI	S 4°C	stimu	lated								
CD4	ActD	1	0	194	65	208	52	131	39	759	246	311	66	11663	8893								F
CD4	ActD			246	70	140	45	115	34	625	209	206	46	11671	8936								
FIC	COLLa					11	1	29	9	337	127	268	96	12284	9201								
FIC	COLL							7	2	595	176	345	92	12086	9149								
FICO	OLL ^b w/									563	156	339	78	11651	8946								
CD3	SIS RT								L			321	86	11597	8699								
1.14	SIS A°C													11745	8809								
	040		8.16 Bu		10.000		22.2.15				<u>e</u> 1			11745	0005		cî.	-52		0	+5	9	
п				CD4	MACS	CD4	MACS	FIC		FIC	OL 1 P	FIC	OLL	LYS	IS 4°C	LYSIS	5 20°C	LYSI	S 4°C	1			
5				D1	D2	D1	ActD D2	D1	D2	D1	D2	D1	D2	D1	D2	D1	D2	D1	D2				
	205456	_at	CD3E	113	125	153	105	104	114	121	102	129	98	117	92	88	102	57	74 64				
er	230037	_at	CD8	8	1	1	149	2	3	201	2	3	142	9	2	8	3	1	2				
lark	201743	_at	CD14	64	2	45	5	3	7	1	1	4	1	2	2	7	12	1	2				
ge N	204006	_s_at	CD16	18	14	9	6	19	14	38	6	9	2	16	11 23	14	13	13	9				
inea	228599	_at	CD20	22	22	17	23	28	32	23	38	34	43	3	46	41	22	2	2				
-	209968	_s_at	CD56	3	4	6	3	2	2 412	9	2	7	5 17	2	3	9	4	2	7				
	209116	_x_at	HBB	192	47	131	88	217	554	247	353	8	25	1175	951	1227	2262	1075	684				
	200705	at	CD69	1047	1425	1179	1363	2522	1803	1441	1 1433	1844	1551	1536	1366	1336	2315	12855	10325				
tion	227404	_s_at	EGR1	6	4	3	4	6	2	6	2	6	2	5	2	24	35	933	1122				
lo t	212227	y at	IEIE1	4173	4510	14540	4199	15306	5293	6208	4738	1 5521	4306	4859	5091	7409	7289	10340	8709				

Figure 1. (A) Schematic overview of the isolation procedures compared. The three main procedures for enrichment were direct magnetic isolation of CD4+ cells (CD4 MACS), with (w/) or without (w/o) 2 µg/mL Actinomycin D (ActD), Ficoll-density gradient centrifugation (FICOLL) using aLSM1077 or ^bPM400, alone or in combination with magnetic isolation of CD3+ cells (CD3 MACS) and lysis of erythrocytes (LYSIS), either at RT or at 4°C, followed by magnetic depletion of CD15⁺ cells. Cells were then stained and CD3⁺CD4⁺CD45RO⁺CD45RA⁻ cells were isolated by FACS. Ten milliliters blood were collected for each test and approximately 10⁶ cells were ultimately collected for transcriptome analysis. (B) Cluster analysis of transcriptomes of human peripheral effector/memory T helper (T_{E/M}) cells of two donors (D1, D2). The heat map visualizes differences in expression of Affymetrix probe set IDs with an absolute fold change (absFC) \geq 1.5 (red/upregulated, green/downregulated). (C) Summary of modulation of gene expression induced by the preparation protocol of the T_{E/M} cells. Numbers indicate the numbers of differentially expressed Affymetrix probe set IDs between the differently isolated cells, of the two donors analyzed; light gray = numbers of regulated IDs with absFC ≥1.5; dark gray = numbers of regulated IDs with absFC ≥2. (D) Expression levels of genes exemplifying the impact of the isolation procedure on purity, cellular activation, stress response, and programmed cell death. The color gradient is based on the lowest (yellow) and highest (green) expression value of each individual AffyID.

49

2215 3103 2301 2920 2809 3093 2425 2825 2612 2884 2532 2855 2414 2766

14 14 7 373 13 398 1989

439 143

1474 698

898 756

412 946

1357 1184

1839 1948

879 917 2722 3254

375 800

767 2071

8778 7193

7586 6048

1074 837

273

484 480

5404 4398

867 829

400 429 7242 7504

108 40

 1431
 1417
 1354
 1152
 1319
 764
 1016
 884
 1253
 645

 904
 1100
 831
 948
 884
 800
 954
 987
 854
 831

200599 s at HSP90 3026 3653 2594 3762 3179 3846 2666 3963 2901 4071 2879 3551 2901 3970

1671 2153 1802 2123 1749 2096 1734 2035 1743 1925 1754 2027

211333 s at FASLG 65 61 75 37 46 72 46 73 62 59 56 68 42 73 1074 202239 at PARP4 1098 1547 1136 1672 1054 1631 953 1517 1227 1613 1107 1208 1075 1068 220

 BCL10
 39
 75
 83
 84
 185
 117
 145
 129
 91
 88
 128
 89
 281
 278

 CYCS
 2214
 2569
 1994
 2482
 2031
 2412
 2045
 2478
 2055
 2673
 2143
 2037
 1919
 2003

209189_at FOS

201465 s at JUN

202672_s_at ATF3

200806_s_at HSP60 200692_s_at HSP70

203685_at

208905_at

200989_at HIF1A

1557257_at BCL10

211333_s_at FASLG

BCL2

19 6 12 2

26 34 47 23 79 23 44 23 53 29

13

5 18 18 18 14 11 20 18 11 17 19 21

2h at RT

646

488

2048

1805

6h at 4°C

404

49

333

922

238

1531

6h at RT

4326 1867

3976 1560

232

9093

9958

7789

4531 1839

1395

2h at 4°C

192

677

No Delay 2h at 4°C

2h at RT

6h at 4°C

6h at RT

D				No D)elay	2h at	t 4°C	2h a	t RT	6h a	t 4°C	6h at RT		24h at RT	
				D1	D2	D1	D2	D1	D2	D1	D2	D1	D2	D3	D4
-		209795_at	CD69	2522	1803	3382	2445	6035	6652	4193	3434	7382	6865	17391	8468
tio	er	212227_x_at	EIF1	5306	5293	5960	6066	8067	8373	6483	5863	10250	8924	23218	18246
Va	ark	209189_at	FOS	108	40	129	175	380	429	271	276	1528	651	14762	1354
ct	Σ	242903_at	IFNGR1	113	52	123	105	202	142	162	144	259	329	592	291
4		213281_at	JUN	34	17	59	51	129	75	83	54	152	135	509	352
	d)	200779_at	ATF4	2530	2767	2465	2428	3113	2593	2648	2764	4449	3713	7802	7740
S	nsi	1558678_s_at	CXCR4	5949	4816	6616	6404	10222	10535	6528	5538	11046	9542	21630	13593
e	od	200989_at	HIF1A	2809	3093	2497	2534	2605	2597	2383	2625	4059	4596	6992	5470
S I	Ses	200692_s_at	HSP70	884	800	792	800	783	854	843	691	1061	1225	3019	3074
	ш	200064_at	HSP90	1949	2048	1699	1691	1496	2120	1763	1965	2069	2303	4602	4192
	s	203685_at	BCL2	1749	2096	1664	1890	2055	1853	1678	1994	1554	1899	429	262
isi	ISC	1557257_at	BCL10	185	117	201	126	378	368	249	245	437	514	1131	746
1	b	1553096_s_at	BIM	198	182	171	245	254	178	199	190	266	211	385	392
	d	202239_at	PARP4	1054	1631	1177	1516	1020	969	1094	1327	823	887	354	524
4	4	205641_s_at	TRADD	665	656	744	829	747	910	725	660	743	613	388	379

Figure 2. (A) Schematic overview of the storage conditions compared. Ten milliliters samples of freshly drawn peripheral human blood were either processed immediately or stored in the sample tube for the time indicated, either at 4°C or at RT. (B) Cluster analysis of transcriptomes of T_{E/M} cells, stored under conditions, as indicated, and isolated via FICOLL^a as described in Fig. 1A. The heat map visualizes differences in expression of Affymetrix IDs with an absolute fold change (absFC) ≥1.5 (red/upregulated, green/downregulated). (C) Summary of modulation of gene expression induced by different storage conditions, before preparation of $T_{E/M}$ cells. Numbers indicate the numbers of differentially expressed Affymetrix probe set IDs between the differently stored cells, of the two donors analyzed; light gray = numbers of regulated IDs with absFC \geq 1.5; dark gray = numbers of regulated IDs with absFC ≥2. (D) Expression levels of genes exemplifying the impact of storage conditions on cellular activation, the stress response, and programmed cell death. The color gradient is based on the lowest (yellow) and highest (green) expression value of each individual AffyID.

between blood sampling and preparation of RNA, and the storage conditions of the blood before cell isolation. Blood samples were drawn and either processed directly or kept at 4°C or room temperature (RT) for 2 or 6 h before $T_{E/M}$ cells were isolated. Gene expression was compared among the various cell preparations and with that of T_{E/M} cells isolated from 1-dayold buffy coat fractions obtained from the German Red Cross, stored at RT (Fig. 2A). CD3+CD4+CD45RO+CD45RA- cells were isolated by density gradient centrifugation and FACS, as described above in Fig. 1A (FICOLL^a). T_{E/M} cells immediately isolated from fresh blood differed from cells isolated from buffy coats by expression of more than 10000 AffyIDs, with an absolute fold change of ≥ 1.5 (Fig. 2B, 2C), suggesting that T_{E/M} cells isolated from buffy coats no longer express the transcriptomes they used to express in vivo. Instead, they express genes indicating activation, i.e. CD69, JUN, FOS, and EIF1, and stress response, i.e. HIF1A, ATF4, and CXCR4 [11-13] (Fig. 2C and D). Already 2 h after blood draw, $T_{\text{E/M}}$ cells stored at 4°C differentially express 677 AffyIDs with an absolute fold change of ≥ 1.5 , and 192 AffyIDs with an absolute fold change of ≥ 2 (Fig. 2C), as compared with cells isolated immediately after blood draw. In samples stored for the same duration at RT these numbers were elevated to 2048 and 646 differentially expressed AffyIDs, respectively. These differences exceeded those observed between cells isolated by the various methods compared here (Fig. 1C, 2C and Supporting Information Fig. 3) and grew progressively more pronounced with prolonged storage (Fig. 2C and D).

In summary, we communicate here a method for the generation of transcriptomes of human $T_{E/M}$ cells isolated ex vivo, reflecting their transcriptome in vivo. With blood processed directly after sampling, a fast direct enrichment of CD4⁺ T cells from the blood by CD4 MACS

and the final purification by FACS of CD3⁺CD4⁺CD45RO⁺CD45RA⁻ cells, transcriptomes are obtained that are neither biased by de novo transcription nor by RNA degradation ex vivo, and thus reflect the situation in vivo.

Kerstin Westendorf, Anna Okhrimenko, Joachim R. Grün, Heidi Schliemann, Hyun-Dong Chang, Jun Dong and Andreas Radbruch

German Rheumatism Research Centre Berlin, Institute of the Leibniz-Association, Berlin, Germany

Acknowledgments: This work was supported by the SFB650 of the German Research Council, the IMI JU funded project BTCure, no. 115241, the ERC Advanced Grant (ERC-2010-AdG_ 20100317 Grant 268987) and the German Ministry of Education and Research grant "IMPAM" (01EC1008B).

The array data discussed in this publication has been deposited in NCBI's Gene Expression Omnibus and is accessible through GEO Series accession number GSE54247 (http://www.ncbi.nlm.nih. gov/geo/query/acc.cgi?acc=GSE54247).

Conflict of interest: The authors declare no financial or commercial conflict of interest.

References

- 1 Grützkau, A. and Radbruch, A., in Bosio, A. and Gerstmayer, B., Microarrays in inflammation. Birkhäuser Verlag AG, Basel-Boston-Berlin 2008, pp. 31–39.
- 2 Data sheet "GeneChip[®] Human Genome Arrays". http://www.affymetrix.com.
- 3 Menßen, A. et al., BMC Genomics 2009. 10: 98.

- 4 Lepre, J. et al., Bioinformatics 2004. 20: 1033– 1044.
- 5 Oleksiak, M. F. et al., Nat. Genet. 2002. 32: 261– 266.
- 6 Yan H. et al., Science 2002. 297: 1143.
- 7 Bukh, A. et al., J. Immunol. 1990. 144: 4835– 4840.
- 8 Robinson, M. D. and Speed, T. P., BMC Bioinformatics 2007. 8: 449.
- 9 Chaudhuri, J. et al., J. Biol. Chem. 1997. 272: 7883–7891.
- 10 Chao, D. T. and Korsmeyer, S. J., Ann. Rev. Immunol. 1998. 16: 395–419.
- 11 Castellanos, M. C. et al., Eur. J. Immunol. 2002. 32: 3108–3117.
- 12 Schioppa, T. et al., J. Exp. Med. 2003. 198: 1391– 1402.
- 13 Shalekoff, S. and Tiemessen, C. T., Clin. Diagn. Lab. Immunol. 2001. 8: 432–436.

Abbreviations: ActD: Actinomycin D · AffyID: Affymetrix probe set ID · FICOLL: density gradient centrifugation protocol · HPCDA: high performance chip data analysis · LYSIS: erythrocyte lysis · RT: room temperature · $T_{E/M}$: effector/memory T helper lymphocyte

Keywords: CD4⁺ T cells • Cellular activation • Gene expression • Microarray • Transcription

Full correspondence: Prof. Andreas Radbruch, German Rheumatism Research Centre Berlin, Institute of the Leibniz-Association, Berlin, Germany Fax: + 49-30-28-460-603 e-mail: radbruch@drfz.de

Received: 22/11/2013 Revised: 5/2/2014 Accepted: 4/3/2014 Accepted article online: 9/3/2014

The detailed Materials and methods for Technical comments are available online in the Supporting information