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Abstract: CT patterns of viral pneumonia are usually only qualitatively described in radiology
reports. Artificial intelligence enables automated and reliable segmentation of lungs with chest CT.
Based on this, the purpose of this study was to derive meaningful imaging biomarkers reflecting CT
patterns of viral pneumonia and assess their potential to discriminate between healthy lungs and
lungs with viral pneumonia. This study used non-enhanced and CT pulmonary angiograms (CTPAs)
of healthy lungs and viral pneumonia (SARS-CoV-2, influenza A/B) identified by radiology reports
and RT-PCR results. After deep learning segmentation of the lungs, histogram-based and threshold-
based analyses of lung attenuation were performed and compared. The derived imaging biomarkers
were correlated with parameters of clinical and biochemical severity (modified WHO severity
scale; c-reactive protein). For non-enhanced CTs (n = 526), all imaging biomarkers significantly
differed between healthy lungs and lungs with viral pneumonia (all p < 0.001), a finding that was
not reproduced for CTPAs (n = 504). Standard deviation (histogram-derived) and relative high
attenuation area [600–0 HU] (HU-thresholding) differed most. The strongest correlation with disease
severity was found for absolute high attenuation area [600–0 HU] (r = 0.56, 95% CI = 0.46–0.64).
Deep-learning segmentation-based histogram and HU threshold analysis could be deployed in chest
CT evaluation for the differentiating of healthy lungs from AP lungs.

Keywords: viral pneumonia; histogram analysis; imaging biomarker; computed tomography; artifi-
cial intelligence

1. Introduction

Recent advances in machine learning (ML) enable a swift extraction of imaging
biomarkers from chest CT scans [1]. Automated approaches are especially desirable during
busy periods for radiology departments, such as during the current public health crisis
related to SARS-CoV-2, and are more reproducible compared to approaches that require
user interaction [2–10]. A prerequisite for the analysis of pulmonary imaging biomarkers is
a reliable automated segmentation of the lung, which has become feasible [11–13].

Regarding density analysis of lung disease in CT, histograms are a robust method
for the visualization and quantification of Hounsfield unit (HU) differences [14]. Shifts
in density histogram curves have been used to differentiate between normal lungs and
those affected by structural lung pathologies, such as fibrosis and emphysema [15–19].
Furthermore, a variety of HU thresholds have been proposed to identify pathologic changes
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in lungs [11,20–22]. For example, a HU threshold of <−950 HU became a convention for
quantification of emphysema with CT images [23], whereas commonly accepted standards
for other lung pathologies are lacking.

Histogram analysis and HU thresholding have very rarely been applied to analyzing vi-
ral pneumonia and its radiological pattern of atypical pneumonia (AP). Pulmonary changes
in atypical pneumonia particularly manifest as areas of increased density (high attenuating
areas (HAA)), caused by ground glass opacities (GGO) and consolidations [24–29].

In non-immunocompromised patients, AP is often caused by influenza A and B
viruses [24]. During the current pandemic, SARS-CoV-2 (severe acute respiratory syndrome
coronavirus 2) has become another frequent cause of AP [30]. The chest CT plays a major
role in the diagnostic workup of suspected pulmonary manifestations of viral disease and
associated complications. Radiology reports usually describe them qualitatively [26,31].
However, there is a huge clinical demand for quantitative imaging biomarkers of pul-
monary alterations. How these imaging biomarkers can add established biochemical and
clinical markers such as c-reactive protein (CRP) and the need for oxygen therapy [10,32–39]
remains an open question.

Additionally, administration of contrast agents has a major influence on quantitative
chest CT analysis and therefore should be considered [40]. Non-enhanced computed
tomography (NECT) and the computed tomography pulmonary angiogram (CTPA) are
important protocols in chest imaging. The latter is especially relevant for the evaluation
of diseases with procoagulant properties, such as coronavirus disease 2019 (COVID-19)
and influenza [41–43].

This study had three main goals. First, to automatically derive imaging biomarkers
from chest CT images based on histogram and HU-threshold analysis. Second, to assess
differences in those biomarkers between lung-healthy individuals vs. those affected by
atypical pneumonia. Third, to correlate the imaging biomarkers with biochemical and
clinical severity, defined by CRP and a modified World Health Organization (WHO) clinical
severity scale [44].

2. Materials and Methods
2.1. Study Population
2.1.1. Healthy Lung Group

All chest CTs of healthy lungs acquired at our institution between January 2014 and
July 2020 were identified by an appropriate text search of the radiology reports, which were
structured (search string: unremarkable lung parenchyma AND no pulmonary mass AND
open central airways AND no pleural effusion AND no pneumothorax) (Figure 1a). At least
one board-certified radiologist had signed these reports. NECTs and CTPAs were selected
based on study descriptions. Only studies with 1 mm soft-tissue kernel reconstructions
were analyzed, because the lung segmentation algorithm is optimized for those image
reconstruction parameters. Reports containing keywords that indicate non-normal lung
architecture, such as “status post lung surgery” and “structural lung abnormalities” or
describing motion artifacts were excluded to avoid bias at later stages of the analysis as
suggested by Best et al. [18]. All reports were reviewed by a radiology resident in the first
post-graduate year (A.R.).

2.1.2. Atypical Pneumonia Group

All patients with a positive RT-PCR test for influenza A/B or SARS-CoV-2 were
identified (time period: January 2014 and July 2020). The information was retrieved from
the laboratory information system. For those cases, we searched the Picture Archiving
and Communication System (PACS) to identify all NECTs and CTPAs performed up to
seven days before or after the positive RT-PCR test (Figure 1b). Scans with motion artefacts
and patients with “status post lung surgery” according to the written radiology report
were excluded. The mean time interval in days between RT-PCR and CT acquisition was
determined. Figure 1 displays the full selection workflow.
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Figure 1. Study selection flow diagrams for (a) healthy lung and (b) AP groups. Abbreviations: NECT = non-enhanced
computed tomography. CTPA = computed tomography pulmonary angiogram. AP = atypical Pneumonia.

2.2. CT Imaging

CTs were acquired in supine position on the following CT scanners: SOMATOM
Definition Edge, SOMATOM Definition AS+, SOMATOM Definition Flash, SOMATOM
Force (all Siemens Healthineers, Forchheim, Germany). Detailed information on acquisition
parameters is provided in Supplement S1.

2.3. Lung Segmentation Algorithm

All chest CTs underwent automated lung segmentation using 1 mm soft-tissue kernel
series as input to a convolutional neural network with U-Net architecture. It had been
trained on 172 chest CTs of the same institution (86 COVID-19 and 86 non-COVID-19). The
algorithm performs excellently (DICE score: 0.97) and had been described in detail as “A2”
in a previous publication [11].

2.4. Histogram Analysis

Based on CT lung segmentations, HU density histograms of the whole lungs were
calculated, using Python (package: SciPy, version 1.5.4) [45]. A HU density range from
−1024 to 0 HU was chosen for further analysis [46]. This range included the density
distribution of normal lung structure as well as all HU thresholds analyzed in this study.
Density histograms were plotted with an interval of 1 HU and normalized to an area
under the histogram curve of 1. As imaging biomarkers, the following standard histogram
parameters were calculated for each lung [15–19,40]: mean lung attenuation, median lung
attenuation, histogram standard deviation, skewness and kurtosis. For comprehensive
parameter definitions, please refer to Supplement S2.

2.5. HU Threshold Analysis

First mentioned in the context of diffuse interstitial lung disease by Lederer et al. [20],
HAA is the lung volume (in mL) containing CT attenuation values higher than those of
normal lung parenchyma. In healthy lungs, HAA is very low and reflects physiological
structures such as vessels and bronchial walls [46]. In pneumonia, HAA additionally
corresponds to superimposed disease-related alterations such as ground glass opacities
(GGOs) and consolidations [24–30,47]. rHAA (in %) is the ratio of HAA over the total
lung volume.



Diagnostics 2021, 11, 738 4 of 14

Four thresholds for HAA quantification reported in previous studies were evaluated
(lower/upper threshold): −600/0 HU [11], −600/−250 HU [20], −700/−251 HU [21] and
−800/−500 HU [22]. Both HAA and rHAA were calculated for all four HU ranges.

2.6. Statistical Analysis
2.6.1. General Information

Mean and standard deviation were used to describe continuous variables. To assess
relationships of two categorical variables, the Chi2 test was used. Differences between
two independent groups regarding normally distributed continuous variables were tested
using a t-test, and for not normally distributed data, a Mann–Whitney U test was used;
p-values of less than 0.05 were considered significant. Bonferroni correction was performed
in cases of multiple comparisons.

Statistical calculations were performed with SPSS (IBM SPSS Statistics, version 25.0,
2018). Python was used for data analysis and visualization (libraries: SciPy [45]; pan-
das [48]; scikit-learn [49]; matplotlib [50]; seaborn [51]). For visualization of different HU
thresholds MITK (v2018.04.2) was used [52].

2.6.2. Differences in Imaging Biomarkers between Healthy Lungs and AP

Tests for significant differences of the imaging biomarkers between the healthy lung
and the AP group were performed independently for NECTs and CTPAs.

To address the question of whether histogram and HU threshold analyses differ
significantly between healthy lungs and those with AP, the mutual information classifier
(MIC) was used. The MIC was used to rank each derived histogram parameter regarding
its ability to differentiate between two groups and measured the degrees of dependency
among variables from 0 to 1, with 1 meaning perfect dependency. In our analysis, the two
variables were the metrics on the one hand and the group (normal vs. AP) on the other
hand. The function relies on nonparametric methods based on entropy estimation from
k-nearest neighbors’ distances as described in [53,54], and was implemented with SciPy.

2.6.3. Correlation of Imaging Biomarkers with CRP and Clinical Severity in the AP Group

The blood inflammation marker CRP [32] on the day of CT acquisition was retrieved
from the laboratory information system for patients in the AP group. The CRP was selected
because (a) it is a standard parameter of inflammation and (b) is tested on an almost daily
basis. In case of missing same-day laboratory values, the closest value in a time interval
of 2 days was chosen. Furthermore, disease severity was graded according to a modified,
five-point ordinal scale for clinical severity published by the WHO [44]. This scale was
based on the patient’s oxygen demand and ventilation status (for details, see Supplement
S3). To determine correlation of histogram parameters and HAA/rHAA with CRP and
disease severity, the Spearman rank correlation was used.

3. Results
3.1. Patient Characteristics

In total, 1030 CT studies were analyzed (50.9% women; mean age ± SD: 54.2 years ± 18.9).
NECTs (n = 526) were performed for 288 healthy lung patients (40.6% women; mean age:
50.2 years ± 17.0) and 238 AP patients (35.3% women; mean age: 60.1 years ± 17.2), whereas
CTPAs (n = 504) were performed for 430 healthy lung patients (65.8% women; mean age:
51.6 years ± 19.9) and 74 AP patients (54.1% women; mean age: 66.0 years ± 16.0). For
NECT and CTPA, age differed significantly between the two groups, but sex did not.
CT scans for AP were requested on average 1.9 days ± 2.3 days around RT-PCR-testing
(influenza A/B ± SD: 1.6 days ± 2.2 days; COVID-19 ± SD: 2.1 days ± 2.4 days). Mean
lung volume was 4475.9 mL ± 1270.9 mL. For detailed information, please refer to Table 1.
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Table 1. Patient demographics.

Total NECT CTPA

Healthy
Lung AP p Healthy

Lung AP p

n 1030 288 238 430 74
Sex

[F/M, F%]
524/506,

50.9%
117/171,

40.6%
84/154,
35.3% 0.245 283/147,

65.8%
40/34,
54.1% 0.069

Age
[years/SD] 54.2/18.9 50.2/17.0 60.1/17.2 <0.001 51.6/19.9 66.0/16.0 <0.001

Abbreviations: AP = atypical pneumonia. NECT = non-enhanced computed tomography. CTPA = computed
tomography pulmonary angiogram. SD = standard deviation. p = p-value of intergroup comparison for healthy
lung vs. AP.

3.2. Discrimination of Healthy Lungs andAtypical Pneumonia: NECT and CTPA

Altogether, 526 NECTs and 504 CTPAs were analyzed. Regarding NECTs, all parame-
ters derived from histograms and HU thresholds differed significantly between the healthy
lung group and the AP group (p-value < 0.001). This finding persisted after correction for
multiple testing (α < 0.05/13 ≈ 0.0038). In detail, the AP group showed higher histogram
standard deviation, higher mean lung attenuation, higher median lung attenuation, lower
skewness and lower kurtosis (all p-values < 0.001). HAA and rHAA were higher in the AP
group compared to the healthy lung group (all p-values < 0.001) (Table 2).

In CTPAs, differences between the study groups were not significant different for a
third of the parameters (p-values: 0.185–0.842). In general, group differences were much
smaller in CTPAs compared to NECTs (Table 2). Figure 2 illustrates this observation.
Therefore, the analysis was continued for NECT only.

Table 2. Results of histogram analysis and HU threshold-derived HAA/rHAA.

NECT CTPA

Healthy Lung AP p Healthy Lung AP p

Mean SD Mean SD Mean SD Mean SD

STD 128.50 6.51 170.16 39.09 <0.001 134.43 10.39 160.90 32.23 <0.001
SKEW 3.50 0.35 2.36 0.90 <0.001 2.85 0.50 2.33 0.70 <0.001
KURT 14.29 2.83 6.70 4.93 <0.001 9.76 3.26 6.45 3.76 <0.001
MEAN −828.00 28.54 −751.69 89.79 <0.001 −770.49 48.99 −750.68 76.14 0.185

MEDIAN −863.64 27.00 −807.24 91.90 <0.001 −808.73 47.77 −801.84 67.74 0.842
Lung Volume 4973.00 1212.19 4302.19 1363.27 <0.001 4238.08 1185.40 4390.15 1322.73 0.400
HAA −600/0 266.37 49.43 574.18 468.63 <0.001 349.82 101.22 547.60 318.80 <0.001

HAA −600/−250 197.94 38.06 401.22 236.25 <0.001 278.10 89.04 416.63 231.34 <0.001
HAA −700/−251 347.83 79.54 674.60 336.70 <0.001 572.42 250.36 753.26 368.96 <0.001
HAA −800/−500 721.20 302.14 1148.24 473.73 <0.001 1457.43 601.75 1412.97 539.84 0.655

rHAA −600/0 5.57 1.48 9.12 4.78 <0.001 15.01 11.93 14.03 10.03 <0.001
rHAA −600/−250 4.15 1.22 7.31 4.22 <0.001 10.63 7.74 10.66 7.33 <0.001
rHAA −700/−251 7.39 3.29 15.48 11.04 <0.001 17.95 11.92 19.60 13.53 0.002
rHAA −800/−500 15.74 9.42 38.57 21.18 <0.001 30.16 16.50 35.70 18.30 0.465

Abbreviations: AP = atypical pneumonia. NECT = non-enhanced computed tomography. CTPA = computed tomography pulmonary
angiogram. STD = histogram standard deviation. SKEW = skewness. KURT = kurtosis. MEAN = mean lung attenuation in HU. MEDIAN
= median lung attenuation in HU. HAA = high attenuation area in mL. rHAA = relative high attenuation area in percentage. Lung volume
in mL. SD = standard deviation. p = p-value of intergroup comparison for healthy lung vs. AP.

3.3. Differences in Imaging Biomarkers between Healthy Lung and AP Group

The parameter histogram standard deviation (MIC: 0.37) and the HU threshold rHAA-
600/0 (MIC: 0.35) differed most clearly between healthy controls and AP. Their high MIC
reflects the high dependency of the imaging biomarkers on the group membership healthy
vs. AP. Low MIC in this context means that the values of an imaging biomarker are
independent from group membership, rendering it not useful to separate those two groups.
Table 3 provides details. Figure 3 provides an exemplary histogram and the four HAAs for
a 75-year-old patient with RT-PCR confirmed COVID-19. Figure 4 provides an overview



Diagnostics 2021, 11, 738 6 of 14

over the difference of all imaging parameters of all cases compared to the mean “healthy
lung” histogram.
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Figure 2. Mean histograms for NECT and CTPA. Mean histograms (black line) for NECTs (a,b)
and CTPAs (c,d) with grey areas indicating variance (2SD). HU values on the x-axis, frequency
on the y-axis. The differences in mean histogram curves between the healthy lung group and the
AP group are significant for NECTs (a,b) regarding all histogram parameters and HAA/rHAA.
Differences for CTPAs are subtle (c,d). Abbreviations: NECT = non-enhanced computed tomography.
CTPA = computed tomography pulmonary angiogram. AP = atypical pneumonia. HAA = high
attenuation area. rHAA = relative high attenuation area. SD = standard deviation.

Table 3. Potential of imaging biomarkers to separate control vs. AP in NECT.

Parameter MIC

STD 0.374
rHAA −600/0 0.346

HAA −600/−250 0.325
SKEW 0.311

HAA −600/0 0.307
KURT 0.307

rHAA −600/−250 0.295
HAA −700/−251 0.272
rHAA −700/−251 0.257

MEAN 0.195
MEDIAN 0.168

rHAA −800/−500 0.163
HAA −800/−500 0.155

Lung volume 0.059
MIC ranges from 0 to 1 and measures the degree of dependency between the variables, whereas 0 indicates no
dependency and higher values indicate higher dependency. Concretely, a MIC of 0 means a random distribution
of the given parameter in both groups (normal and AP). Therefore, this parameter would not be suited to assign
an examination to one of these groups. The concept is based on entropy estimations from k-nearest neighbors’ dis-
tances. Abbreviations: AP = atypical pneumonia. NECT = non-enhanced computed tomography. MIC = Mutual
Information Classifier. STD = histogram standard deviation. SKEW = skewness. KURT = kurtosis. MEAN = mean
lung attenuation. MEDIAN = median lung attenuation. HAA = high attenuation area. rHAA = relative high
attenuation area.
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Figure 3. (a–f). Mean histogram and HU thresholds. Mean histogram curve of the healthy control
group with all analyzed HU thresholds (a; dotted lines; black line = mean, grey area = 2 SD). The
red curve indicates the histogram of a 75-year-old patient with diagnosed COVID-19. Note the
overlap with the mean histogram curve of the healthy lung group below −750 HU. Within the range
of −750 to −600 HU, HAA in healthy lungs start to diminish, whereas in this representative case
of AP, HAA remains high. Best discriminatory power is seen in HAA-600/-250 and HAA-600/0,
respectively, as HAA in AP is high and HAA in healthy lungs approaches zero. Figure 3b shows
the corresponding chest CT. Bilateral and peripheral GGO is noted, but so is subtle consolidation in
the posterior segment of the right upper lobe (arrow). Four HU threshold-derived HAAs (colored
boxes in Figure 3a) are shown as overlays in Figure 3c–f. GGOs and consolidations are included
according to their density. HAA −800/−500 only captures mild GGOs; HAA-600/0 also includes
denser consolidation. Abbreviations: AP = atypical pneumonia. HAA = high attenuation area. GGO
= ground glass opacity. SD = standard deviation.



Diagnostics 2021, 11, 738 8 of 14
Diagnostics 2021, 11, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 4. Imaging parameters for differentiation between healthy lungs and AP. An overview of 
all cases included in the analysis illustrating the differences in imaging biomarkers between the 
healthy lung group and the AP group. Color intensity represents the deviation of the imaging 
biomarker from the mean of the “healthy lung” group (in SD). Abbreviations: AP = atypical pneu-
monia. NECT = non-enhanced computed tomography. STD = histogram standard deviation. 
SKEW = skewness. KURT = kurtosis. MEAN = mean lung attenuation. MEDIAN = median lung 
attenuation. HAA = high attenuation area. rHAA = relative high attenuation area. SD = stand-
ard deviation. 

3.4. Correlation of Parameters with CRP and the Clinical Severity Scale in the AP Group 
The mean time interval between acquisition of CT scans and RT-PCR was 1.9 days ± 

2.3. The mean CRP was 68.93 mg/L ± 74.11; the mean severity scoring according to the 
modified WHO scale was 2.38 ± 0.93. 

The correlation coefficients of imaging biomarkers with CRP ranged from r = |0.28| 
to |0.60| and the clinical severity score from |0.30| to |0.57|. The highest correlations with 
CRP regarding the two approaches of density analysis were observed for histogram stand-
ard deviation (r = 0.58, 95%, CI = 0.48–0.66), HAA-600/0 (r = 0.60, 95% CI = 0.51–0.68) and 
rHAA-600/0 (r = 0.51, 95% CI = 0.41–0.60). The clinical severity scale showed highest cor-
relations with histogram standard deviation (r = 0.57, 95% CI = 0.47–0.65), skewness (r = 
−0.57, 95% CI = 0.65–0.40) and kurtosis (r = −0.57, 95% CI = 0.65–0.40)—respectively, HAA-
600/0 (r = 0.56, 95% CI = 0.46–0.64) and rHAA-600/0 (r = 0.55, 95% CI = 0.46–0.64). Figure 5 
provides details, and Supplement S4 provides the coefficient of determination. 

Figure 4. Imaging parameters for differentiation between healthy lungs and AP. An overview of all
cases included in the analysis illustrating the differences in imaging biomarkers between the healthy
lung group and the AP group. Color intensity represents the deviation of the imaging biomarker
from the mean of the “healthy lung” group (in SD). Abbreviations: AP = atypical pneumonia.
NECT = non-enhanced computed tomography. STD = histogram standard deviation. SKEW = skew-
ness. KURT = kurtosis. MEAN = mean lung attenuation. MEDIAN = median lung attenuation. HAA
= high attenuation area. rHAA = relative high attenuation area. SD = standard deviation.

3.4. Correlation of Parameters with CRP and the Clinical Severity Scale in the AP Group

The mean time interval between acquisition of CT scans and RT-PCR was 1.9 days ± 2.3.
The mean CRP was 68.93 mg/L ± 74.11; the mean severity scoring according to the modi-
fied WHO scale was 2.38 ± 0.93.

The correlation coefficients of imaging biomarkers with CRP ranged from r = |0.28|
to |0.60| and the clinical severity score from |0.30| to |0.57|. The highest correlations
with CRP regarding the two approaches of density analysis were observed for histogram
standard deviation (r = 0.58, 95%, CI = 0.48–0.66), HAA-600/0 (r = 0.60, 95% CI = 0.51–0.68)
and rHAA-600/0 (r = 0.51, 95% CI = 0.41–0.60). The clinical severity scale showed highest
correlations with histogram standard deviation (r = 0.57, 95% CI = 0.47–0.65), skewness
(r = −0.57, 95% CI = 0.65–0.40) and kurtosis (r = −0.57, 95% CI = 0.65–0.40)—respectively,
HAA-600/0 (r = 0.56, 95% CI = 0.46–0.64) and rHAA-600/0 (r = 0.55, 95% CI = 0.46–0.64).
Figure 5 provides details, and Supplement S4 provides the coefficient of determination.
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Figure 5. Spearman rank correlations (lower triangle) and 95% confidence intervals (upper triangle,
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NECT = non-enhanced computed tomography. STD = histogram standard deviation. SKEW = skew-
ness. KURT = kurtosis. MEAN = mean lung attenuation. MEDIAN = median lung attenuation.
HAA = high attenuation area. rHAA = relative high attenuation area.

4. Discussion

This study analyzed two approaches to automated CT lung density analysis in patients
with healthy lungs and RT-PCR-confirmed atypical pneumonia: histogram analysis and
HU-thresholding. All analyses were based on an established, automated segmentation
of the whole lungs using deep learning. The majority of the derived imaging biomarkers
differed significantly between the healthy lung group and the AP group. However, the
effect of contrast medium considerably weakened differences in CTPAs. On NECTs, the
histogram-derived parameters histogram standard deviation and rHAA-600/0 showed the
highest discriminatory potential between healthy lungs and lungs affected by AP. Further-
more, standard histogram-based parameters and threshold-based quantification showed
strong correlations with CRP and a clinical scale for disease severity in AP, indicating
clinical meaningfulness.

Obert et al. applied CT histogram analysis to differentiate normal lungs from those
affected by emphysema and fibrotic changes [15]. The facts that the sample size was small
and different pathologies were analyzed hampered a side-by-side comparison with the
data of the study at hand. However, histograms of CTs with increasing degrees of fibrosis, a
condition that results in areas with HAA, just like atypical pneumonia, showed a flattening
of the curve and a shift to the right. This is also well reflected in the histograms of our
AP group.

Ash et al. have examined associations between both local histogram-based quantita-
tive CT measurements and densitometry with pulmonary function test parameters and
mortality in 46 patients with idiopathic pulmonary fibrosis [16]. Among others, higher
HAA, lower skewness and lower kurtosis were associated with worse survival. This points
in the same direction as our study that identified high correlations of histogram parameters
with CRP and a clinical severity scale. Their approach differed methodologically from the
one used in our study. Furthermore, the authors did not correlate the extracted features
with clinical or biochemical severity, nor did they assess different imaging protocols.
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So far, studies assessing the manifestations of viral pneumonia by means of HU
thresholds are rare. Four different studies evaluated the presence of GGOs in parenchymal
lung disease and COVID-19 pneumonia. HAA and rHAA in healthy lungs are meant
to reflect the baseline of normal lung structure without pathogenic components. This
baseline needs to be considered in the interpretation of severity from HAA/rHAA in
AP. In a previous study, Mascalchi et al. [55] emphasized the dependency of quantitative
parameters and lung volume. Indeed, we found lower lung volumes in the AP group that
underwent NECT compared to healthy lungs. We therefore propose to consider rHAA
over HAA in the quantification of disease-related alterations in AP.

A preliminary study evaluated a fixed HU threshold for the quantification of pul-
monary opacities in COVID-19 [11] and reported a HU-range of –600/0 HU to be suitable
for quantification and segmentation of affected areas. Furthermore, [11] reported higher
mean HAA-600/0 values in those studies with iodine contrast applied in comparison to
NECTs, which is in line with our results and was probably due to a higher HAA-baseline
caused by partial volume effects of peripheral pulmonary arteries. This could also explain
the fact that normal lungs and those affected by AP were much better separable on NECT
compared to CTPA. It is noteworthy that the HU threshold, which does not consider GGOs
alone, provides the best classification and correlates best with clinical parameters. Hence,
the type of GGOs influences severity stratification. One can assume that denser HAA such
as in the HU range of −600/0 HU reflect the extent of disease more precisely than light
GGOs alone in a HU range of −800/−500 HU.

Sumikawa et al. [21] used another HU threshold (−700/−251 HU) to differentiate
usual interstitial pneumonia and nonspecific interstitial pneumonia in 60 patients. The
numbers of voxels with higher density correlated with three parameters (contrast, variance
and entropy). The authors concluded that volume histogram analysis for cubic ROIs
may be feasible for differentiating between usual interstitial pneumonia and non-specific
interstitial pneumonia. In our opinion, approaches using whole lung segmentation are
more robust than manually defined ROIs. An inverse approach to HAA analysis was
performed by Colombi et al. [56] with the quantification of well-aerated lung areas using a
HU range of −950 to −700 HU in COVID-19. The authors found significant differences
between CTs of patients requiring intensive care unit admission, which is consistent with
the strong correlation of HAA with the modified WHO scale for severity found in our study.
Similar observations were reported by Leonardi et al. [9] and Lanza et al. [10], showing the
predictive potential of quantitative CT parameters for the need for oxygenation support
and intubation in COVID-19.

To further study the clinical meaningfulness of CT features extracted from NECTs,
correlations of imaging biomarkers with CRP were assessed. CRP is a standard laboratory
parameter of inflammation and commonly elevated in patients with influenza and COVID-
19 [33,38,39]. Sun et al. described a correlation of r = 0.49 between CRP and a total lesion
CT score [3], which is consistent with our results (HAA-600/0: r = 0.60, 95% CI = 0.51–0.68).

This study has limitations. First, it was designed as a joint analysis of two important
viral pathogens causing AP, influenza virus and SARS-CoV-2. In our opinion, the facts
that the CT imaging phenotypes of various causes of AP resemble each other and that this
analysis is based on imaging characteristics justify this approach. Second, the methods
used aggregate information on the density of the whole lung. Information on location,
which is diagnostically important, is therefore disregarded. However, the intention of
this study was not to state a diagnosis for the underlying disease. Third, we are aware of
the potential influence of acquisition and reconstruction parameters on our results. This
being a single center study and scanners from one vendor being used may influence the
reproducibility. On the other hand, image-derived parameters matched clinical parameters
and were comparable to previous studies. A collection of sample datasets is available
under Supplement S5. Fourth, the AP group contained the whole range of pulmonary
imaging findings. This also included a small number of CTs without infiltrates. The fact
that all imaging biomarker differences between the healthy and AP group were nonetheless
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significant for NECTs underlines the discriminatory potential of the two approaches. Fifth,
CRP is not distinct for diagnosis of COVID-19; nevertheless, it is an established biochemical
parameter for assessment of severity in infectious and inflammatory diseases. Sixth,
the MIC is a measure of differing probability distributions and thus provides a group
discriminatory index, yet is not suited to assign an examination to one of these groups.

5. Conclusions

To conclude, this study showed that both histogram analysis and HU thresholds are
promising sources of automatically extractable meaningful imaging biomarkers. They
differ significantly between NECTs of healthy lungs and those of patients affected by AP.
These approaches seem less suited for analysis of CTPAs. Of note, histogram standard
deviation and rHAA-600/0 were the parameters that differed most between the two groups.
Furthermore, the derived imaging biomarkers correlate with CRP and a clinical severity
scale, supporting their clinical meaningfulness. In our opinion, rHAA-600/0 is the most
intuitive, comprehensible and comparable parameter and is therefore usable in clinical
practice and for further studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11050738/s1, Supplementary documents S1–S4 provide further details on parame-
ters and results.

Author Contributions: Conceptualization, A.R., T.W., B.S. and A.W.S.; methodology, T.W., C.A. and
A.W.S.; software, M.B. and S.Y.; validation, T.W., C.A. and A.W.S.; formal analysis, A.R., T.W., G.S.,
B.S. and A.W.S.; investigation, T.W., C.A. and A.W.S.; resources, J.B. and B.S.; data curation, A.R., T.W.
and F.C.F.; writing-original draft, A.R, T.W. and A.W.S.; writing-review and editing, A.R., M.B., F.C.F.,
G.S., C.A., J.B., B.S., T.W. and A.W.S.; visualization, A.R. and M.B.; supervision, T.W. and A.W.S.;
project administration, A.R., T.W. and A.W.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki. The data collection and evaluation were approved by the local ethics committee
(Ethikkommission Nordwest und Zentralschweiz, project IDs: Req-2020-00595 and 2020-00566).

Informed Consent Statement: Patient consent was waived and anonymization was performed for
all figures and datasets. This procedure was in accordance with the legal requirements of the local
ethics committee and the Human Research Act.

Data Availability Statement: All data supporting the reported results will be uploaded on a publicly
available repository, with no identifiable patient information. The methods used are available
here: https://github.com/usb-radiology. A sample dataset of 20 CTs underlying this article with
associated demographic information is freely available in the following repository [hyperlink https:
//www.rapmed.net/#/publications/NECT-CTPA]. Please refer to Supplement S5 for further details.
All software and code used in this study are available online and without restriction. The algorithm
for lung segmentation and reporting tool can be found as a link in the original publication [11]. The
Python libraries used are open-access and can be found following the links: SciPy [45]: https://www.
scipy.org/scipylib/download.html. pandas [48]: https://pandas.pydata.org/. scikit-learn [49]: https:
//scikit-learn.org/stable/install.html. matplotlib [50]: https://matplotlib.org/users/installing.html.
seaborn [51]: https://seaborn.pydata.org/installing.html.

Acknowledgments: We appreciate the support of our research team, namely, Rita Achermann, Ivan
Nesic, Joshy Cyriac and Jakob Wasserthal.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/diagnostics11050738/s1
https://www.mdpi.com/article/10.3390/diagnostics11050738/s1
https://github.com/usb-radiology
https://www.rapmed.net/#/publications/NECT-CTPA
https://www.rapmed.net/#/publications/NECT-CTPA
https://www.scipy.org/scipylib/download.html
https://www.scipy.org/scipylib/download.html
https://pandas.pydata.org/
https://scikit-learn.org/stable/install.html
https://scikit-learn.org/stable/install.html
https://matplotlib.org/users/installing.html
https://seaborn.pydata.org/installing.html


Diagnostics 2021, 11, 738 12 of 14

Abbreviations

AP Atypical Pneumonia
CI Confidence Interval
COVID-19 Corona Virus Disease 2019
CRP C-Reactive Protein
CTPA CT Pulmonary Angiogram
GGO Ground Glass Opacity
HAA High Attenuation Area (absolute)
HU Hounsfield Unit
IRB Institutional Review Board
KURT Kurtosis
MEAN Mean Lung Attenuation
MEDIAN Median Lung Attenuation
MIC Mutual Information Classifier
ML Machine Learning
NECT Non-Enhanced Computed Tomography
PACS Picture Archiving and Communication System
rHAA High Attenuation Area (relative)
RT-PCR Reverse Transcription Polymerase Chain Reaction
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
SD Standard Deviation
SKEW Skewness
STD Histogram Standard Deviation
WHO World Health Organization
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