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OBJECTIVE—Resistin is a secreted polypeptide that impairs
glucose metabolism and, in rodents, is derived exclusively from
adipocytes. In murine obesity, resistin circulates at elevated
levels but its gene expression in adipose tissue is paradoxically
reduced. The mechanism behind the downregulation of resistin
mRNA is poorly understood. We investigated whether endoplas-
mic reticulum (ER) stress, which is characteristic of obese
adipose tissue, regulates resistin expression in cultured mouse
adipocytes.

RESEARCH DESIGN AND METHODS—The effects of endo-
plasmic stress inducers on resistin mRNA and secreted protein
levels were examined in differentiated 3T3-L1 adipocytes, focusing
on the expression and genomic binding of transcriptional regulators
of resistin. The association between downregulated resistin mRNA
and induction of ER stress was also investigated in the adipose
tissue of mice fed a high-fat diet.

RESULTS—ER stress reduced resistin mRNA in 3T3-L1 adipo-
cytes in a time- and dose-dependent manner. The effects of ER
stress were transcriptional because of downregulation of CAAT/
enhancer binding protein-� and peroxisome proliferator–acti-
vated receptor-� transcriptional activators and upregulation of
the transcriptional repressor CAAT/enhancer binding protein
homologous protein-10 (CHOP10). Resistin protein was also
substantially downregulated, showing a close correspondence
with mRNA levels in 3T3-L1 adipocytes as well as in the fat
pads of obese mice.

CONCLUSIONS—ER stress is a potent regulator of resistin,
suggesting that ER stress may underlie the local downregulation of
resistin mRNA and protein in fat in murine obesity. The paradoxical
increase in plasma may be because of various systemic abnormal-
ities associated with obesity and insulin resistance. Diabetes 58:
1879–1886, 2009

T
he growing obesity epidemic and the comorbidi-
ties associated with it, including insulin resistance,
cardiovascular disease, and cancer, have made
adipose tissue an important subject of scientific

study and a target of therapeutic interventions. In addition to
being a storage depot of excess energy, adipose tissue is an
active endocrine organ that secretes unique proteins known

as adipokines such as adiponectin, leptin, and resistin. Under
physiologic conditions, adipokines contribute to the mainte-
nance of whole-body glucose homeostasis, for example, by
modulating gluconeogenesis in the liver or energy expendi-
ture and appetite in the brain (1). In obesity, however, their
expression is dysregulated, leading to various metabolic
abnormalities, including hyperglycemia and hyperlipidemia,
which in turn contribute to insulin resistance and heart
disease (2,3). Therefore, understanding how adipokine ex-
pression is regulated under physiologic and pathologic con-
ditions is critical to the ability to therapeutically modulate
their action in the future (1,4).

One adipokine that contributes to insulin resistance in
mouse models of obesity is resistin. Resistin is exclusively
made by adipocytes in mice (5), and its serum levels
increase as obesity develops (6,7). Although resistin is
produced by macrophages in humans rather than adipo-
cytes (8) and its role in human obesity is controversial (9),
a number of clinical studies have linked elevated serum
resistin levels with cardiovascular disease (10–12), impli-
cating resistin in metabolic disease in humans as well as in
mice. Importantly, resistin-deficient mice have improved
glucose tolerance compared with wild-type controls both
in diet-induced obesity (5) and in leptin deficiency (13),
suggesting a role for resistin in insulin resistance. Loss-of-
function and gain-of-function studies have demonstrated
that resistin modulates liver glucose production through
decreased activation of AMP-activated protein kinase
(AMPK) and increased expression of gluconeogenic en-
zymes (5,13–16). Several recent studies suggest that resis-
tin may act centrally in the hypothalamus to regulate
glucose homeostasis (17,18).

There is increasing evidence that in obese individuals
adipose tissue experiences different types of stress includ-
ing inflammation, hypoxia, oxidative stress, metabolic
stress from overabundance of nutrients, and mechanical
stress from hypertrophy (19,20). Recently, Hotamisligil
and colleagues have demonstrated that adipose tissue
from obese mice shows signs of an activated endoplasmic
reticulum (ER) stress response (21). Although the exact
etiology of ER stress in obese adipose tissue is unknown,
it may result from nutrient overload, an increased demand
for protein synthesis, or local glucose deprivation in the
setting of insulin resistance and decreased adipose tissue
vascularization (19). Therefore, unresolved ER stress may
contribute to the dysregulated function of adipose tissue
by diminishing insulin sensitivity and leading to aberrant
adipokine secretion (19).

A curious aspect of resistin biology is that, despite rising
serum levels, resistin mRNA levels are significantly de-
creased in adipose tissue in obese mouse models
(15,22,23). Endoplasmic reticulum stress was recently
shown to downregulate adiponectin (24), and we hypoth-
esized that the decrease in resistin mRNA seen in obese
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adipose tissue may be a result of activation of the ER
stress response. We show that induction of ER stress in
vitro can lead to downregulation of resistin mRNA levels
in a time- and dose-dependent manner, and the mechanism
appears to be transcriptional. This effect involves changes
in the levels of several transcriptional regulators of resis-
tin: enhancer binding protein-� (C/EBP�), peroxisome
proliferator–activated receptor (PPAR)�, and CAAT/en-
hancer binding protein homologous protein-10 (CHOP10).
Altering the levels of these transcription factors mimics or
partially rescues the effects of ER stress on resistin
expression. We have uncovered a previously unknown link
between activation of the ER stress in mouse adipocytes
and resistin, which may be of significance in vivo in the
setting of obesity.

RESEARCH DESIGN AND METHODS

Six-week-old wild-type male C57Bl/6 mice were placed on high-fat diet (HFD)
from Research Diets (45 kcal% fat) or normal chow (NC) (6 kcal% fat) for 30
weeks. At the end of the study, blood samples for serum resistin measurement
were collected. Epidydimal white adipose tissue was isolated and processed
for RNA or protein. All animal experiments were performed at the University
of Pennsylvania according to protocols approved by the Institutional Animal
Care and Use Committee.
Cell culture and treatment. 3T3-L1 preadipocytes (American Type Culture

Collection) were cultured in growth medium (high-glucose Dulbecco’s modi-
fied Eagle’s medium; Invitrogen) supplemented with 10% FBS (U.S. Biotech-
nologies) and 100 units/ml penicillin and 100 �g/ml streptomycin (Invitrogen).
Two days postconfluence, the cells were induced to differentiate with stan-
dard cocktail consisting of growth medium with 1 �mol/l dexamethasone, 10
�g/ml bovine insulin, and 0.5 mmol/l isobutyl-1-methylxanthine (Sigma). After
3 days in differentiation medium, the cells were treated with growth medium
with 10 �g/ml bovine insulin for 2 days and then maintained in growth medium
alone. Cells were considered mature adipocytes 8 days postinduction of
differentiation, when knockdown experiments or treatment with tunicamycin,
thapsigargin, or actinomycin D (all from Sigma) were performed.
Short interfering RNA oligo transfection. Short interfering RNA (siRNA)
oligos targeting C/EBP�, PPAR�, CHOP10, and resistin (L-051631-00), as well
as a nontarget negative control, were obtained from Dharmacon. Transfection
was performed by electroporation with Nucleofector II and Cell Line Nucleo-
fector Kit V (AMAXA). Electroporated cells were reseeded in growth medium
and harvested or used for treatment at 24 h or 48 h post-transfection. Sense
sequences for the specific target oligos are as follows:

C/EBP�_1 GAGCCGAGAUAAAGCCAAAUU
C/EBP�_2 CCUGAGAGCUCCUUGGUCAUU
C/EBP�_3 GGAGUUGACCAGUGACAAUUU
C/EBP�_4 CUAUAGACAUCAGCGCCUAUU
CHOP10_1 CAACAGAGGUCACACGCACUU
CHOP10_2 GCACCAAGCAUGAACAGUGUU
CHOP10_3 GAGCAAGGAAGAACUAGGAUU
CHOP10_4 GAAACAGAGUGGUCAGUGCUU
PPAR� CAACAGGCCUCAUGAAGAAUU

Luciferase assays. Resistin-luc was generated by inserting �13580/�243 bp
fragment of the mouse resistin promoter/enhancer into pGL3-basic vector
(Promega) as described previously (31). 3T3-L1 adipocytes were transfected
by electroporation with Nucleofector II (AMAXA). Briefly, mature adipocytes
(day 10 after differentiation) were detached from culture dishes with 0.25%
trypsin, washed twice with 1� PBS, and resuspended in electroporation buffer
(solution V, AMAXA). Approximately 1 � 106 were electroporated (electro-
poration program T-020) with 2 �g of pGL3-basic or resistin-luc and 0.3 �g of
�-galactosidase expression vector and seeded into 3 wells of a 24-well plate.
After 16 h, the medium was replaced with fresh culture medium with vehicle
or 5 �g/ml tunicamycin. The cells were incubated for 24 additional hours, and
luciferase activity was measured by a luciferase assay kit (Promega). Light
units were normalized to �-galactosidase activity. Fold activations relative to
the pGL3-basic and vehicle were calculated, and the results of triplicate
samples were plotted.
Resistin protein measurements. Resistin levels in tissue culture media,
whole cell lysates, and EWAT lysates (homogenized in PBS) were measured
using a mouse resistin ELISA (Millipore) following the manufacturer’s instruc-
tions. Samples were diluted appropriately before loading. Serum resistin
levels in the mouse diet-induced obesity study were measured using a mouse

Adipokine LINCOplex Assay (Millipore) according to the manufacturer’s
instructions. Total cell protein was measured using diluted samples on a
NanoDrop Spectrophotometer (Thermo Scientific).
RNA isolation and quantitative PCR. RNA was isolated from cells with the
RNeasy Mini Kit or from adipose tissue with the RNeasy Lipid kit (both from
Qiagen). Reverse transcription of �0.5 �g of RNA was performed with the RT
FOR PCR ADVANTAGE KIT (Clontech) following the manufacturer’s instruc-
tions. Quantitative PCR (QPCR) was performed using TaqMan Polymerase
Universal Master Mix or Power SYBR Green PCR Mastermix (Applied
Biosystems) and the PRISM 7500 instrument (Applied Biosystems). Data were
analyzed using the standard curve method and normalization of all genes of
interest to the house-keeping control gene Arbp/36b4. Analysis of activating
transcription factor 3 (ATF3), PPAR�, mouse, and human C/EBP� expression
was conducted using TaqMan Gene Expression Assays (Applied Biosystems).
Primer sequences used for QPCR analysis of CHOP10 and BiP mRNA were
obtained from Rutkowski et al. (25). The remaining primer sequences are as
follows:

F-resistin: TCATTTCCCCTCCTTTTCCTTT
R-resistin: TGGGACACAGTGGCATGCT
F-Arbp/36b4: CAACCCAGCTCTGGAGAAAC
R-Arbp/36b4: CCAACAGCATATCCCGAATC

Immunoblotting. Cell protein extracts were generated in cold whole-cell
extract buffer (0.15 M NaCl, 0.05 M Tris, pH 7.4, 0.005 M EDTA, 0.5% NP-40)
with Complete protease inhibitors (Roche). Immunoblotting following SDS-
PAGE was performed using the following antibodies: anti-C/EBP� (sc-61,
Santa Cruz), anti-PPAR� (sc-7273, Santa Cruz), anti-HDAC2 (sc-7899, Santa
Cruz), and anti-Ran (610341, BD Biosciences), anti-phospho-eIF2� (Ser51)
(119A11, Cell Signaling), total eIF2� (sc-11386, Santa Cruz).
Chromatin immunoprecipitation. Cross-linking of adipocyte proteins and
chromatin was performed in 1% Formaldehyde (Sigma), followed by quench-
ing in 125 mmol/l glycine and two washes with 1� PBS (Invitrogen). Nuclear
pellets were obtained following dounce homogenization in nuclear lysis buffer
(20 mmol/l HEPES, 0.25 M sucrose, 3 mmol/l MgCl2, 0.2% NP-40, 3 mmol/l �-
mercaptoethanol, 0.4 mmol/l phenylmethylsulfonyl fluoride, complete pro-
tease inhibitor tablets). Sonication was carried out with Bioruptor (Diage-
node) in chromatin immunoprecipitation (ChIP) SDS lysis buffer (50 mmol/l
HEPES, 1% SDS, 10 mmol/l EDTA). Immunoprecipitations were performed
using �100 �g/ml chromatin and 10 �g of antibody: anti-C/EBP� (sc-61, Santa
Cruz), anti-PPAR� (sc-7196, Santa Cruz), or nonspecific rabbit IgG control
(Sigma). After cross-link reversal, DNA was isolated with phenol/chloroform/
isoamyl alcohol, and enrichment was measured by QPCR, using Power SYBR
Green PCR Mastermix (Applied Biosystems) and the PRISM 7500 instrument
(Applied Biosystems). Analysis was performed by the standard curve method
and normalization to a nontarget control region of the Arbp/36b4 gene.
Primers used for QPCR analysis are as follows:

F-dnstr-resistin-50bp TCCCTCCTCTGGGACCTCTA
R-dnstr-resistin-50bp CCCATCCTGCCTTGGATAAT
F-upstr-resistin-9kb GTAAGGGGGTGGCCTGATAG
R-upstr-resistin-9kb ATTCCCTTCTCCCACCAAGT
F-Arbp/36b4 CTGGGACGATGAATGAGGAT
R-Arbp/36b4 AGCAGCTGGCACCTAAACAG
F-ins1 CTTCAGCCCAGTTGACCAAT
R-ins1 AGGGAGGAGGAAAGCAGAAC
F-albumin CTTCAGCCCAGTTGACCAAT
R-albumin AGGGAGGAGGAAAGCAGAAC

Statistical analysis. Student’s t test was used to determine P values.

RESULTS

Resistin is downregulated by ER stress induction in
3T3-L1 adipocytes. To investigate the potential link
between ER stress and resistin downregulation, mouse
3T3-L1 adipocytes were incubated with thapsigargin,
which causes ER stress by inhibiting the sarco/ER Ca2�

pump, and led to dramatically reduced resistin mRNA
levels (Fig. 1A). To confirm ER stress as the mechanism
underlying resistin downregulation, adipocytes were
treated with tunicamycin, which induces ER stress by
inhibiting N-linked glycosylation of newly synthesized
proteins. Tunicamycin treatment markedly downregu-
lated resistin mRNA levels in a time-dependent fashion
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(Fig. 1B). By contrast, the same treatment induced
expression of ATF3, which is activated by ER stress
(26). The decrease of resistin mRNA by tunicamycin
was also dose-dependent (Fig. 1C). To examine the
effects of tunicamycin on resistin protein levels, cells
were treated for 24 h to lower resistin mRNA as in Fig.
1C, then treated with fresh tunicamycin- or vehicle-
containing media, after which the accumulation of se-
creted resistin as well as the intracellular resistin levels
were measured by ELISA. Resistin protein was substan-
tially decreased in the media and cell lysate of tunica-
mycin-treated cells (Fig. 1D), similar to that observed
with resistin knockdown, which reduced the mRNA to
similar extent but did not induce upregulation of BiP
mRNA that would have signified ER stress (Fig. 1E).
Finally, the effects of tunicamycin on resistin secretion
also appeared to be dose dependent (data not shown).
Collectively, these results indicate that ER stress is a
potent regulator of resistin mRNA and protein levels in
3T3-L1 adipocytes.
Activation of ER stress in white adipose tissue of obese
mice is associated with reduced levels of both mRNA

and tissue protein of resistin. It has been reported
previously that in obese mice, resistin mRNA levels are
decreased while protein levels in the circulation are in-
creased compared with lean mice, raising the possibility
that during obesity there is dissociation between resistin
mRNA and protein levels. A reasonable prediction, then,
would be that protein levels in the fat pad may also be
higher in obese versus lean mice, similar to what is seen in
the circulation. To address this question, C57Bl/6 mice
were fed HFD or NC for 30 weeks, at which point resistin
mRNA levels were decreased in epididymal white adipose
tissue (EWAT) of the HFD mice (Fig. 2A), despite in-
creased serum resistin levels (Fig. 2B). Surprisingly,
EWAT resistin protein levels were not increased, but
rather tended to be lower in the HFD mice (Fig. 2C). This
indicates that locally in the fat pad, resistin protein levels
correspond to the mRNA changes, similar to what was
observed in the tunicamycin-treated cells. Furthermore,
consistent with previous reports of ER stress in obesity
(21,27), markers of ER stress such as phospho-eIF2� (Fig.
2D) and BiP mRNA levels (Fig. 2E) were elevated in the
adipose tissue from the HFD-fed obese mice. Taken to-
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FIG. 1. Endoplasmic reticulum stress activation downregulates resis-
tin expression in vitro in 3T3-L1 adipocytes. A: Downregulation of
resistin mRNA levels following treatment with 50 nmol/l thapsigargin
for 24 h. B: Time course of resistin and ATF3 mRNA gene expression
upon induction of ER stress with 5 �g/ml tunicamycin, presented as
fold change over the levels at 0 h. C: Resistin gene expression in
response to vehicle and various doses of tunicamycin for 24 h,
presented as fold change over vehicle alone. D: Resistin protein
concentration in tissue culture media and whole cell lysates pre-
sented as nanogram per milliliter per milligram of total cell protein.
Mature adipocytes were electroporated with resistin (siResistin) or
nontarget control (NTC) siRNA oligos and treated with vehicle or 5
�g/ml tunicamycin. Twenty-four hours later the cells were washed
and treated with vehicle or 5 �g/m tunicamycin for 24 h and resistin
protein levels were assayed with ELISA. Data are mean � SE, n � 3.
E: Gene expression validation that siResistin and tunicamycin treat-
ment reduced resistin mRNA to similar levels, and only tunicamycin
induced markers of ER stress such as BiP. Data in A–C and E were
normalized to the house-keeping gene Arbp/36b4 and are shown as
mean � SE, n � 3. ***P < 0.001.
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gether, these data suggest that ER stress may be a relevant
mechanism in the downregulation of resistin in vivo in the
setting of mouse obesity.
Endoplasmic reticulum stress downregulates resistin
mRNA by a transcriptional mechanism. An initial step
in dissecting the mechanism by which ER stress regulates
resistin expression was to determine whether the down-
regulation of resistin by tunicamycin is transcriptional.
For this purpose, 3T3-L1 adipocytes were treated with 5
�g/ml tunicamycin in the presence of 5 �g/ml of the
transcriptional inhibitor Actinomycin D. Tunicamycin
treatment did not reduce the half-life of resistin mRNA as

would have been expected if ER stress reduced resistin
mRNA by a post-transcriptional mechanism (Fig. 3A). The
effect of ER stress was further explored using a luciferase
reporter vector (resistin-luc) driven by a large fragment of
the resistin gene including the promoter and transcrip-
tional start site (�13,580 bp to �243 bp). The resistin-luc
reporter was active in mature adipocytes, but most of this
activity was lost when the cells were treated with 5 �g/ml
tunicamycin for 24 h (Fig. 3B), further demonstrating that
ER stress causes reduced resistin gene transcription.
Downregulation of C/EBP� contributes to the de-

crease in resistin mRNA by tunicamycin. One candi-
date transcription factor that could explain the effects of
ER stress on resistin expression is C/EBP�. C/EBP� is
critical for adipocyte differentiation (28) and contributes
to activation of adipocyte-specific genes such as adiponec-
tin (29), PPAR� (30), and resistin (31). A binding site for
C/EBP� on the resistin promoter has been characterized,
and it has been shown that ectopic C/EBP� expression in
nonadipogenic cells could drive luciferase expression
from the resistin promoter (31). Furthermore, C/EBP� was
recently reported to be downregulated on the mRNA level
by the inducers of ER stress tunicamycin and thapsigargin
(32), and indeed we confirmed that C/EBP� mRNA and
protein are reduced in tunicamycin-treated adipocytes
(Fig. 4A and B). This treatment also abolished C/EBP�
occupancy at the resistin gene as measured by ChIP both
at the previously characterized C/EBP� binding site (31)
as well as an additional upstream site identified in a recent
genome-wide ChIP-chip study (33) (Fig. 4C). Similar de-
creases in occupancy were noted on the known C/EBP�
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FIG. 2. Reduced resistin levels in EWAT of obese mice are associated
with markers of ER stress. All data are from male C57Bl/6 mice fed NC
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binding sites on the promoters of PPAR� and adiponectin
(data not shown).

Next, we investigated whether knockdown of C/EBP�
could recapitulate the effects seen by tunicamycin treat-
ment. For this purpose, mature adipocytes were electro-
porated with siRNA oligonucleotides against C/EBP� or a
nontarget control. This strategy reduced C/EBP� protein
to levels similar to those seen in control cells treated with
5 �g/ml tunicamycin (Fig. 4D). Resistin mRNA levels,

measured 48 h after electroporation, appeared greatly
reduced when C/EBP� had been knocked down (Fig. 4E).
Interestingly, measurement of C/EBP� mRNA (Fig. 5A)
and protein (Fig. 5B) in WAT of obese mice revealed that
C/EBP� levels were also decreased relative to WAT of lean
mice. This finding suggests that in vivo as well as in vitro,
ER stress activation is associated with decreased C/EBP�
levels, which may account for the effects seen on resistin
expression. Of note, C/EBP� levels were not significantly
changed in adipocytes by tunicamycin treatment or by
HFD feeding in WAT (data not shown).
Decreased PPAR� expression and activity also con-
tribute to the effects of ER stress. Our recent ge-
nome-wide study of C/EBP and PPAR� binding in
adipocytes (33) demonstrated that PPAR� binds near
C/EBP� at the upstream resistin enhancer. PPAR�, which
is crucial for adipogenesis (34,35), also induces resistin
expression during adipocyte differentiation (36). There-
fore, we examined whether changes in PPAR� levels may
also mediate the effects of ER stress on resistin expres-
sion. Indeed, tunicamycin treatment of adipocytes sub-
stantially reduced PPAR� gene expression (Fig. 6A) as has
been reported previously (24). Moreover, tunicamycin
treatment nearly abolished recruitment of PPAR� to the
resistin gene (Fig. 6B). Furthermore, knockdown of
PPAR� in mature adipocytes reduced resistin mRNA levels
by �90% (Fig. 6C). Efficiency of PPAR� knockdown was
assessed by measuring PPAR� mRNA levels by QPCR (Fig.
6D). Thus, PPAR� downregulation contributes to the
effects of ER stress on resistin gene expression.
CHOP10 also regulates resistin expression in the set-
ting of ER stress activation. Another transcription factor
that is active in adipocytes under conditions of stress and
was recently shown to regulate expression of the adipo-
kine adiponectin is CHOP10 (24). This protein bears
significant homology to other C/EBPs and is induced by
various stressors, including hypoxia and the unfolded
protein response (37). Although it does not bind DNA
alone, it can have dominant negative interactions with
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NTC in the presence or absence of 5 �g/m tunicamycin. HDAC2 was
used as a loading control. E: Resistin mRNA levels were measured in
vehicle-treated treated C/EBP� kd or NTC cells by QPCR and normal-
ized to Arbp/36b4. Data are presented as mean � SE, n � 3. *P < 0.05,
**P < 0.01, ***P < 0.001.
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other C/EBPs leading to decreased transcription of their
targets (37,38). As expected from other cell types, CHOP10
gene expression was elevated in the setting of ER stress in
3T3-L1 adipocytes (Fig. 7A). Knockdown of CHOP10 (Fig.
7B) partially prevented the tunicamycin-induced decrease
in adipocyte resistin mRNA (Fig. 7C). CHOP10 depletion
also increased C/EBP� expression in tunicamycin-treated
adipocytes (Fig. 7D), suggesting that CHOP10 inhibits
resistin expression in part by downregulating C/EBP�.

DISCUSSION

The present study demonstrates for the first time that ER
stress, which exists in obese adipose tissue, can downregu-
late resistin in vitro in mouse adipocytes. The effect of ER
stress induction appeared to be primarily transcriptional, and
three transcription factors were implicated in mediating the
effects of ER stress on resistin levels. C/EBP� and PPAR�,
which are known activators of resistin, are downregulated by
treatment with tunicamycin and have diminished binding at
the resistin gene. Knockdown of these factors mimicked the
effects of ER stress induction. On the other hand, CHOP10 is
a transcriptional repressor that is activated by ER stress in
adipocytes and can interact in a dominant negative fashion
with C/EBP� (37,38). Knockdown of this protein was able to
partially rescue the effects of tunicamycin on resistin expres-
sion, suggesting that CHOP10 may also be responsible for the
changes in resistin mRNA. Thus, the effects of ER stress on

resistin levels in mouse adipocytes appear to be a combina-
tion of decreased expression of activating transcription fac-
tors, including C/EBP� and PPAR�, and increased
expression of repressors such as CHOP10 and possibly
others.

A remaining question is how activation of the unfolded
protein response leads to downregulation of C/EBP� and
PPAR�. One possibility is that repressors of gene tran-
scription such as CHOP10 and ATF3 that are activated as
part of the ER stress response may be directly involved.
For example, it is known that both C/EBP� and PPAR�
genes are activated by C/EBP� binding to their promoters
(30,39), and therefore CHOP10 may decrease their expres-
sion via its dominant negative interactions with C/EBP�.
Notably, however, CHOP10 knockdown was not able to
fully rescue the effects of tunicamycin treatment on
C/EBP�, indicating that other factors must be involved.
Knockdown of ATF3, which is another transcriptional
repressor (40) that is activated by ER stress (26), did not
affect the ability of tunicamycin to reduce resistin levels
(data not shown), suggesting that it does not play a role in
this process.

The implication of these findings is that ER stress
activation may provide an explanation for the decrease in
resistin mRNA in adipose tissue of obese mice in the
setting of elevated serum resistin levels. Indeed, this study
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demonstrates that decreased resistin expression co-exists
with markers of ER stress activation such as increased BiP
mRNA and phospho-eIF2� in adipose tissue from obese
mice fed an HFD. Furthermore, C/EBP� mRNA and pro-
tein were decreased under these conditions, consistent
with the role of this transcription factor as an important
regulator of resistin (31). In addition, the study demon-
strates that in EWAT the levels of resistin protein reflect
the downregulation in the mRNA, similar to what is
observed for 3T3-L1 adipocytes in vitro. This raises the
possibility that the discrepancy between adipose tissue
and plasma resistin levels may not be occurring at the level
of individual adipocytes but rather results from various
global defects characteristic of obesity and insulin resis-
tance. For example, it has been shown that the develop-
ment of obesity is associated with an increase in fat cell
number (41,42), and therefore the net effect in obesity may
be elevated resistin release into the circulation even if
resistin secretion is decreased on a per-cell basis. In
addition, a number of recent studies have demonstrated a
negative correlation between renal function and resistin
levels (43,44), suggesting that resistin may be cleared
through the kidney. Thus, in the setting of diabetic ne-
phropathy, resistin clearance may be impaired leading to
accumulation of the protein in the circulation. Another
possibility is that resistin half-life in obesity may be
increased because of oligomerization. A number of studies
have shown that both mouse and human resistin can form
oligomers, which can be detected in the circulation (45)
and have different biological actions compared with the
monomer form (45,46); and the propensity to oligomerize
is concentration dependent (47).

It has been previously hypothesized that the discrep-
ancy between resistin mRNA and circulating protein levels
may be because of the hyperinsulinemia associated with
obesity and insulin resistance (15). In vitro experiments
have demonstrated that insulin treatment of mature adi-
pocytes downregulates resistin expression (15,48,49) al-
though the mechanism has not been elucidated. However,
there is evidence that insulin can potently decrease
C/EBP� expression in differentiated 3T3-L1 cells leading
to decreased C/EBP� binding at target DNA sequences
(50). This suggests that both ER stress and hyperinsulin-
emia may contribute to the decreased resistin mRNA
levels in obesity by converging on C/EBP�. Moreover,
insulin treatment of 3T3-L1 adipocytes did not lead to a
discrepancy between resistin mRNA and protein secretion
(data not shown), suggesting that at least in this model
system both insulin and ER stress downregulated the
protein levels along with the mRNA of resistin. It should be
noted that the effects of insulin and ER stress in vivo may
be different from those observed in vitro in cultured
3T3-L1 cells. However, 3T3-L1 cells, which are derived
from immortalized mouse embryonic fibroblasts and can
be differentiated into adipocytes with a hormonal cocktail,
are generally considered a valid model for adipocyte
function. Moreover, transplantation of 3T3-L1 cells into
nude mice has been shown to result in formation of
adipose tissue that is essentially identical to normal fat
(51), suggesting that this cell line is fully capable of
reproducing the in vivo adipocyte phenotype.

The overall significance of the findings presented here is
that ER stress, which develops in obese adipose tissue,
can affect adipocyte function on many levels including
dysregulation of adipokine production. It was previously
shown that ER stress can impair insulin signaling both in

vitro in adipocytes and in vivo in obese XBP�/� mice,
which are unable to respond properly to ER stress, and
develop dramatically worse adipose tissue insulin resis-
tance compared with wild-type controls (21). Importantly,
treatment of obese mice with chemical chaperones that
alleviate ER stress improves signaling through the insulin
receptor (52), indicating that the effects of ER stress on
adipose tissue insulin resistance may be reversible. Thus,
targeting ER stress may constitute a feasible strategy for
treating obesity and insulin resistance, although it will be
critical to understand the various mechanisms by which
ER stress affects adipose tissue, including its effects on
adipokine expression and function.
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