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Effective transgene expression is critical for genetically engi-
neered cell therapy. Therefore, one of CAR-T cell therapy’s crit-
ical areas of interest, both in registered products and next-gen-
eration approaches is the expression of transgenes. It turns out
that various constitutive promoters used in clinical products
may influence CAR-T cell antitumor effectiveness and impact
the manufacturing process. Furthermore, next-generation
CAR-T starts to install remotely controlled inducible pro-
moters or even autonomous expression systems, opening new
ways of priming, boosting, and increasing the safety of
CAR-T. In this article, a wide range of constitutive and induc-
ible promoters has been grouped and structured, making it
possible to compare their pros and cons as well as clinical usage.
Finally, logic gates based on Synthetic Notch have been elabo-
rated, demonstrating the coupling of desired external signals
with genetically engineered cellular responses.
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INTRODUCTION
The regulation of chimeric antigen receptor (CAR) transgene expres-
sion is crucial for eliciting the desired response in CAR-T cells. Typi-
cally, constitutive promoters are employed to drive CAR expression,
leading to predictable levels of CAR and therefore antitumor activ-
ity.1,2 However, due to the specific nature of CAR-T therapy, it can
benefit from more precise transcriptional regulation in certain situa-
tions. To achieve this, inducible transcription systems are employed,
utilizing transcription factors (TFs) and domains that bind to specific
DNA sequences placed in proximity to the CAR sequence. This article
provides an overview of the classification of transgene transcriptional
regulation based on its mechanism of action, highlighting how vari-
able gene expression can be harnessed to address current challenges
associated with CAR-T cell therapy. The discussion begins with
constitutive promoters and progresses to the utilization of the
CRISPR system for inducing regulated expression.

As part of the description, several divisions can be made. The division
proposed here is based on TF features. We distinguish the following
TFs: endogenous (natural) TFs, exogenous (xenogenous) TFs, and
artificial TFs (ATFs). Endogenous natural TFs are expressed in hu-
man cells naturally, for example, SP1 or HSF.3,4 Exogenous TFs are
not artificial proteins, but are expressed in other species and thus
are not natural for human cells. Among that group, we can find bac-
terial Tet.5 The last group of TFs is fully synthetic and therefore called
Molecular T
Published by Elsevie

This is an open access article under the CC BY-NC
artificial TFs (e.g., dCAS9sgRNA).6 Examples of artificial TFs are
dCas9, TALENs, or proteins containing zinc finger. Importantly, in
the context of the immune system, both exogenous TFs and ATFs
are recognized as not natural and potentially leading to triggering
of the immune response.7,8 Subsequently, all of these groups can be
further subdivided into whether the expression is non-induced
(constitutive Sp1 binding to the CMV promoter) or induced (variable
Tet or dCAS9-CRY2-CIB activation). In the case of induced ones, on
the other hand, a division can be made into chemically induced (by
small molecules in the Tet system) and induced by physical factors
(optogenetic LINTAD system, HSP promoter-based thermal/ultra-
sound control).9,10

From a clinical point of view, the goal of the aforementioned systems
is to achieve a CAR-T that will be a more effective therapeutic agent.
Control of CAR-T activity with induced transcription has been
confirmed as an effective strategy and raises hopes in different aspects
of four key immunological situations: (1) cytokine release syndrome
(CRS), (2) CAR-T exhaustion, (3) escape of cancer cells from the CAR
attack, and (4) CAR-T target change in an on-target off-tumor
attack.11–14 Since expression systems can drive various transgenes,
not only the CAR but also other proteins such as cytokines can be
controlled.15

In a cytokine storm, the triggering mechanisms of its key elements as
well as eupotential markers (IL-1 or IL-6) and characteristic symp-
toms have already been, in some part, discovered.16 For this reason,
there are therapeutic strategies routinely used in cases of CRS occur-
rence based on the administration of steroids and/or receptor-bind-
ing antibodies for IL-6.17 Despite this, the overall toxicity of
CAR-T, for which CRS is mainly responsible, is significantly higher
than in other types of immunotherapy.18,19 Other strategies for cir-
cumventing this problem involve preparing the CAR-T cells them-
selves. An example is the modification of the manufacturing process
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that enriches CAR-T with a stem-like population that is less likely to
trigger macrophage activation and cytokine secretion, thus reducing
the incidence of severe CRS in mice.20 On the other hand, genetic
modifications in CAR-T cells that limit or prevent CRS have been
proposed. The first strategy tested in clinical trials is based on killing
CAR-T cells by suicide switch.21 Given that the cause of CRS is the
large amount of damage-associated molecular patterns released
from CAR-T-killed cells and the cytokines secreted by CARs,
lowering the activity of CARsmay reduce the intensity of the cytokine
storm.22 However, in order not to lose CAR-T cells, but only to
temporarily limit their activity, a better strategy is to control the
CAR protein expression itself. That can be achieved using the tran-
scription-inducible systems described in Hotblack et al.11 Another
strategy is CAR-T autonomously secreting IL-6 or IL-1 binding fac-
tors so as to preemptively reduce pro-inflammatory interleukin con-
centrations and prevent triggering of the cytokine storm.23 Despite
the fact that proteins are driven by constant promoters, it would be
possible to create a system that self reacts to CRS-triggering cytokines
and secretes CRS binding factors in response. Such induced transcrip-
tion, achieved with Synthetic Notch (SynNotch), for example, could
reduce the cellular burden from the production of additional
proteins.24

Another situation in which transcriptional regulation may be appli-
cable is CAR-T depletion. The depletion phenomenon itself is com-
plex and induced by many factors, both intrinsic (tonic signals from
CARs) and extrinsic (influence of the tumor microenviron-
ment).13,25 In the case of tonic signals, the problem can be solved
by limiting the expression of the CAR. Studies have shown that
SynNotch systems autonomically regulate transcription limit deple-
tion, contributing to increased survival and ultimately a better anti-
cancer effect.14 Pharmacologically regulated expression of CARs is
also likely to have such an effect.26 The second type of CAR-T
depletion resulting from the tumor microenvironment can, in
turn, be alleviated by secreting cytokines that boost CAR-T persis-
tence.27 However, such cytokines carry the risk of toxicity.28 Tran-
scriptional regulation of cytokine expression and secretion has
shown promise in in vivo tests as a method of maintaining a
balance between secreting them in the right amount and location
and acting to reduce exhaustion.29 Unlike in CRS, CAR-T depletion
is more difficult to detect due to the lack of systemic markers.
Instead, CAR-T cells present in the blood must be subjected to
flow cytometry analysis to detect exhaustion markers like PD1 or
TIM3.30 For this reason, solutions for autonomous CAR-T seem
more attractive.

The third situation negatively affecting the therapeutic value of
CAR-T is antigen escape, i.e., circumstances in which a tumor cell
loses its CAR-activating antigen or is undetectable.31 This leads to
the formation of a population of CAR-T-resistant tumor cells and,
as a result, is a major cause of CAR therapy failure.32 The basic strat-
egy, in this case, is to increase the number of recognized antigens by
using tandem-CAR (one chimeric receptor binds multiple antigens)
or universal CARs (multiple adapters along the lines of bispecific
2 Molecular Therapy: Oncology Vol. 32 September 2024
T cell engagers).33,34 In the case of adapters, a significant complication
is their short half-life (which forces them to be continuously infused),
while tandem chimeric antigenic receptors increase the pool of simul-
taneously recognized antigens, which can lead to increased killing of
healthy cells.34,35 Regulated transcription could make it possible to
switch the transcription of the CAR recognition domain without
the need for constant adapter infusion and without the simultaneous
recognition of multiple antigens. The detection of an antigen escape
could be done by cytometry (hematologic malignancies) or immuno-
histochemistry (solid tumors), which would allow medical personnel
to react and change the specificity of the CAR antigen. This, however,
may be more challenging due to some obstacles. First, primary TAA
(tumor-associated antigen) can still be expressed on cancer cells, but
in mutated form, so CAR-T cells lose their affinity or ability to acti-
vate CARs, but flow cytometry is still able to detect the antigen.36

Likewise, it is difficult to determine the threshold at which CAR-T
cells lose their ability to recognize such cells. At the same time, flow
cytometry as a sensitive system still indicates some TAA expression.37

Autonomous systems would have to recognize the antigen escape on
their own; this is more challenging to do because, in the case of the
loss of TAA, the T lymphocyte would not be able to determine
whether it is in an area of cancer cells that lack TAA or in an area
of normal healthy cells.

The latest CAR-T challenge, which is also the most pressing problem
in the context of solid tumors, is on-target off-tumor attacks. This
phenomenon is based on killing cells that possess CAR-activating an-
tigens but are healthy cells.38 The control of antigen receptor expres-
sion means that, if non-specific CARs begin to cause toxicity by at-
tacking the patient’s healthy tissue, they can be deactivated.11

Manually controlled systems can be used in this case if there are
visible symptoms, while autonomous systems can regulate expression
if an antigen found only on healthy but not cancerous cells is recog-
nized, providing an automatic safety button.What is more, in the case
of SynNotch, it is even possible to use non-specific antigens specif-
ically, as described in more detail in the section on autonomous
CARs.39

Constitutive promoters used in the clinic

Endogenous and exogenous constitutive promoters are currently the
most commonly used in CAR-T, both in registered therapies and in
CAR-T undergoing clinical trials (Table 1). Among the clinically
used CARs collected in our article, as many as half contain the hu-
man elongation factor 1a (EF1a) promoter classified as endogenous
and non-inducible, presenting several advantages. EF1a is a potent
promoter that ensures predictable transgene expression in lympho-
cytes.40 Comparative studies have shown that the EF1a promoter
enabled the most efficient transduction of T lymphocytes compared
with transgenes containing the CMV, hPGK, and RPBSA pro-
moters.1 However, the second commonly clinically used promoter,
the MND promoter, showed even greater lentiviral transduction ca-
pacity than EF1a.2 The MND promoter is composed of two ele-
ments: the U3 region and the myeloproliferative sarcoma virus
enhancer.41 In addition to its greater transduction capacity, it allows
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Table 1. Promoters used in CAR-T clinical trials

Clinical status CAR cell name/NCT no. Promoter

Registered Axicabtagene ciloleucel (Yescarta) MSCV42

Registered Tisagenlecleucel (Kymriah) EF1a43

Registered Brexucabtagene Autoleucel (Tecartus) MSCV44

Registered Idecabtagene vicleucel (Abecma) MND45

Registered Ciltacabtagene autoleucel (Carvykti) EF1a46

Phase III CEA-CAR T (NCT04037241) MSCV47

Phase III
JNJ-68284528 biepitopic
CAR (NCT04181827)

EF1a48

Phase II GPC3-CAR T (NCT05120271) MND/MSCV49

Phase II CARCIK-CD19 (NCT03389035) MND50

Phase II SLAMF7 CAR-T (NCT04499339) EF1a51

Phase II CD19-CAR T (NCT02535364) MND52

Phase II
CD19-CAR-T with IL-6 shRNA
(NCT03275493)

U6 (for shRNA)53

Phase I GD2-CAR T (NCT04196413) MSCV54

Phase I
Sleeping beauty generated
CD19-CAR T (NCT00968760)

CMV55

Phase I
Off-the-shelf, IL13Ra2-CAR T
(NCT02208362)

CMV + EF1a56

Phase I
CD19-CAR + PD-1/CD28 switch
(NCT03258047)

EF1a + MSCV57

Phase I CD19-CAR T (NCT02659943) MSCV58

Phase I CD19/CD22-CAR T (NCT03233854) MSCV59

Phase I GP3-CAR T (NCT03198546) EF1a60
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for a lower density of CARs on the membrane of lymphocytes rela-
tive to EF1a-controlled CARs. This can be perceived as an advan-
tage, as it lowers susceptibility to exhaustion because of reduced
tonic signaling while simultaneously not decreasing cytotoxic effect
capacity.2

Another frequently used promoter is the mouse stem cell virus
(MSCV) promoter, similar to EF1a, which provides a strong
CAR expression.61 Interestingly, although MSCV has demon-
strated efficacy in clinical trials, its effectiveness may be unsatisfac-
tory under some circumstances. When used in bispecific bicistronic
CAR-CD19/CD22, it has shown significantly lower efficacy in
contrast to EF1a. The reasons for this phenomenon are unknown,
but it can be speculated that MSCV is less effective in the expres-
sion of long transcripts.62 On the other hand, the MSCV promoter
may find particular applications for CAR-T cells generated by
CRISPR. A lentiviral vector delivering sgRNA and a transgene
that achieved 3-fold higher efficiency than the traditional one
has been designed, in which EF1a was replaced by MSCV. This
change was due to the fact that MSCV is characterized by a
much smaller sequence, which in turn is a great advantage in the
case of limited CRISPR capacity.63 Of course, this does not change
the fact that EF1a can still be used in a CRISPR system with lower
efficiency.64
The CMV promoter is another promoter used in gene therapies and
in vitro studies that provides strong transgene expression compara-
ble with EF1a; however, at the expense of lower transduction effi-
ciency.1 In clinical trials, it has been used, for example, in CAR-T
generated with Sleeping Beauty and as a gene regulatory promoter
for ZFN.55,56

Some preclinical CAR-T cells have been driven with a PGK promoter,
which is usually considered a weaker promoter in T cells compared
with those described previously.31,65

To induce the expression of shRNAs that are used to silence gene
expression, for example, PD-1 or IL6, the U6 promoter is used.53,66

Standard promoters described previously, despite being effective in
expressing mRNA, are not optimal for small nuclear RNAs such as
shRNA.67

A phenomenon that can limit promoter activity is transcription inter-
ference. It involves reciprocal silencing of the activity of closely spaced
promoters (tandem structure) as a result of overlapping RNA poly-
merase complexes.68 In the context of CAR-T, it is relevant both dur-
ing lentivirus assembly and transgene expression in lymphocytes.
Some studies indicate that the promoter directing the expression of
a lentiviral vector (typically RSV) may interfere with the promoter di-
recting the transgene (typically a stronger promoter than RSV).69 For
example, in the case of a study comparing the EF1a promoter with
MND, greater efficiency in lentivirus production was achieved using
the weaker MND promoter, which may be due to less interference
with the RSV promoter driving the lentiviral genes.2 In addition to
the EF1a promoter, the CMV promoter is also characterized by inter-
ference-reducing transduction potential.1 The second aspect is pro-
moter interference within the transgene itself (internal promoters).
It was shown that the combination of the EF1a and CMV promoters
resulted in a significant reduction in the activity of both.70 To avoid
the use of more than one promoter, alternative methods to express
two independent proteins can be applied. For example, IRES-medi-
ated expression control (although in this case, the second gene
achieves weaker expression) or self-cleaving A2 sequences (equivalent
expression, but some proteins may have disrupted the structure).71,72

However, if the genes turn out to be too large and it is necessary to use
two independent promoters, in such a case a reduction in interfera-
tion can be achieved by installing an insulator sequence. This
sequence helps prevent unwanted interactions between the pro-
moters, thereby reducing interference.73 If one wants to use only
one promoter, there are also differences in terms of the efficiency of
long transcripts, for example, EF1a performs much better than
RPBSA promoter.1

Another problem-generating issue is transgene silencing as a result of
epigenetic changes. In this case, some promoters are characterized by
higher resistance (EF1a or MND) and some by lower resistance
(CMV).74–77 Promoter susceptibility to silencing also varies by cell
type; for example, MSCV is resistant to silencing in mature T cells
but given to silencing in stem cells.78 Stem cells, especially iPSCs,
Molecular Therapy: Oncology Vol. 32 September 2024 3
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Figure 1. Inducible endogenous and exogenous

transcription systems

(A) Tet-ON. An rtTA driven by the constitutive promoter is

composed of the rtetR responsible for connecting to

TRE upon tetracycline administration, and the VP16

transcription activator. Tetracycline administration results

in rtetR bringing VP16 to the CAR sequence. (B) ResRep.

TtgR and KRAB silencing factors are attached to the DNA

binding sequence called ResR12. Upon resveratrol

administration, TtgR dissociates from the DNA binding

site resulting in the cessation of the KRAB influence on

the CAR promoter and ultimately leading to CAR

expression. (C) Zinc fingers. ER upon 4-OHT enables ZF1

to bind with E1bmin, leading to an approximation of

the VP64 activating domain to the CAR sequence.

(D) Tacrolimus system. CAR signaling (upon antigen

recognition) phosphorylates NFAT leading to its binding to

the NFAT response element and initiating transgene

expression. Upon tacrolimus administration, NFAT

dissociates, stopping transgene expression. (E) LINTAD.

The LexA-CIB1-BiLINuS trimer is present outside

the nucleus. Upon UV impulse, BiLINuS changes

conformation, allowing the trimer to translocate inside the

nucleus. Furthermore, LexA binds to its binding site,

allowing dimerized CIB1-CRY2 to bring the VPR

activation domain near the CAR cassette. (F) Heat shock

system. Upon heating, HSF1 trimerizes and binds with

HSE leading to the expression of CARs. (G) Cre system.

The CAR gene is blocked by codon STOP following the

constitutive promoter. Upon CRE recombinase, codon

STOP is knocked out and the PGK promoter drives the

expression of CARs.
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may be relevant in the context of CAR-T when considering attempts
to create off-the-shelf CARs.79

Before discussing inducible expression control systems, the key role
of constitutive promoters should be noted. Even in systems where
transgene induction is variable, the proteins in these systems must
be controlled by constitutive promoters. This means that transgenes
containing regulated TFs will still contain some constitutive
promoter.
4 Molecular Therapy: Oncology Vol. 32 September 2024
Inducible transcription systems

Chemically induced xenogenic TFs

The group of chemically induced xenogeneic TFs
is the first to be described that offers induced
gene expression depending on the presence of a
given chemical molecule; in the case of the Tet-
on/off system, tetracycline and its derivatives.
The Tet system is based on the prokaryotic capa-
bility to eliminate tetracycline antibiotics from
bacterial cells. When there are no tetracyclines,
gene expression is silenced because it is unneces-
sary and even harmful to bacteria to produce
redundant proteins, which is why this operon
evolved.15 In eukaryotic synthetic cells armed
with this system, the production of the tet TF is constitutive; however,
its activity or inactivation depends on the presence of doxycycline.80

The functional linkage of the tet protein with human RNA polymer-
ase is made possible by the engineering of a tet fusion protein
(chimera) with the Vp16 protein. Vp16 together with tetR is called
tTA (in the off-system) or rtetR, an rtTA protein (in the on-system)
(Figure 1A). Vp16 has polymerase-regulating ability; thus, it is an
element that is frequently used as a transcription activator, not only
in the Tet system.81 Vp16, commonly used in various described
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systems, is naturally a protein of HSV and enables the transcription of
the OFRs of this virus. Therefore, the tet system uses elements from
the bacterial and viral proteome, making it prone to triggering an im-
mune response, which is one of its biggest disadvantages in the
context of clinical use in CAR therapy.8 However, numerous in vivo
studies have proved the Tet system to be an effective tool to activate
and deactivate CAR expression and cytotoxic activity.82,83

Another system belonging to the same group is RESrep CARs. This
system shares many similarities to Tet: the activation regulatory
element is also derived from bacteria, acting as an efflux pump
(TtgR), and a synthetic transcription activator VPR (composed of
Vp16, p65, and Rta) is attached to induce expression. The system it-
self is operated by the CMV or SV40 promoter. TtgR protein, under
the influence of resveratrol, a control molecule in this system, causes
the attachment of an activation complex and TFs to initiate CAR
expression (Figure 1B). An inverted version of this system has also
been engineered, in which the absence of resveratrol initiates the
expression and the addition stops the expression.84

There are other systems that fit the definition of exogenous chemical
inducible, such as GAL4/UAS induced with auxin, an ecdysone-re-
ceptor-based system controlled with tebufenozide, or an RU486-
inducible promoter induced upon RU486. However, this solution
has not been tested yet in CAR-T, and they do not seem to resolve
the problem of immunogenicity since they are exogenous as are the
aforementioned systems.85–87

Chemically induced endogenous TF

Chemical induction of CAR expression can also be based on the use of
sequences that bind synthetic variants of endogenous proteins such as
estrogen receptors or nuclear factor of activated T cells (NFATs).26,88

In the case of the 4-hydroxytamoxifen expression system (estrogen/
zinc fingers), a synthetic transcription activator is driven by a consti-
tutive promoter. Under the influence of a control molecule, it attaches
to the E1bmin-binding region, and the TF initiates CAR transcription
(Figure 1C). To minimize basal activity, the CAR sequence is reversed
in the 30 to 50 direction. Another important modification to limit basal
activity is to use a mutant variant of the estrogen receptor (G525R) so
that the system is not activated by endogenous hormones.89 The
NFAT-based system works in a more complex mode and is half-
autonomous. CAR expression is constant; however, under antigen
detection, signaling pathways activate the expression of genes (inter-
leukins) driven by the NFAT promoter. To mute these genes, a con-
trolling substance (tacrolimus) is introduced (Figure 1D).88 Because
NFAT-based systems are activated by CAR signaling, they are also
sensitive to TCR signaling, meaning basal activity may be higher
than in estrogen/zinc fingers.90 One way to overcome this is to knock
out TCR and eliminate the source of background signaling.91 What is
interesting is that the gene delivery of the NFAT system as a single
vector failed and had to be split into separate vectors. The authors
indicate promoter interference as the reason for this phenomenon
and justify that promoter competition may be an important and
partially unknown occurrence.88
The evident advantage of systems induced with endogenous TFs is the
low risk of immunization due to the use of proteins natural to human
cells, in contrast to Tet-CARs or RESrep-CARs. On the other hand,
they require additional modifications to eliminate the possibility of
activation by endogenous signals. It is also difficult to determine
how the activation of native genes using such systems will affect
cell metabolism and function. Such a TF binding to genomic regula-
tory DNA (apart from the vector promoter) could start to affect the
phenotype of the cell and possibly even reprogram it (reprogramming
analogous to the preparation of iPSCs).92 It seems theoretically
possible to create a protein that binds only to the promoter of the vec-
tor, provided that the promoter has a DNA sequence that matches the
receptor mutant (i.e., binds it) and is not present in the promoters of
genes active in the cell.

Physically induced xenogeneic TFs

Chemicals used as controlling molecules have various disadvantages
compared with physical control (heat or light). Apart from possible
side effects and a more complex registration procedure, the pharma-
cokinetics of chemical substances are much more challenging to pre-
dict than the distribution of physical factors. For example, the meta-
bolism rate of resveratrol (used in the RESrep system) may vary
depending on different conditions affecting the patient’s liver.93 On
the contrary, the transmission of heat, ultrasound, and even light
through tissues is more constant.94,95 Another advantage is precise
local induction that can be compared with stereoradiotherapy rather
than systemic therapy area-based control of CAR-T activity, which
seems more promising in non-metastases cancer.

Various proteins contain blue light-absorbing chromophores, which
cause the conformation of the protein to change upon light intensity
fluctuation.96 A widespread system is the CRY2 interaction system of
the cryptochrome family 2 interacting with the CIB-1 protein (cryp-
tochrome-interacting basic-helix-loop-helix protein).97 Blue light in-
duces dimerization of these proteins, and darkness reverses the pro-
cess. Thus, the formation of their fusion forms (chimeras) of CRY2
and CIB with other proteins presents a wide range of possibilities
in inducible gene transcription.98 For example, with VP16 as an acti-
vating domain and biLINuS as a regulatory element in the system
called LINTAD (light-inducible nuclear translocation and dimeriza-
tion) (Figure 1E).99 It has been shown that blue light can reach
CAR-T cells in vivo and can activate LINTAD.100

Vivid (VVD) is another CRY2/CIB1 protein-based system, being a
photoreceptor that can dissociate upon cessation of blue light expo-
sure.101,102 Blue light induces dimerization of CRY2/CIB1 reactivat-
ing split proteins such as CRE recombinase.103,104 In practice, such
systems resulted in the creation of light-controlled expression of a
CAR protein.

Nevertheless, some weaknesses of this solution have been identified
precisely because of limitations in UV light penetration, and attempts
are being made to improve the system’s performance by increasing
light penetration depth, using upconverting nanoparticles, or creating
Molecular Therapy: Oncology Vol. 32 September 2024 5

http://www.moleculartherapy.org


www.moleculartherapy.org

Review
proteins that would be activated by infrared light.95,105 What is more,
even if that problem were resolved, light systems are still based on
xenogenous proteins and potentially immunogenic.106

Endogenous physically induced TFs

The weakness of shallow inducer penetration in light-controlled sys-
tems may be overcome with heat or ultrasound-based systems. In
addition, these systems are based on heat shock proteins (HSPs),
which are naturally expressed in human cells. Hsp proteins were
found to regulate gene transcription not only as a result of tempera-
ture changes but also due to various environmental factors. Thus,
their application in precise gene regulation requires additional mod-
ifications to decrease basal activity.10,107,108

The activation of thermal systems is based on heat shock factor 1
(HSF1). In native cells, exposure to moderate hyperthermia (39�C–
42�C) induces a heat shock response, which is intended to lead to cy-
toprotection by HSPs. Under the influence of heat, HSF1 migrates to
the cell nucleus and binds as a trimer within DNA motifs called heat
shock elements (HSEs), activating transcription (Figure 1F). In gene-
modified cells, HSEs drive the expression of transgenes, for example,
CARs or interleukins. From the clinical side, increased temperature
capable of activating the HSF1 system can be triggered by nanorods
or ultrasound.10,108,109 To prevent activation by other factors that
naturally trigger the heat shock response, for example, hypoxia, addi-
tional optimization in structure has been made.108 Ultimately, heat
pulses can stimulate cells in specific areas of the body to milli-
meter-level accuracy, which now surpasses the resolution of most im-
aging methods.

The heat-activating system has also been engineered to work in a one-
way, irreversible mode using CRE recombinase. CRE recombinase is
expressed uponHSE heat activation, while the second sequence under
the constantly active PKG promoter has a codon STOP sequence
flanked by lox and followed by CD19CAR. Without CRE recombi-
nase, the STOP sequence stops transcription before CD19CAR is
reached. However, upon heat activation, CRE recombinase is ex-
pressed and deactivates the STOP sequence located between lox.
Because the codon STOP is no longer present, transcription covers
CD19CAR leading to its transcription (Figure 1G). Because the sys-
tem has been lined with the ZsGreen protein, it is possible to accu-
rately monitor the impact of ultrasound on the transcription. It
turned out that a 15-min exposure to ultrasound can turn on a
HSP-regulated promoter activated at 43�C, controlling the CAR
transgene. The system was effective under in vitro conditions for
eliminating tumor cells as well as in vivo conditions.10 In another
study, an HSP-based system was created that inactivated CAR expres-
sion under the influence of temperature.110

Shapiro and co-workers analyzed many heat shock-regulated pro-
moters (HSPs), including natural and GE-modified promoters.
Thus, HSPs with different transcriptional activity and sensitivity to
temperature changes were detected.111 This team admits that the
term HSPs can be confusing. On the one hand, this gives a chance
6 Molecular Therapy: Oncology Vol. 32 September 2024
to turn them on using various factors such as temperature, hypoxia,
cytokines, and cell division. On the other hand, it may lead to non-
orthogonal activation, defined by them as a significant obstacle for
this system to be effective in clinical usage. This is especially impor-
tant in the context of CRS syndrome because this is usually accompa-
nied by a fever, even in mild grade.112 Another concern could be that
major HSP-induced changes could occur in genes other than the
transgenes in the cell. However, the team of Kwong and co-workers
claims that CAR-T retained its function in the context of transgene
stimulation, i.e., that there was no phenotype change in the effects
of HSF on genomic HSE.10,113

Uninduced (constitutive) ATFs

Proposals are made to modify the CRISPR or TALEN systems to
create artificial TFs as well as artificial inducible TFs.6,114 It is worth
starting the discussion of the problem with the constitutive ones.
Generally, constitutive ATFs are a theoretical construct that is not
the object of research because they lack specific advantages over tradi-
tional promoters. To use them, the presence of a synthetic dCas9 pro-
tein and gRNA are required, which need to be produced in the cell
using a constitutive promoter. Nevertheless, on their basis, it is
possible to describe the action of dCas9 itself and the activators and
inhibitors of transcription attached to it. This is a prelude to more
complex systems that enable the regulation of dCas9 activity through
further modifications described in the section on chemical/phys-
ical ATFs.

CRISPR, TALEN, or ZFN technology was originally developed to edit
the genome.115 However, the basis of their operation is binding to the
DNA of a specific sequence.116 This is, therefore, a completely
different situation than in the case of, for example, the estrogen recep-
tor discussed in previous sections. It is the constructor that decides
which DNA sequence the TF will be attached to, and it is much easier
to avoid its presence in DNA at regulatory sites in the genome. To
adapt CRISPR for use as a transcription activator, modifications
have been performed. Firstly, unlike Cas9, capable of cutting DNA
in expression systems, dCas9 lacking nuclease activity is used.117

The cessation of nuclease activity is achieved by mutations in the
RuvC and HNH Cas9 domains. The second difference is that dCas9
is linked with the transcriptional activator, for example, VP16, as dis-
cussed previously. dCas9, together with the sgRNA-like molecule,
recognizes a specific sequence, and VP16 ensures the activation of
the appropriate transcription machinery. Usually, several VP16 sub-
units are used. Other dCAS9 activation domains are p65 and Rta.
Combining them in a trio with VP16 is termed VPR - V (VP16),
P (p65) R (Rta).117–119

In addition to transcription activators, inhibitors are also being devel-
oped. Of course, the lack of an activator in the environment means
slow silencing. However, it is possible to force a faster shutdown of
the expression. In this case, known repression domains, such as
KRAB, SID4X,MXl1, to dCas9/sgRNA are used120,121. One of the first
such solutions was proposed by Gilbert and co-workers, examining
the GFP reporter system in HEK293T-GFP cells.113,122
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KRAB-ZFPs (Kruppel-associated box domain zinc-finger proteins) is a
large family of transcriptional repressors. KRAB-ZFPs are character-
ized by the presence of two domains: the N-terminal KRAB domain
and a tandem array of C2H2 zinc finger elements at the C terminus.123

The KRAB proteins enable the recruitment of TRIM28 (tripartite
motif-containing protein 28, also referred to as KAP1, Tif1b, and
KRIP-1), which acts as a platform for transcription-limiting factors.124

This is due to the binding of histone methyltransferases, which cause
the formation of H3K9me3 (histone H3 trimethylated at lysine 9),
SETDB1 binding (SET domain bifurcated 1), the histone deacetylase
complex containing NuRD, and heterochromatin protein 1
(HP1).125–127 All of these proteins catalyze changes that lead to the for-
mation of heterochromatin (a transcriptionally inaccessible form of
chromatin) and the consequent repression of transcription.

The fact of using dCAS9 makes it possible to combine sgRNA, recog-
nizing a specific DNA sequence, with a hairpin sequence that can bind
to a protein. Typical examples are RNA motifs such as MS2, Pp7, or
Com. Such sequences allow joining chimeric sgRNAs recognizing
DNA with hairpin RNA, which binds to proteins having MCP,
PCP, or Com domains. MCP, PCP, and Com domains are bridging
proteins that connect RNA on the one hand and transcription mod-
ulators on the other.113,128

Chemically induced ATF

To realize the true potential of the ATF, it is necessary to transition to
a system using solutions such as dCAS9 VP16 but induced. Such sys-
tems are now under development. In this section, the focus is on
selected examples of low-molecular-weight regulation systems. The
physical-induced ATFs are discussed in the next section.

Most of the mechanisms designed to regulate Cas9 so far serve more
to turn nuclease activity on and off (nuclease function as a cutting
enzyme, not TF). However, few attempts to control transcription
have been made. The first branch of systems used split Cas9, which
can be coupled and uncoupled by chemical-induced dimerization.
Cas9 is divided into two separate parts that are fused with FRB and
FKBP proteins, respectively. Upon rapamycin administration, FRB
and FKBP heterodimerize, linking split Cas9 into an operative protein
(Figure 2A).129 This system was originally made to control Cas9
nuclease activity; however, modifications adding VP64 or VPR to
control transcription upon rapamycin have been made. Unfortu-
nately, high background activity in that system was noticed, shrinking
its usage in CAR regulation.130 Thus, further modifications have been
made. Previously described, 4-OHT was used to additionally control
the presence of dCas9 outside of the nucleus. Here, the split dCas9 is
fused with the ligand-binding estrogen receptor and dimerizing
domain. Without 4-OHT, the Hsp90 protein binds to estrogen recep-
tor binding sites preventing translocation to the nucleus. Upon
4-OHT, Hsp90 is displaced and thus no longer blocks migration of
the dCAS9 complex into the nucleus. dCas9 can be armed in both
Hsp90 and FRB/FKBP systems to minimize uncontrolled activation
(Figure 2B).130 4-OHT has also been used to control Cas9 without
splitting it by regulating only its presence outside/inside the nu-
cleus.131 FRB/FKBP chemical-induced dimerization has already
been used in clinical trials as an iCasp9 system to control CAR-T ac-
tivity, however, irreversibly killing it.132 Thus, reversible transcription
control would present a better perspective.

Other uses of 4-OHT can be based on the intein protein. Here, unlike
in the split version, Cas9 is not divided but enriched with an intein
sequence that hinders its activity. That synthetic intein is derived
from M. tuberculosis bacteria and is fused with the human estrogen
ligand-binding domain. The presence of intein in the Cas9 structure
disrupts its activation; however, upon 4-hydroxytamoxifen adminis-
tration, estrogen-binding sites trigger conformational changes and in-
tein self-splicing activates Cas9133 (Figure 2C). Despite this, the system
has not yet been used to trigger transcription modifications similar to
the aforementioned systems, but may be effective in triggering tran-
scription. Intein can also be used for split Cas9 reconstruction working
similarly to FRB/FKBP, but without chemical triggering.134

The alternative solution used a plant-based ABA (abscisic acid-induc-
ible) and GA (gibberellin-inducible) dimerization Cas9 system. ABA
and GA are compounds that induce heterodimerization, similar to ri-
miducid.135 For transcriptional control, dCas has been fused with
ABI, and the VPR activation domain is connected to PYL1. Upon
ABA administration, ABI dimerizes with PYL1, increasing the prox-
imity of VPR to DNA and thus activating transcription (Figure 2D).
In the GA-activated system, dimerizing proteins are GAI and GID1.
For reverse control, the KRAB repressor can be fused instead of VPR.
Further modifications allowed to engineer the OR gate (both ABA
and GA dimerizing domains attached to Cas9), AND gate (GA and
ABA are fused to Cas9 in tandem mode), and even switch (ABA
dimerization triggers VPR proximity while GA dimerization triggers
KRAB repression) (Figures 2E and 2F).136

Finally, control of Cas9 activity can be achieved by controlling its
degradation. A system made of DHFR, PP7, and VP64 was proposed.
The PP7 protein recruits VP64 to dCas9, activating the transcription.
However, DHFR is vulnerable to proteasomal degradation, resulting
in no transcriptional activity. To induce transcription, a controlling
molecule (trimetophrin) is administered stop DHFR degradation137

(Figure 2G). Degradation control has already been used to directly
control the CAR presence.138

Physically induced ATFs

The last group of division indicated in this article is ATFs induced by
a physical factor. Light control with the use of CAS9 mutants can also
be distinguished (in this study, as a rule, the regulation of genome ed-
iting is not considered, but the regulation of transcription is).139 These
systems are derived from the already discussed CRY2/CIB1 solutions.
An example of an optogenic hybrid system consisting of two ele-
ments, a DNA-binding part, a dCas9 element, and a fused system
with a light-sensitive basic-helix-loop-helix (CIB1) cryptochrome
was proposed. In this system, the dCas9-CIB1 and cryptochrome
CRY2 complexes are formed under the influence of blue light. These
proteins are fused to the effector domain. During the blue light
Molecular Therapy: Oncology Vol. 32 September 2024 7
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Figure 2. Inducible artificial transcription factors

(A) Split dCas9. Split dCas9 connected to VPR is activated

upon rimiducid administration. Rimiducid triggers chemi-

cal-induced dimerization of FKBP/FRB proteins (drawn as

semicircles), leading to the assembly of split dCas9. The

complex of dCas9, VPR, and gRNA activates the

transcription of CARs. (B) Hsp90 dCas9. ERT2 is the

domain responsible for the inducible binding of Hsp90.

Hsp90, if connected to ERT2, prevents the translocation

of the whole dCas9 complex from the cytoplasm to the

nucleus. Upon 4-OHT administration, Hsp90 is released,

resulting in the translocation of ATF into the nucleus and

the initiation of transcription. (C) Intein dCas9. The intein

structure deactivates dCas9’s ability to bind to DNA by

changes in spatial conformation. Upon 4-OHT

administration, intein is excised, allowing dCas9 to return

to the normal conformation. (D) ABA dCas9. dCas9 and

its activating domain are split. However, upon ABA

administration dimerization occurs, resulting in the

creation of an active complex. (E) ABA + GA dCas9.

Similar to the ABA system, an additional intermediate

activated by GA is added. Only upon ABA and GA

administration, is the active complex assembled. (F) ABA-

ON GA-OFF dCas9. dCas9 has the ability to bind both

VPR and KRAB, depending on the presence of ABA or/

and GA. (G) dSpCas9. VPR-PP7-DHFR is constantly

eliminated in the proteasome. However, trimethoprim

binds to DHFR, abolishing its susceptibility to

proteasomal degradation. Next, PP7 is able to bind to

dCas9, leading to the activation of transcription by VPR.
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stimulation (peak �450 nm), the CIB1-effector fusion protein can
form the dCas9-CIB1-CYR2-effector complex, which enhances the
transgene activity in this system. In addition, similar to previous sys-
tems, cessation of light exposure abolishes activation.140,141

As has been explained, different proteins are found in different sys-
tems, as can be seen in the example of VP16. Various items are trans-
ferred from system to system and are regulated by physical-chemical
factors in various contexts by their natural or ATFs. Moreover, there
is nothing to prevent various activities from being combined to create
more compiled circuits characteristic of synthetic biology.
8 Molecular Therapy: Oncology Vol. 32 September 2024
Engineered signaling receptors

SynNotch biology

In addition to the constitutive and controlled
expression of CAR-T genes, there is also
the concept of self-controlling (autonomous)
CARs, i.e., CARs that can decide to change
their expression depending on the surrounding
environment. The basis for this strategy is
SynNotch.24 SynNotch is a modified version
of the naturally expressed Notch receptor in
humans, responsible for cell-cell interac-
tions.142 From the original Notch, only the cen-
tral (core) part is found in the SynNotch. The
ligand-binding and transcription-activating do-
mains have been modified. The mechanism of action of SynNotch
contains several steps: a T cell encounters an antigen called a
“priming” antigen, i.e., one that is recognized by the ligand-binding
region of the Notch receptor (scFv). The spatial conformation
within SynNotch is then altered, which results in enzyme-sensitive
S2 site exposition. As a result, the proximal end of SynNotch is cut
off and can penetrate the nucleus (Figure 3). Depending on the
desired activity, this fragment can be either a transcription
enhancer or a transcription inhibitor.143 In the case of CAR-T,
this usually leads to activation of transcription and further produc-
tion of CAR protein.
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Figure 3. Synthetic notch

SyntNotch. Structure: SynNotch consists of three main

parts. The first is an extracellular region that binds

the ligand, made of scFv. The middle one is the

"Notch Core," which controls ligand-binding-dependent

enzymatic cleavage, and can be subdivided into the

negative regulatory region (NRR), consisting of three

cysteine-rich Lin12-Notch repeats (LNR A, B, and C), and

two heterodimerization domains (HD-N and HD-C).

Situated proximal to the NRR is the transmembrane

domain (TMD). The last part is the intracellular region

equipped with a transcription factor. Within the NRR and

TMD, there are three cleavage sites (S) susceptible to

enzymatic cleavage. S1 is located between HD-N and

HD-C, S2 is located in the HD-C domain, while S3 is

located in the TMD. Steps of SynNotch activation: (A) to

initiate activation, the extracellular ligand-binding domain

has to encounter the corresponding antigen. (B) As a

result, conformational changes in the NRR region lead to

exposure of S2, previously flanked by LNR-A, linker LNR-

A/B, and HD-C. The exposed S2 domain is now

susceptible to being cut by ADAM (a disintegrin and

metalloprotease) proteases. The S3 domain is then

cleaved by g-secretase. (C) As a result, the intracellular

part is detached, which allows the transcription factor,

previously attached to the Notch Core, to fuse with the

DNA near the CAR region. The last step is the triggering

of CAR protein expression which makes it possible for

lymphocytes to be activated by antigen.
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Each SynNotch must have a suitable TF that will interact with the nu-
cleus. Due to its high modularity, many different TFs can be used in
SynNotch; however, Gal4-vp64 has been used most often. In this so-
lution, Galt4 binds specifically to the UAS domain located near the
SynNotch-controlled gene (e.g., the CAR gene), while VP64 is
responsible for the transcription-activating signal. The SynNotch sys-
tem itself must be produced under its own (constantly active) pro-
moter, e.g., PGK. What is more, other activating TFs have been
used, such as tTA binding to TRE and CymR binding to pCuO. It
is also possible to make a reverse-acting system, i.e., one that is consti-
tutively active but deactivated after SynNotch activation (NOT gate).
For this purpose, an independently acting SV40 promoter is inserted
after the UAS sequence. The control element attached to SynNotch is
Molecular
Gal4 linked to the promoter quenching factor:
KRAB. When Notch is activated, the TF pene-
trates into the nucleus, and Gal4, as in other
accidents, binds to the UAS. For that reason
KRAB silences the SV40 promoter, leading to
the interruption of transcription.24,142,144

SynNotch was created based on the original
Notch Core, which had detectable basal activity,
which reduces the effectiveness of SynNotch by
ligand-independent activation of transcription.
To reduce ligand-independent activation, the
hN1RAM7 domain, which is a hydrophobic
amino acid sequence (QHGQLWF), was incorporated at the C-termi-
nal end of the Notch Core, thus proximal to the nucleus behind the
negative regulatory region (NRR) and transmembrane domain
(TMD). This provided an almost 15-fold reduction in ligand-un-
bound activity.145

Several studies have confirmed that SynNotch’s undeniable
advantage is to counteract CAR-T depletion. Lymphocyte deple-
tion is a multifactorial phenomenon caused by external factors
(tumor microenvironment) as well as internal (tonic signaling
from CARs).146,147 In the case of tonic signaling, as previously
mentioned, lower CAR expression reduces tonic signaling, leading
to increased resistance of CARs to exhaustion.2 Similar to the
Therapy: Oncology Vol. 32 September 2024 9
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weaker promoters, downregulating CAR expression in the
SynNotch system also made it possible to reduce tonic signals
and, consequently, exhaustion. A biochemical analysis revealed
that CAR-T cells regulated by SynNotch exhibited, to a greater
extent, the oxidative metabolism characteristic of naive T cells
with an increased capacity for proliferation. The effectiveness of
the Notch receptor is also supported by a reduction in markers
of exhaustion PD1 and LAG3 measurements.148 In another study,
the increased resistance to exhaustion was confirmed by decreased
expression of CD39 and an elevated level of T cell factor 1
(TCF1).14 Other studies have demonstrated a lower contribution
of the NF-kB pathway in SynNotch CARs relative to cells with
constant expression, which is further evidence against depletion
since this pathway is strongly associated with depletion.149 Thus,
SynNotch, like other transcriptional regulators or Dasatinib
(a pharmacological inhibitor of CARs), reduces tonic signals to
control CAR activity without causing depletion.150 Although, un-
like them, it does so autonomously.13 Reducing CAR expression
until the lymphocytes reach the tumor is preferable from both a
safety and efficacy standpoint.

Logic gates and biological circuits

The human immune system is a complex network that relies on infor-
mation exchange to function effectively. CAR-T therapy, which uses
genetically modified immune cells to recognize cancer, was initially
developed with a simple 0/1 decision CAR. However, as CAR-T tech-
nology advances, it is moving toward more intricate decision-making
models that increasingly mimic the complexity of the nature of the
human immune system. The fundamental role is carried out by
inducible transcription and synthetic receptors, whose usage leads
to the creation of a basic information processing unit, the Logic
Gate. Multiple Logic Gates can be further connected in circuits
creating an intracellular grid.

The underlying assumption of how the SynNotch works in CAR-T
is the creation of an AND logic gate. This means that a T cell will
only start a cytotoxic effect if it encounters two signals at the same
time. The first signal is recognized by the SynNotch receptor and is
the so-called Priming (antigen). Upon detecting it, the T lympho-
cyte initiates the start of CAR protein expression. The second signal
is (as in classical CARs) an antigen recognized by a CAR. Such con-
struction allows for the elimination of the problem of non-specific
tumor antigens and avoids on-target off-tumor attacks. At this
point, it should be mentioned that not every cancer cell needs to
have a priming antigen to be destroyed. Studies have shown that
it is sufficient for only 10% of the cell population to contain the
priming antigen, which already enables CAR activation AND
regionalized killing.148 SynNotch-activating tumor cells (which
contain the priming antigen) are killed in the CIS mechanism;
that is, they simultaneously arm lymphocytes with CARs and are
killed by them. In contrast, cells that do not have the priming anti-
gen but have the antigen for CARs are killed in the TRANS mech-
anism; that is, they fall prey to lymphocytes armed with CARs by
neighboring cancer cells.
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One of themost successful applications of theANDgate represents the
EGFRvIII and IL-13Ra2/EphA SynNotch antigen pair used in glioma.
This follows from the unusual location of TAA antigens: interleukin-
13 receptor a2 (IL-13R a2) or ephrin type A receptor 2 (EphA), which
are low specific but expressed on all cancer cells (low chance for anti-
gen escape but big risk of on-target off-tumor), and EGFRvIII, which is
a highly specific TAA for glioblastoma but usually not expressed on all
cancers cells (high risk of antigen escape and low chance for on-target
off-tumor). The second crucial factor is that IL-13R a2/EphA are ex-
pressed in healthy tissue only outside the CNS. Obtaining specific and
effective CAR-T comes from combining the features of both of these
antigen groups and is based on the physical separation of activated
CAR-T from healthy tissues potentially exposed to their attack.151

SynNotch activates CAR expression only in the close presence of tu-
mor cells while keeping them far from healthy cells.14 Promising re-
sults have also been obtained in mouse studies on the pair of GD2-
B7H3 antigens, where complete eradication of glioblastoma cells
was achieved aswell as significantly prolonged survival using as targets
antigens normally causing lethal on-target off-tumor attacks.148

SynNotch has also achieved success in other types of cancer; however,
a certain disadvantage has been detected. In in vivo studies in the 4T1
breast tumor model, priming Ep-CAM and CAR anti-ROR1 did not
induce toxicity and specifically killed only cancer cells. However, in a
murine model with metastasized or circulating cancer cells, SynNotch
showed similar (high) toxicity against contiguous CAR-T and healthy
cells. This demonstrates the importance of spatially separating the
cancer cells from the reservoir of healthy cells expressing antigens de-
tected by CARs.152

The description so far has involved a SynNotch that works by recog-
nizing two or more different antigens, although it is also possible to
create a SynNotch that responds to the same antigen as a CAR. An
experiment was performed in which scFv domains with different af-
finities to HER2 were generated. Both priming receptors and CARs
(SynNotch anti-HER2 AND concomitantly CAR anti-HER2) were
constructed against the same antigen, but they varied with different
affinities. The purpose was to produce an “ultra-sensitive” CAR,
i.e., one that will not linearly but rapidly activate under the influence
of a certain antigen density threshold. Concerning CAR SynNotch, a
priming receptor against HER2 with low affinity was made, and a
CAR also against HER2 but with high affinity. This action ensures
that healthy cells with HER2 (which physiologically have less of it
than cancerous ones) will not cross the threshold for activation and
will not trigger CAR transcription. In contrast, tumor cells with a
higher density of HER2 will cross the threshold and spike the cyto-
toxic effect of T lymphocytes against each other in all or nothing in
the mechanics. The discrimination of HER2 antigen density that
has been achieved is about 105 HER2 molecules per cell for cells
that do not activate CARs and 107 for cells that do.39

The AND gate alone has achieved tangible research results, which has
encouraged researchers to construct more complex variants of logic
gates and their circuits based on SynNotch. Figure 4 defines
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Figure 4. Logic gates and circuits

The left side shows the logic gate’s biological construction, written schematically as logic gates on the right. BS, binding site for TF; P, promoter constitutive. (A) Classic CAR

detection works in simple 0–1mode. (B) OR gate. OR gate induces a cytotoxic effect with at least one signal detected by one of twoCARswith different specificity. Both CARs

are under constitutive promoters. (C) AND gate. SynNotch is under a constitutive promoter. The first SynNotch signal activates transcription by releasing activating TF, leading

to the expression of CARs detecting the second signal. Only the presence of both signals induces cytotoxic effects. (D) NOT gate. Both SynNotch and CARs are under

constitutive promoters. Upon SynNotch signal detection, inhibiting TF, which stops the expression of CARs, is released leading to the cessation of CAR presence. (E) Triple

AND gate. The first SynNotch is under constitutive promoter; the second SynNotch andCAR are silent by default. Upon the first signal, SynNotch 1 activates the expression of

the second SynNotch. Upon a signal from the second SynNotch, expression of the CAR is triggered. (F) OR + AND gate circuit. OR + AND are designed similarly to a single

AND gate. However, SynNotch is bispecific, leading to a situation where only one of the paired signals is sufficient to activate the expression of the CAR. (G) AND+NOT gates.

This circuit is engineered similarly to a basic AND gate. Additional constitutively expressed SynNotch recognizing signal 3 may trigger the expression of basally muted tBID, a

protein acting as a suicide switch. (H) NOR gate + AND. Both SynNotch receptors and CARs are under constitutive promoters. Upon detection of the SynNotch 1 or 2 signal,

inhibiting TF (KRAB) is released, leading to the cessation of CAR expression. (I) NAND gate + AND. SynNotch 1 is under constitutive promoter as well as CARs, while

SynNotch 2 is silent by default. Cessation of CAR expression will only be possible if two inhibiting signals are present. The first signal is detected by SynNotch 1, and it induces

the expression of the second Notch. The second SynNotch, unlike the first, inhibits TF (KRAB) leading to the cessation of CAR expression.
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SynNotch variants as logic gates carved out in CAR-T. Besides the
AND gate, other types are OR, NOT (basic used in CAR-T), NOR,
and NAND, as well as “triple-AND.” The OR gate is activated if at
least one signal is detected (tandem CAR), while the NOT gate in-
duces a response until it detects a given signal that deactivates the
NOT logic gate (Not-SynNotch).

NOR and NAND gates are more complex; however, they could be
created using other basic gates. NOR is a series connection of OR &
NOT while NAND is AND & NOT. They have already been created
in bacterial cells using tetR/lacl and in mammalian cells by utilizing
miRNA.153,154 Autonomous CAR-T cells could be engineered using
SynNotch as indicated in Figure 4.
It is worth mentioning that, in CAR-T, in addition to the use of
induced transcription, there is another family of solutions that pro-
duce logic gates. Alternatively, protein adapters are also used. How-
ever, their significant drawback is that their short half-life time en-
forces the need for constant infusion. What is more, they can only
regulate the activity of CARs or kill CAR-T cells, while transcriptional
regulators can control the expression of any given protein.155

Logic gates can also be formed through systems induced by small-
molecule compounds. For example, in the ATF-based switch
described earlier, the combination of FRB/FKBP and split dCas9
(AND gate) has provided a significant reduction in the background.
In the future, there is potential for the development of hybrid systems
Molecular Therapy: Oncology Vol. 32 September 2024 11
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Table 2. Comparison of expression systems for CAR

Promoter/DNA
recognition element Regulation Immunogenicity Silencing susceptibility Transduction efficiency Exhaustion prevention Expression level Test stage

EF1a1,2 no, constitutive no low (T cells) high no higher clinically

CMV1 no, constitutive no high (T cells) medium not higher clinically

MND1,2,156 no, constitutive no low (T cells) high
yes, reducing
tonic signaling

lower clinically

MSCV1,61 no, constitutive no low (T cells) high not known lower clinically

U666,157 no, constitutive no medium (T cells) not comparable not comparable high (RNA) clinically

hPGK1 no, constitutive no medium (T cells) medium
could reduce tonic
signaling

low CAR-T, in vivo

RPBSA1 no, constitutive no medium (T cells) medium
could reduce tonic
signaling

low CAR-T, in vitro

Tet8,80,158 yes, doxycycline yes high (stem cells) low (need selection) possible, if deactivated regulated CAR-T, in vivo

RESrep84 yes, resveratrol yes unknown neutral/not known possible, if deactivated regulated CAR-T, in vivo

ZF1-4-OHT159 yes, 4-OHT yes unknown neutral/not known possible, if deactivated regulated CAR-T, in vivo

NFAT160 yes, tacrolimus not known unknown low (need selection) possible, if deactivated regulated CAR-T, in vivo

LexA100 yes, light yes unknown neutral/not known possible, if deactivated regulated CAR-T, in vivo

HSE10 yes, temperature no unknown neutral/not known possible, if deactivated regulated CAR-T, in vivo

RU486-inducible87 yes, RU486 yes unknown not known not known regulated non-CAR

Auxin-inducible85 yes, auxine yes unknown not known not known regulated non-CAR

Ecdysone receptor86 yes, tebufenozide yes unknown not known not known regulated non-CAR

dCAS9-based
systems110,119,136,161

yes, various
controlling
substances

yes
low (hematopoietic
stem cells)

neutral/not known not known regulated non-CAR
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that integrate external control determined by medical professionals
with SynNotch-regulated autonomous CAR-T. A good combination
may be an externally controlled light/ultrasound system and
SynNotch. The disadvantage of SynNotch is that, if the cancer cells
are outside the area of the original focus (metastasis), the system
may decompensate due to disruption of antigen compartments (as
described above in SynNotch). In such a case, the use of activation
control space would limit the problem (Hsp, UV).152

Summary

Transcription of transgenes in CAR cells is an important issue in
designing modern CAR-T therapy. The selection of an appropriate
constitutive promoter can contribute to both therapeutic and produc-
tion efficacy. Based on current research, it seems that for both CAR-T
persistence and the manufacturing process, weaker constitutive pro-
moters might be more favorable.1 With the evolution of expression
systems, the inducible on/off mechanisms have opened the door to
a potentially even greater role for transcriptional regulation in
CAR-T. The TFs and the systems harvesting their advantages despite
serving the same purpose of regulating transgene expression are rich
in differences. Pros and cons are summarized in Table 2. Crucial fac-
tors that would determine if a given system is clinically significant are
safety and orthogonality.

Immunogenicity, the biggest safety concern, is undoubtedly an un-
favorable factor that is hard to diminish in the group of exogenous
12 Molecular Therapy: Oncology Vol. 32 September 2024
inducible systems. The anti-CAR T cell immune response is known
to be reported against both extracellular (mouse-based scFv) and
intracellular (HSV-TK safety switch) exogenous proteins. Rejection
of CAR-T by the patient’s body raises risks due to the ineffective-
ness of the therapy. However, it is also possible that risks arise
from directly dangerous side effects. HAMA-triggered mast
cell degranulation is a dangerous (but rare) side effect based on
the immune response against non-human-derived components of
CARs.162

On the other hand, systems that are not immunogenic (inducible
endogenous) are usually not orthogonal since their components
can be activated by matching native signaling pathways.136,163

Here, mutated or computational-biology-engineered variants may
overcome that leakage while keeping the privilege of being non-
immunogenic.

Further aspects to consider are how to control the inducible sys-
tems. Clinically approved or under clinical trial, regulatory mole-
cules can be found in both endo and exogenic and even ATF
groups.15,88,130 However, without clinical trials, it is difficult to
determine the dose of a substance that will ultimately be required
to predictably control cells. Physical activator-based systems, in
addition to the inherent limitations (or advantages) of a small
activation area, may prove less amenable to differences in the
pharmacokinetics than controlling molecules, meaning that the

http://www.moleculartherapy.org


Figure 5. Inducible transcription overcoming CRS,

depletion, antigen escape, and on-target off-tumor

toxicity

(A) CAR expression can be turned off thanks to remote

(chemical physical inducers of transcription factors regu-

lating CAR expression) or autonomous (synthetic re-

ceptors) control since markers of a cytokine storm are well-

defined. (B) CAR expression could be autonomously

silenced if CAR-T exhaustion starts. The detection of

exhaustion can be realized based on autocrine

mechanisms. Although remote control is effective in

reducing exhaustion, the problem might be the detection

of exhaustion by hospital staff since CAR-T cells

represent too small a percentage of blood or bone

marrow cells. (C) Lack of CAR antigen on neoplastic cells

can be autonomously detected (lack of synthetic receptor

antigen). Immunocytochemistry or flow cytometry can be

used to detect such a change in the phenotype of the

neoplastic cells, and proper actions can be realized by

medical doctors. (D) SynNotch will activate CAR

expression only if it encounters a priming antigen. It

makes it possible to effectively and safely target antigens

present in both cancer and healthy cells (unspecific

antigens). When cells with non-specific TAA—healthy and

cancerous—are physically separated from each other,

CAR-T can be activated only within the tumor, which

means that healthy cells outside the tumor perimeter are

not destroyed even though they have an antigen that

could activate CARs.

www.moleculartherapy.org

Review
distribution of chemical compounds may be more variable due to
their metabolism and excretion rate, while physical factors can
offer constant penetration within tissues.4,102

The last aspect is promoter silencing through epigenetic phenom-
ena. One of the primary means of silencing artificial transgenes is
methylation, which depends on CpG islands, among other fac-
tors.164 However, it is hard to assess the impact of silencing on cur-
rent CAR-T therapies because these changes do not occur immedi-
ately. For example, the PGK or MSCV promoter can function
for at least 7 weeks before it is silenced in T cells, providing
stable expression during this time.61 A greater effect of silencing
could be observed in off-the-shelf CAR-T concepts in which trans-
genes are maintained in cells for longer periods. Stem cells used to
Molecular
produce such CAR-T cells also have
different methylation kinetics for their pro-
moters.165 Bypassing the problem of methyl-
ation of artificial transgenes could be
solved by placing CAR under the TCR pro-
moter so that expression of the artificial protein
occurs under the influence of the natural
promoter.166

Ultimately, control of transgene expression can
be handed over to CAR-T itself. Autonomous
CARs are being created to form biological circuits
that have a chance to respond to four of the biggest CAR-T problems
(Figure 5).
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