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Abstract

Collecting neighborhood data can both be time- and resource-intensive, especially across broad 

geographies. In this study, we leveraged 1.4 million publicly available Google Street View 

(GSV) images from Utah to construct indicators of the neighborhood built environment and 

evaluate their associations with 2017–2019 health outcomes of approximately one-third of the 

population living in Utah. The use of electronic medical records allows for the assessment of 

associations between neighborhood characteristics and individual-level health outcomes while 

controlling for predisposing factors, which distinguishes this study from previous GSV studies 

that were ecological in nature. Among 938,085 adult patients, we found that individuals living 

in communities in the highest tertiles of green streets and non-single-family homes have 10–

27% lower diabetes, uncontrolled diabetes, hypertension, and obesity, but higher substance use 
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disorders—controlling for age, White race, Hispanic ethnicity, religion, marital status, health 

insurance, and area deprivation index. Conversely, the presence of visible utility wires overhead 

was associated with 5–10% more diabetes, uncontrolled diabetes, hypertension, obesity, and 

substance use disorders. Our study found that non-single-family and green streets were related to 

a lower prevalence of chronic conditions, while visible utility wires and single-lane roads were 

connected with a higher burden of chronic conditions. These contextual characteristics can better 

help healthcare organizations understand the drivers of their patients’ health by further considering 

patients’ residential environments, which present both risks and resources.
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Google Street View; built environment; neighborhood characteristics; patient health; social 
determinants of health; computer vision

1. Introduction

The importance of the built environment as a determinant of health is well established 

in the literature [1]. The quality of neighborhood conditions has been shown to influence 

the prevalence of obesity, diabetes, and risk of mortality [2,3]. Certain built environment 

features can facilitate accessibility, which in turn can influence physical and mental health. 

For example, roads and public transportation can improve access to nutrition and healthcare 

facilities, while built environment features such as parks and trails can help promote physical 

activities [4–9]. Previous research has reported the influence of neighborhood features 

such as presence of roadways, buildings, access to public transportation, green spaces, and 

walkability on both physical and mental health outcomes [10–13]. Interconnected streets and 

mixed land use in urban neighborhoods have been linked to increased physical activity [14]. 

In our previous research, we found that built environment features at the ZIP code level 

such as green streets, crosswalks, and commercial buildings were associated with a lower 

prevalence of individual-level obesity and diabetes [15].

The aim of this study is to leverage publicly available Google Street View (GSV) 

images to construct indicators of the neighborhood-built environment for the state of 

Utah. Google Street View (GSV) image data mitigates some of the limitations of 

traditional sources of neighborhood data used for individual-level health outcome analysis. 

Traditionally, administrative data and neighborhood surveys have served as sources of data 

on neighborhood conditions and provided insights regarding how residents perceive their 

neighborhood environment. While these data sources provide assessments of neighborhood 

features that are considered important for health by residents, they are self-reported data and 

are subject to social desirability bias and same-source bias (for example, neighborhood 

conditions and health outcomes might be correlated because the health influences the 

exposure assessment by the individual) [16,17]. In-person audits are another source of data 

on the built environment, but they can be expensive and time consuming. As an alternative, 

Google Street View (GSV) images can serve as a reliable and cost-effective data source to 

capture features of neighborhood environments [18]. Virtual audits using GSV images has 
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been found it to be consistent with field assessments [18–20] and able to effectively discern 

built environment features such as commercial buildings, crosswalks, and highways [2,15].

Recent progress in computer vision, an interdisciplinary field using artificial intelligence, 

has advanced studies that identify, process, and analyze video and image data to derive 

meaningful information. To analyze GSV images, we used trained Visual Geometry 

Group (VGG-19 model) deep convolutional networks [21,22]. Earlier image recognition 

models such as Fisher Vectors [23] used handcrafted features, while the recent models 

[24–26] are all based on deep learning. Earlier deep learning models such as AlexNet 

[21], GoogleNet [27], and VGG-Net [22] used sequential Convolution Neural Networks 

(CNN) architectures and were limited to a few layers, while the recent ones [25,28] are 

variations of residual CNNs. Despite being very deep, the variations of residual CNNs are 

trainable because of the introduction of the batch normalization layer [29]. More recent 

methods [26] have removed the batch normalization to make these networks compact. 

CNNs assume translational equivariance of the image data [30] and, therefore, only handle 

short-range dependencies. Another class of architectures called Transformers [24] removes 

the translational equivariance assumption and allows long-range dependencies with soft 

attention.

In this study, we created neighborhood indicators derived from GSV images analyzed by 

CNNs in order to examine the effects of neighborhood environments on individual-level 

health outcomes of about one-third of people living in Utah by leveraging electronic medical 

records from one of the largest healthcare providers in Utah, Intermountain Healthcare. 

The use of electronic medical records allows for the assessment of associations between 

neighborhood characteristics and individual-level health outcomes while controlling for 

predisposing factors, which distinguishes this study from previous GSV studies that were 

ecological in nature. Outcomes examined include obesity, diabetes, high blood pressure, and 

substance use disorders. Findings from this study can help inform clinical practice regarding 

neighborhood characteristics that are connected with patient health outcomes.

2. Materials and Methods

2.1. Study Setting and Population

Patient data were acquired from 2017 to 2019 from Intermountain Healthcare, a Utah based 

integrated not-for-profit healthcare system which includes 24 hospitals with 2900 licensed 

beds and 215 owned or supported clinics. Annually, Intermountain Healthcare provides 

495,000 emergency department (ED) visits, 136,000 inpatient admissions, and 160,000 

inpatient and ambulatory surgeries. Patients included in the dataset were those who were 

18 years and older, had a medical visit from 2017–2019, and were Utah residents (n = 

1,433,316). Analyses were restricted to those with non-missing data on covariates and health 

outcomes and stratified by urbanicity. The majority of patients served by Intermountain 

lived in urban areas, and hence, these are reported in the main tables (n = 938,085 with 

non-missing data on covariates and health outcomes). In the Appendixes A and B, we 

present data on n = 53,414 participants who lived in rural areas in Utah.
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2.2. Study Measurement

Individual-Level Characteristics—From Intermountain Healthcare, we obtained 

individual-level health outcomes for eligible patients to study the prevalence of type 2 

diabetes, high blood pressure, and obesity (body mass index ≥30 kg/m2). Type 2 diabetes 

and hypertension were defined according to the National Committee for Quality Assurance 

(NCQA) Healthcare Effectiveness Data and Information Set (HEDIS) specifications [31]. 

Type 2 diabetes specifications require only one of the following to be met along with a 

diagnosis code of diabetes (ICD-9 code: 250): (a) two outpatient encounters on different 

dates of service; (b) one acute inpatient encounter; (c) one emergency department visit; 

or (d) patients who were dispensed insulin or hypoglycemic/anti-hyperglycemics on an 

ambulatory basis. Individuals were identified with hypertension if they had one outpatient 

encounter with a hypertension diagnosis code during the study period. Other outcomes 

included type 2 diabetes control (HbA1c ≥7%) and substance use disorders (includes any 

of the following: alcohol, opioid, cannabis, sedative, hypnotics, anxiolytics, cocaine, other 

stimulates including caffeine, hallucinogens, inhalants, other psychoactive substances and 

multiple drug use). Following HEDIS specifications for these outcomes, patients with 

evidence of end-stage renal disease, kidney transplant, pregnancy, or admission to a non-

acute inpatient facility (e.g., skilled nursing facility) were excluded.

Sociodemographic characteristics included age (continuous), race (White: yes/no), ethnicity 

(Hispanic: yes/no), marital status (married: yes/no), religious affiliation (any/none), 

insurance (yes/no), and area deprivation index (ADI). The ADI is a geographic area-based 

measure of the disadvantaged position of residents relative to the society [32]. The ADI 

was calculated for the state of Utah using a measure developed by Singh et al. [33] 

based upon 17 US Census measures associated with mortality, including living conditions, 

income, unemployment, and education. Census measures were based on the 2013 American 

Community Survey published by the US Census Bureau.

2.3. Google Street View Image Data

2.3.1. Google Street View Image Data Collection—GSV image data was collected 

using GSV Image API. We focused on all primary and secondary roads in Utah, mainly 

street intersections and other locations along road segments. We sampled locations at 

a 50 m interval, and for each set of coordinates, we gathered GSV images from four 

directions (facing west, east, north, and south) to best describe the neighborhood quality and 

environment. In total, 1,394,442 images from Utah were obtained in November 2019.

2.3.2. Built Environment Indicators—The selected indicators include building type 

(the presence of any non-single-family detached house: yes/no), roads with a single lane 

(yes/no), crosswalk presence (yes/no), street greenness (at least 30% of the image consisted 

of trees and landscaping: yes/no), and the presence of visible utility wires overhead (yes/no). 

To select the indicators for this study, we considered built neighborhood characteristics 

deemed important in the literature as well as which indicators would be suitable for 

computer vision models. For health outcomes, the literature has identified three indicators as 

being essential for the study: neighborhood walkability [34–36], neighborhood disorder [37–

39], and mixed land use [40–42]. The presence of crosswalks has traditionally been used 
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to indicate the walkability of an area as well as to measure health outcomes and behaviors. 

Sidewalks were also considered, but because of their high prevalence in urban areas, they 

offer less variability.

We constructed a measure of mixed land use because its impact on travel behavior and 

resource accessibility is well studied. In single-use residential areas, individuals may need 

to rely on using motorized transportation to get to their destinations. Conversely, areas 

that include residential, commercial, and leisure destinations may offer more opportunities 

for walking or biking, and physical activities and health-promoting resources may also be 

more accessible [43]. An indicator for non-single-family home was created to distinguish 

between entirely residential areas with only detached homes and areas with various building 

types, including businesses, schools, apartments, and cultural venues. Single-lane roads were 

selected to serve as an indicator of lower urban development to distinguish between areas 

with higher capacity for cars and people versus areas with less capacity.

Regarding street greenness, we found that in our dataset, street landscaping was prevalent 

in the images, and we strove to create an indicator that could distinguish between ample 

versus sparse street landscaping. Thus, we chose a cut point of 30% such that an image was 

classified as being a green street if approximately 30% of the image was street trees or street 

landscaping.

Furthermore, we also identified visible wires from the images. Although research on visible 

wires is a burgeoning area of study, more literature can be found abroad. In Rio de Janeiro, 

not only are visible wires unattractive, they are also a fire and electrocution hazard [44]. In 

the United States, visible wires have a similar visual impact. We selected visible wires 

as an indicator to further the literature, and we explore their associations with health 

outcomes. The undesirable aesthetics of visible wires, as well as their health risk, could 

deter health-promoting activities (by discouraging walking) and could have negative mental 

health implications (by increasing stress).

2.3.3. Image Data Processing—Convolutional Neural Networks (ConvNets) 

[20,22,28] achieve state-of-the-art accuracy for many computer vision tasks, including 

object recognition, object detection, and scene labeling. ImageNet [45], a large-scale visual 

database, includes 1000 categories (e.g., “balloon”, “motorcycle”, “strawberry”) and over 

one million image samples. A ConvNet model “pre-trained” based on ImageNet can be 

“fine-tuned” (known as optimizing configurations that control the model learning process to 

achieve better performance) using a smaller training dataset from the target task. This tuning 

process helps deliver high performance and does not require a potentially very large training 

dataset and computational resources to train the original ConvNet model.

18,700 images, dating from December 2016 to February 2017 were manually labeled by 

the principal investigator and three graduate research assistants. The distinctive labels of the 

neighborhood characteristics included presence of crosswalk, building type (single-family 

detached house vs. other), visible utility wires, single-lane roads, and street greenness 

(trees and landscaping comprised at least 30% of the image—yes/no). The locations of the 

images included a national sample, as well as images from Charleston, WV, USA, Salt 
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Lake City, UT, USA, and Chicago, IL, USA, and were selected to include a diverse range 

of neighborhood characteristics within the US. 80% of the labeled images were randomly 

selected for training and validation of the computer visual models and 20% of the remaining 

dataset was used for testing the computer vision models’ performance. Hyperparameters 

were tried on a trial and error basis and tuned to optimize accuracy on the validation set. 

After choosing the hyperparameters, we trained each model architecture multiple times. It 

is important to understand that the neural network training process is stochastic (meaning 

randomness is involved) even when using the same initialization and training set; therefore, 

we required multiple training runs to check the mean and standard deviation of the error. 

We did not use the test set during any step of the training process; it remained unobserved 

until we finished selecting the best model using the training set and validation set. Then, we 

assessed the best model performance by using the test set.

To process the GSV images, we first resized all the images to be 224 × 224. A standard 

deep convolutional neural network architecture, Visual Geometry Group VGG-19 [22] in 

TensorFlow [46], was used to train the model with sigmoid cross entropy with logits 

as the loss function. The weights of the network were initialized from the pre-trained 

ImageNet model. A batch size of 20 was used along with Adam optimizer. The learning 

rate was set to start with 1 × 10−4, and training took 20 epochs. The model in the last 

epoch was considered the final model. The accuracy of the classification tasks (agreement 

between manual annotations and computer vision predictions) was high: street greenness 

(88.70%), presence of crosswalks (97.20%), non-single family home (82.35%), single-lane 

roads (88.41%), and visible utility wires (83.00%).

2.3.4. Neighborhood Definitions—Census tracts were chosen as the neighborhood 

unit because of their relatively uniform population characteristics, economic status, and 

living conditions [47]. In general, census tracts range from populations of 1200 to 8000, 

with an optimum size of 4000. To arrive at the neighborhood indicators, we processed street 

imagery and then combined information on all street imagery within a census tract to arrive 

at census tract-level summaries (e.g., percentage of images in a census tract that contain a 

crosswalk). We derived aggregated measures for green streets, crosswalks, non-single-family 

homes, single-lane roads, and visible wires and created tertiles for all the built environment 

indicators based on these measures. Tertiles were utilized to allow for nonlinearities in the 

relationship between built environment characteristics and health outcomes.

2.4. Statistical Analyses

The data on neighborhood features were merged with the individual-level health 

outcomes and sociodemographic data for patients. We implemented log Poisson regression 

models to examine the association between tertiles of built-environment indicators and 

individual chronic disease prevalence after adjusting for individual-level sociodemographic 

characteristics. Outcomes examined included diabetes prevalence, uncontrolled diabetes, 

high blood pressure, obesity, and substance use disorder. A variety of health outcomes 

were chosen to determine the range with which GSV images can predict patient health 

outcomes. Main predictors included tertiles for green space, crosswalk, non-single-family 

homes, single-lane roads, and visible utility wires. Health outcomes were compared for 
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patients living in neighborhoods in the third tertile (and second tertile) of built environment 

characteristics vs. the first tertile (lowest level). Models were also adjusted for age, race, 

ethnicity, religious affiliation, health insurance status, and ADI. Separate models were run 

for each health outcome. Statistical significance was assessed with an alpha level of 0.05. 

SAS 9.4 software was utilized for analyses (SAS Institute Inc., Cary, NC, USA).

3. Results

Table 1 summarizes descriptive statistics of our study population and their census tract 

neighborhood environment derived from GSV images. The mean age was 47 years with 

about 57% being female, 58% being married, 11% being Hispanic/Latinx, and 5% being 

non-White. About 28% were self-pay (uninsured), and 68% reported a religious affiliation. 

The prevalence of obesity was 47%, and the prevalence of diabetes was 6%. Figure 1 

displays the distribution of the GSV-derived built environment characteristics. Single-lane 

roads and visible utility wires were unimodal and relatively common characteristics. Street 

greenness was right-skewed, with most census tracts having prevalence of 60% and above. 

Non-single-family homes were left-skewed, with the majority of census tracts having 

prevalence of less than 40%. Crosswalks, the rarest of the built environment characteristics, 

were also left-skewed, with the majority of census tracts having prevalence of less than 10%.

Figure 2 presents the spatial distribution the GSV-derived built environment features across 

the Wasatch Front, which contains the major cities of Salt Lake City, West Valley City, 

Provo, West Jordan, Layton, and Ogden, where the majority of Utah residents live. Single-

lane roads were concentrated in areas such as the eastern part of Salt Lake City, Bountiful, 

West Valley City, Millcreek, Sandy, and Draper City (Utah County). Street greenness was 

concentrated throughout eastern Utah. Crosswalks were present only in a few locations (e.g., 

Salt Lake City, South Salt Lake, Murray, Ogden, and Provo) in the urban core. Visible utility 

wires and non-single-family homes were present in the urban core (e.g., Salt Lake City and 

South Salt Lake) and also dispersed throughout western Utah.

Table 2 presents the estimated prevalence ratios and 95% CIs for all the examined 

associations between tertiles of built environment indicators and individual health outcomes, 

controlling for individual age, White race, Hispanic ethnicity, religious affiliation, marital 

status, and lack of health insurance. In all models, GSV-derived built environment variables 

were statistically significantly associated with health outcomes, with green space and non-

single-family homes being protective of negative outcomes. Comparing the third tertile with 

the first tertile, non-single-family homes were associated with a 17% lower prevalence of 

diabetes (95% CI: 0.81–0.85), 14% lower prevalence of uncontrolled diabetes (95% CI: 

0.82–0.89), 27% lower prevalence of hypertension (95% CI: 0.67–0.80), and 11% lower 

prevalence of obesity (95% CI: 0.88–0.90). Green streets were associated with decreased 

diabetes (PR: 0.90; 95% CI: 0.88–0.92)), uncontrolled diabetes (PR: 0.89; 95% CI: 0.86–

0.92), hypertension (PR: 0.84; 95% CI: 0.78–0.90), and obesity (PR: 0.90; 95% CI: 0.89–

0.91). However, both green streets and non-single-family homes were tied to an increased 

prevalence of substance use disorders, 17% (95% CI: 1.13–1.21) and 12% (95% CI: 1.08–

1.17), respectively.
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An increase in visible wires was associated with a higher prevalence of all adverse 

outcomes, although not all comparisons for the 3rd and 2nd tertiles reached statistical 

significance. More visible wires were associated with 9–10% higher prevalence of diabetes 

and uncontrolled diabetes and a 4–5% increase in obesity. Visible utility wires were also 

linked to increased hypertension and substance use. Surprisingly, more crosswalks (mainly 

concentrated in Utah’s urban core) were associated with 7–9% increased prevalence of 

hypertension and only weakly associated with other health outcomes. Single-lane roads 

were generally not associated with health outcomes, except for a slight increase in diabetes 

(Table 2). Patterns are similar in rural areas, but associations were more attenuated, and the 

statistical power was less given the fewer number of Intermountain patients living in rural 

areas (n = 53,414; Table A1).

Individual characteristics were also associated with health outcomes, and all tended to be 

statistically significant except for English as a primary language, which had little effect and 

was removed from the final model. White race was associated with better health outcomes, 

including a lower prevalence of diabetes, uncontrolled diabetes, hypertension, and obesity 

(Table 2). Hispanic ethnicity was associated with increased diabetes, uncontrolled diabetes, 

and obesity. Religious affiliation was associated with more diabetes, more uncontrolled 

diabetes, and obesity, but it was protective of hypertension. Marital status (married) was 

positively associated with hypertension.

To examine whether individual-level disadvantages were associated with certain built 

environments, we implemented log Poisson models to examine predictors of uninsured 

status among Intermountain patients. Uninsured patients were less likely to live in 

neighborhoods with green streets and to live in neighborhoods with fewer or no single-

family homes. They were more likely to live in neighborhoods with visible utility wires 

overhead and were slightly more likely to live in neighborhoods with single-lane roads and 

crosswalks (Table 3).

We examined associations between GSV-derived built environment indicators and other 

census tract-level characteristics. The percentage of non-Hispanics Blacks was related to less 

exposure to green space and single-lane roads and more exposure to visible utility wires and 

non-single-family homes. Median household income was related to more green space and 

fewer visible utility wires and non-single-family homes (Table 4).

4. Discussion

While a large body of literature has connected neighborhood built environment 

characteristics with an array of health outcomes, neighborhood data beyond 

sociodemographic characteristics can be time consuming and expensive to gather; thus, it is 

largely unavailable for large areas of the country. In this study, we leverage high-resolution 

GSV images from across the state of Utah to construct indicators of the built environment. 

Then, we examined whether these built environment characteristics were associated with 

patient health outcomes. Working with Intermountain Healthcare, a major provider of care 

in Utah, we examined health patterns for close to 1 million patients. Our study found that 

non-single-family homes (an indicator of mixed land use and urban development) and green 

Nguyen et al. Page 8

Big Data Cogn Comput. Author manuscript; available in PMC 2022 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



streets were related to a lower prevalence of chronic conditions. Conversely, visible utility 

wires and single-lane roads were connected with a higher burden of chronic conditions. This 

aligns with previous studies conducted at the census tract, county, and state levels that have 

found similar associations for non-single-family homes, single-lane roads, and visible utility 

wires [3,48]. For example, a previous state-level GSV study has linked non-single-family 

homes to decreased diabetes and premature mortality and increased physical activity [48]. 

Additionally, previous county-level analyses found that urban development was related to 

lower chronic disease burden and decreased premature mortality [2]. However, those studies 

were ecological in nature, while the current study is one of the few utilizing individual-level 

data.

In this study with individual-level patient data, we found that crosswalks (an indicator 

of walkability) were related to worse health outcomes, which is counter to our study 

hypotheses. Previous research involving the 500 Cities Project found mixed results with 

crosswalks [3]. Areas that were relatively dense with crosswalks (third tertile) had lower 

obesity, diabetes, and physical inactivity, but areas with “medium” amounts of crosswalks 

(second tertile) experienced higher rates of obesity, diabetes, and physical inactivity 

compared areas with the fewest crosswalks (first tertile). While an increase in crosswalks is 

likely to facilitate walking and physical activity, an increase in area-level crime would deter 

walking. Thus, these complex relationships between crosswalks and health outcomes might 

be influenced by factors such as neighborhood crime, which were not considered in this 

study. The distribution of crosswalks was more left-skewed and rarer than any other variable 

(Figure 1). Crosswalks might also be more likely placed in core urban centers where the 

most disadvantaged individuals might live (Figure 2). In addition, individuals without health 

insurance were slightly more likely to live in areas with more crosswalks (Table 2).

We additionally found that green streets and non-single-family homes were related to a 

higher prevalence of substance use disorders. Street landscaping and the presence of other 

building types besides single detached family homes might indicate higher urbanicity. The 

landscape of Utah, with its sandy deserts, red rocks, and deep canyons, generally has less 

natural greenness, which might mean that areas with more green landscaping denote higher 

urban development. In previous GSV analyses, we found that higher urban development was 

related to more excessive drinking [2].

This study also examined predictors of built environment by health insurance status. 

Uninsured patients were more likely to live in areas with visible utility wires, single-lane 

roads, and crosswalks. Uninsured patients were less likely to live in areas with green streets 

and non-single homes. In one of our previous studies, we found that greater county-level 

economic disadvantage was associated with a lower prevalence of non-single-family homes 

and visible wires at the county level after adjusting for violent crime rate, age, race/ethnicity, 

percentage of population not proficient in English, and ratio of population to primary care 

providers [49].

Study Strengths and Limitations

This is among the few studies examining GSV-derived predictors of individual-level 

outcomes, controlling for individual-level predisposing characteristics. Previous studies 
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with GSV images have utilized ecological frameworks [48]: for instance, county-level 

built environment predictors of county health outcomes [49]. In partnership with one of 

the largest healthcare providers in Utah, in this study, we included close to one-third of 

the population in Utah. We find that GSV-derived built environment characteristics were 

linked with an array of important health outcomes. Study findings suggest that structuring 

neighborhoods to locate amenities where people live and adding street landscaping could 

reduce chronic disease and improve health. Conversely, physical disorder could increase 

health risks through potential mechanisms such as decreased perception of safety and social 

cohesion, decreased physical activity, and poorer mental health status [38,39,50,51].

Nonetheless, our study is subject to limitations. While we utilized data from one of the 

main healthcare providers in Utah, there may be differences between the composition of 

patients at Intermountain and residents of Utah as a whole. For example, females are 

slightly over-represented, comprising 54.4% of the Intermountain sample versus 49.6% of 

the Utah population according to census estimates [52]. Additionally, a higher proportion 

of Intermountain patients are White versus the overall population in Utah (95.4% vs. 

90.6%) [52]. Future studies incorporating patient health records from multiple healthcare 

providers and from other states can further help to investigate potential health impacts of 

neighborhood environments in different populations. Additionally, future studies may wish 

to employ longitudinal designs to examine whether changes in neighborhood environments 

predict changes in health outcomes. Google Street View API now allows for the capture 

of historical images. Difficulties for a computer vision model might include changes in 

season, zoom, and angle of images taken across various time points, with computer vision 

models needing to be robust to these perturbations to correctly quantify real changes 

in neighborhood environments. Additional complexities might include unequal time gaps 

across image updates (e.g., 1 year, 2 years) depending on Google Street View’s update 

schedule for particular geographical areas. Urban areas also tend to have more frequent 

image updates than rural areas. Collecting more images across longer time spans and 

measuring changes in health outcomes can provide valuable information about the impact of 

changing neighborhood environments on changes in health outcomes.

5. Conclusions

We leveraged GSV images and computer vision to characterize neighborhood environments. 

Nonetheless, it is important to note that this study does not include other distinct 

neighborhood constructs that could have health implications such as air quality and 

pollution, and perceived neighborhood safety and area walkability [53]. Although computer 

vision is a useful tool that helps identify, process, and analyze images, it is often limited 

to features that are larger in size. Moreover, since the training datasets for the computer 

vision are manually annotated, the number of features that could be studied are limited. 

Thus, unlike onsite neighborhood inventories that can potentially include hundreds of 

neighborhood features, we focused on a select few neighborhood features whose connection 

to health outcomes has been theoretically or empirically established in the literature. These 

contextual characteristics can better help healthcare organizations understand the drivers of 

their patients’ health by further considering patients’ residential environments, which present 

both risks and resources.
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Appendix A

Figure A1. 
Geographical distribution of built environment characteristics in Utah. The figure presents 

the spatial distribution of Google Street View-derived built environment characteristics 

across Utah. The numbers in the legend specify categories of percentages of built 

environment characteristic among the GSV images for that area. Darker colors signify 

higher percentages of a given built environment feature. Built environment features mapped 
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include (a) presence of crosswalk, (b) single-lane road, (c) green street, (d) visible utility 

wires overhead, and (e) buildings other than single-family homes.

Appendix B

Table A1.

Associations between built environment characteristics and individual-level health outcomes 

among non-urban areas in Utah.

Diabetes Uncontrolled 
Diabetes Hypertension Obesity Substance Use 

Disorder

Prevalence 
Ratio

(95% CI)

Prevalence Ratio
(95% CI)

Prevalence Ratio
(95% CI)

Prevalence 
Ratio

(95% CI)

Prevalence 
Ratio

(95% CI)

Google Street 
View indicators

 Green streets, 
3rd tertile

1.19
(0.96, 1.48)

1.03 
(0.92, 1.15)

1.03 
(0.54, 1.99)

0.90
(0.83, 0.98) *

0.98
(0.70, 1.38)

 Green streets, 
2nd tertile

1.03
(0.95, 1.12)

1.32
(0.96, 1.80)

0.78 
(0.59, 1.04)

0.97 
(0.94, 1.00) *

0.98
(0.86, 1.11)

 Crosswalks, 
3rd tertile

1.06
(0.47, 2.38)

1.06 
(0.90, 1.24)

1.26 
(0.17, 9.17)

0.99
(0.73, 1.33)

1.41
(0.58, 3.44)

 Crosswalks, 
2nd tertile

1.05
(0.93, 1.18)

1.15
(0.43, 3.10)

1.35 
(0.96, 1.90)

1.01 
(0.97, 1.06)

1.18
(1.00, 1.39) *

 Non-single-
family home, 3rd 
tertile

0.87 
(0.70, 1.08)

0.99 
(0.72, 1.36)

1.04 
(0.54, 2.00)

0.93
(0.85, 1.01)

0.88
(0.63, 1.22)

 Non-single-
family home, 2nd 
tertile

1.02
(0.84, 1.24)

1.04 
(0.78, 1.39)

1.12 
(0.62, 2.02)

0.98
(0.90, 1.06)

0.85
(0.63, 1.16)

 Single-lane 
roads, 3rd tertile

1.06
(0.94, 1.19)

0.96 
(0.82, 1.12)

1.07 
(0.76, 1.52)

1.02
(0.98, 1.07)

1.08
(0.91, 1.27)

 Single-lane 
roads, 2nd tertile

1.08
(0.95, 1.22)

1.02 
(0.87, 1.20)

1.03
(0.71, 1.49)

1.02 
(0.97, 1.07)

1.13
(0.95, 1.34)

 Visible wires, 
3rd tertile

1.26 
(1.12, 1.43) *

1.19 
(1.01, 1.40) *

1.01
(0.69, 1.49)

1.10
(1.04, 1.15) *

1.14
(0.95, 1.37)

 Visible wires, 
2nd tertile

1.17 
(1.04, 1.32) *

1.19 
(1.00, 1.41) *

0.81 
(0.55, 1.17)

1.05 
(1.01, 1.10) *

1.01
(0.84, 1.20)

Covariates

 Age (years) 1.01
(1.01, 1.01) *

1.03 
(1.02, 1.03) *

1.00 
(1.00, 1.01) *

1.01 
(1.01, 1.01) *

1.00
(1.00, 1.01) *

 White race 0.60 
(0.58, 0.62) *

0.57 
(0.43, 0.76) *

0.84 
(0.39, 1.78)

0.83 
(0.76, 0.92) *

0.77
(0.57, 1.04)

 Hispanic 
ethnicity

1.15 
(1.12, 1.18) *

1.46 
(1.19, 1.78) *

0.64
(0.34, 1.21)

1.07 
(1.01, 1.14) *

0.61
(0.47, 0.80) *

 Any religion 1.21
(1.19, 1.23) *

1.39
(1.24, 1.55) *

1.02 
(0.81, 1.30)

1.10
(1.07, 1.14) *

0.59
(0.54, 0.66) *

 Married 1.09 
(1.07, 1.11) *

0.94
(0.85, 1.03)

1.50 
(1.16, 1.93) *

1.16 
(1.12, 1.19) *

0.45
(0.41, 0.50) *

 Uninsured 1.60
(1.57, 1.63) *

1.98 
(1.79, 2.18) *

1.28 
(1.00, 1.62) *

1.12 
(1.08, 1.15) *

2.60
(2.35, 2.87) *

 Area 
deprivation index

1.01
(1.01, 1.01) *

1.02
(1.01, 1.02) *

1.00
(0.99, 1.01)

1.01
(1.01, 1.01) *

1.00
(1.00, 1.01) *
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Adjusted Log Poisson regression controlled for the following covariates: age, white race, Hispanic ethnicity, any religion, 
marital status, health insurance status, area deprivation index. N = 53,414.
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Figure 1. 
Distribution of built environment characteristics in Utah. Histograms are presented for the 

following built environment characteristics: (a) presence of crosswalk, (b) single-lane road, 

(c) green street, (d) visible utility wires overhead, and (e) buildings other than single-family 

homes. The Y-axis represents the percent of census tracts in the dataset, and the X-axis 

represents the percent of a given built environment characteristic among images for an area. 

For example, for single-lane roads, only 5% of census tracts (X-axis) have 80% of its images 

containing single-lane roads (Y-axis).
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Figure 2. 
Geographical distribution of built environment characteristics in Utah. Figure presents the 

spatial distribution of Google Street View (GSV)-derived built environment characteristics 

across the Wasatch Front, which contains the major cities of Salt Lake City, West Valley 

City, Provo, West Jordan, Layton, and Ogden, where the majority of Utah residents live. The 

numbers in the legend specify categories of percentages of built environment characteristics 

among the GSV images for that area. Darker colors signify higher percentages of a given 

built environment feature. Built environment features mapped include (a) presence of 
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crosswalk, (b) single-lane road, (c) green street, (d) visible utility wires overhead, and (e) 

buildings other than single-family homes.
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Table 1.

Descriptive statistics of study population, Utah, 2019.

N
a Mean (Standard Deviation)/% (95% CI)

Individual-level covariates

 Age (years) 1,433,316 46.53 (19.03)

 % Female 1,433,316 54.36% (54.28–54.45)

 % Married 1,069,207 58.06% (57.98–58.14)

 % White 1,346,584 95.39% (95.35–95.42)

 % Hispanic ethnicity 1,357,627 10.83% (10.78–10.88)

 % Uninsured 1,433,316 28.39% (28.31–28.46)

 % Religious affiliation 1,069,207 68.17% (68.08–68.25)

 Area deprivation index 1,433,298 97.51 (18.61)

Health outcomes

 % Obesity 1,374,731 47.28% (47.19–47.36)

 % Diabetes 1,433,316 5.88% (5.84–5.92)

 Hemoglobin A1c (%) 1,433,316 9.23% (9.18–9.28)

 % Hypertension 1,433,316 0.69% (0.68–0.71)

Google Street View (Census tract)

 Green street 1,394,442 83.76 (12.68)

 Crosswalk 1,394,442 4.95 (3.82)

 Non-single-family home
b 1,394,442 27.53 (17.24)

 Single-lane road 1,394,442 65.56 (11.65)

 Visible utility wires 1,394,442 46.19 (14.36)

a
N reports the number of individuals with covariate and health outcome data. For GSV images, N reports the number of images analyzed.

b
Non-single-family home = presence of a building that is not a single-family home (e.g., schools, grocery stores and other businesses denoting 

mixed land use).
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Table 2.

Associations between built environment characteristics and individual-level health outcomes.

Diabetes Uncontrolled Diabetes Hypertension Obesity Substance Use 
Disorder

Prevalence 
Ratio 

(95% CI) 
b

Prevalence Ratio 

(95% CI) 
b

Prevalence 
Ratio 

(95% CI) 
b

Prevalence 
Ratio 

(95% CI) 
b

Prevalence Ratio

(95% CI) 
b

GSV indicators

 Green streets, 3rd 
tertile

0.90 

(0.88, 0.92) *
0.89 

(0.86, 0.92) *
0.84

(0.78, 0.90) *
0.90 

(0.89, 0.91) *
1.17 

(1.13, 1.21) *

 Green streets, 2nd 
tertile

0.99 
(0.97, 1.01)

0.98
(0.95, 1.01)

0.98 
(0.93, 1.05)

0.98 

(0.97, 0.98) *
1.06 

(1.03, 1.09) *

 Crosswalks, 3rd tertile
1.02 

(1.00, 1.05) *
1.01

(0.98, 1.04)
1.07 

(1.00, 1.14) *
1.01 

(1.00, 1.02) *
1.00 

(0.97, 1.03)

 Crosswalks, 2nd tertile 1.01 
(0.99, 1.03)

1.00
(0.98, 1.03)

1.09

(1.02, 1.16) *
1.02 

(1.01, 1.02) *
0.99 

(0.96, 1.02)

 Non-single-family 
home, 3rd tertile

0.83 

(0.81, 0.85) *
0.86 

(0.82, 0.89) *
0.73 

(0.67, 0.80) *
0.89 

(0.88, 0.90) *
1.12 

(1.08, 1.17) *

 Non-single-family 
home, 2nd tertile

0.91 

(0.89, 0.93) *
0.91

(0.88, 0.94) *
0.89 

(0.83, 0.96) *
0.95 

(0.95, 0.96) *
1.03 

(0.99, 1.06)

 Single-lane roads, 3rd 
tertile

1.02 
(0.99, 1.04)

1.00
(0.97, 1.04)

0.94 
(0.87, 1.01)

1.00 
(0.99, 1.01)

0.98 
(0.95, 1.02)

 Single-lane roads, 2nd 
tertile

1.03 

(1.01, 1.05) *
1.01

(0.99, 1.04)
0.98 

(0.92, 1.04)
1.00 

(1.00, 1.01)
0.97 

(0.94, 1.00)

 Visible wires, 3rd 
tertile

1.09 

(1.06, 1.11) *
1.10 

(1.06, 1.14) *
1.05

(0.97, 1.14)
1.04 

(1.03, 1.06) *
1.05

(1.01, 1.09) *

 Visible wires, 2nd 
tertile

1.09 

(1.07, 1.12) *
1.10 

(1.07, 1.13) *
1.08 

(1.01, 1.16) *
1.05 

(1.04, 1.05) *
0.99

(0.96, 1.02)

Covariates

 Age (years)
1.04 

(1.04, 1.04) *
1.03 

(1.03, 1.03) *
1.01 

(1.01, 1.01) *
1.01 

(1.01, 1.01) *
1.00

(1.00, 1.00)

 White race
0.60 

(0.58, 0.62) *
0.53 

(0.51, 0.55) *
0.80

(0.72, 0.90) *
0.93 

(0.91, 0.94) *
1.16

(1.10, 1.22) *

 Hispanic ethnicity
1.15 

(1.12, 1.18) *
1.34

(1.30, 1.39) *
0.96 

(0.88, 1.05)
1.08 

(1.07, 1.09) *
0.68 

(0.65, 0.70) *

 Any religion
1.21 

(1.19, 1.23) *
1.18

(1.15, 1.21) *
0.86 

(0.82, 0.91) *
1.07 

(1.06, 1.07) *
0.65 

(0.64, 0.67) *

 Married
1.09 

(1.07, 1.11) *
1.03 

(1.01, 1.05) *
1.40 

(1.33, 1.48) *
1.12 

(1.11, 1.13) *
0.40 

(0.39, 0.41) *

 Uninsured
1.60 

(1.57, 1.63) *
1.73 

(1.69, 1.77) *
1.11 

(1.05, 1.17) *
1.10 

(1.09, 1.11) *
2.38 

(2.33, 2.44) *

 Area deprivation index
1.01 

(1.01, 1.01) *
1.01 

(1.01, 1.01) *
1.00 

(1.00, 1.00) *
1.01 

(1.01, 1.01) *
1.01

(1.01, 1.01) *

For GSV indicators, reference category is 1st tertile.

b
Adjusted Log Poisson regression controlled for the following covariates: age, White race, Hispanic ethnicity, any religious affiliation, marital 

status, self-pay status for health insurance, area deprivation index. N = 938,085
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*
p < 0.05.
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Table 3.

Predicting uninsured status with neighborhood- and individual-level characteristics.

Prevalence Ratio (95% CI)

GSV indicators

 Green streets, 3rd tertile 0.89 (0.87, 0.92) *

 Green streets, 2nd tertile 1.01 (0.99, 1.03)

 Crosswalks, 3rd tertile 1.08 (1.05, 1.10) *

 Crosswalks, 2nd tertile 1.06 (1.04, 1.08) *

 Non-single-family home, 3rd tertile 0.85 (0.83, 0.87) *

 Non-single-family home, 2nd tertile 0.88 (0.86, 0.90) *

 Single-lane roads, 3rd tertile 1.06 (1.03, 1.08) *

 Single-lane roads, 2nd tertile 1.04 (1.01, 1.06) *

 Visible wires, 3rd tertile 1.32 (1.29, 1.35) *

 Visible wires, 2nd tertile 1.23 (1.20, 1.25) *

Covariates

 Age (years) 1.04 (1.04, 1.04) *

 White race 0.57 (0.55, 0.59) *

 Hispanic ethnicity 1.33 (1.29, 1.36) *

 Any religion 1.23 (1.21, 1.25) *

 Married 1.03 (1.01, 1.05) *

Adjusted Poisson regression controlled for all variables listed simultaneously, N = 938,085

*
p < 0.05. For Google Street View indicators, the reference category is the 1st tertile.
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Table 4.

Associations between census tract sociodemographics and Google Street View-derived built environment 

characteristics, census tract level.

Built Environment Indicators

Census Tract 
Characteristics a

Green Space Crosswalk Non-Single-Family Home Single-Lane Roads Visible Wire

Prevalence
(95% CI)

Prevalence 
(95% CI)

Prevalence 
(95% CI)

Prevalence 
(95% CI)

Prevalence 
(95% CI)

% non-Hispanic Black
−43.68

(−60.61, −26.74) *
13.84

(9.08, 18.61) *
70.67

(48.88, 92.45) *
−67.12

(−84.09, −50.16) *
51.00

(32.75, 69.24) *

% Hispanic 0.16
(−2.00, 2.32)

−0.38
(−0.99, 0.23)

−3.50

(−6.28, −0.72) *
4.01

(1.85, 6.18) *
2.54

(0.21, 4.86) *

% Unemployed
1.72

(0.07, 3.36) *
0.34

(−0.13, 0.80)
0.83

(−1.29, 2.95)
−0.57

(−2.22, 1.08)
−0.26

(−2.04, 1.52)

Median household income
7.46

(5.75, 9.17) *
−0.70

(−1.18, −0.22) *
−11.59

(−13.79, −9.39) *
5.68

(3.97, 7.40) *
−10.55

(−12.39, −8.70) *

Household size
−2.96

(−3.89, −2.04) *
−0.76

(−1.02, −0.50) *
−2.56

(−3.75, −1.36) *
−0.33

(−1.26, 0.60)
−0.09

(−1.09, 0.91)

Population density
5.90

(5.00, 6.80) *
1.57

(1.32, 1.83) *
−5.65

(−6.81, −4.50) *
0.95

(0.05, 1.85) *
−2.69

(−3.66, −1.73) *

All predictor variables are standardized to have a mean of 0 and standard deviation of 1.

*
p < 0.05; N = 586 census tracts in Utah.
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