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Abstract

Background: Diagnosis of malaria in pregnancy is problematic due to the low sensitivity of conventional diagnostic
tests (rapid diagnostic test and microscopy), which is exacerbated due to low peripheral parasite densities, and lack of
clinical symptomes. In this study, six potential biomarkers to support malaria diagnosis in pregnancy were evaluated.

Methods: Blood samples were collected from pregnant women at antenatal clinic visits and at delivery. Microscopy
and real-time PCR were performed for malaria diagnosis and biomarker analyses were performed by ELISA (interleukin
10, IL-10; tumor necrosis factor-a, TNF-q; soluble tumor necrosis factor receptor Il, sSTNF-RII; soluble fms-like tyrosine
kinase 1, sFlt-1; leptin and apolipoprotein B, Apo-B). A placental biopsy was collected at delivery to determine placental
malaria.

Results: IL.-10 and sTNF-RIl were significantly higher at all time-points in malaria-infected women (p < 0.001). Both markers
were also positively associated with parasite density (p < 0.001 and p = 0.003 for IL-10 and sTNF-RII respectively). IL-10
levels at delivery, but not during pregnancy, were negatively associated with birth weight. A prediction model was
created using IL-10 and sTNF-RII cut-off points. For primigravidae the model had a sensitivity of 88.9% (95%C| 45.7-98.7%)
and specificity of 83.3% (95% ClI 57.1-94.9%) for diagnosing malaria during pregnancy. For secundi- and multigravidae the
sensitivity (81.8% and 56.5% respectively) was lower, while specificity (100.0% and 94.3% respectively) was relatively high.
Sub-microscopic infections were detected in 2 out of 3 secundi- and 5 out of 12 multigravidae.

Conclusions: The combination of biomarkers IL-10 and sTNF-RIl have the potential to support malaria diagnosis in
pregnancy. Additional markers may be needed to increase sensitivity and specificity, this is of particular importance in
populations with sub-microscopic infections or in whom other inflammatory diseases are prevalent.
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Background

In sub-Saharan Africa, an estimated 28 million pregnant
women are at risk of contracting malaria [1]. Malaria dur-
ing pregnancy caused by Plasmodium falciparum can
have severe health consequences, such as maternal
anemia, low birth weight, preterm birth, or even abortions
and stillbirth [2, 3]. In Africa, up to 100.000 infant deaths
per year are related to low birth weight due to malaria in
pregnancy [4]. Normally, the adult population in malaria
endemic areas has acquired (partial) immunity against the
parasite due to repeated exposure throughout their lives,
suppressing clinical symptoms [5, 6]. This immunity is for
a great part directed against surface antigens of the P. fal-
ciparum-infected erythrocyte. However, during malaria in
pregnancy a unique surface antigen on P. falciparum-in-
fected erythrocytes is expressed, against which immunity
is lacking [7]. This surface antigen is the variant surface
antigen 2-chrondroitin sulphate A (VAR2CSA) antigen, a
member of the P. falciparum erythrocyte membrane
protein 1 (PfEMP1) family of surface antigens. With this
pregnancy specific antigen, P. falciparum parasites can se-
quester in the placenta by binding to chondroitin sulphate
A on syncytiotrophoblasts, thereby evading splenic clear-
ance [8, 9]. This condition is known as placental malaria
(PM) and can be further characterized by subsequent at-
traction of mononuclear cells into the intervillous space,
changes in pro- and anti-inflammatory cytokine levels,
hemozoin deposition in fibrin and impaired angiogenesis
[10-14]. The burden of PM and associated LBW is most
severe in primigravidae, while it wanes in multigravid
women. This is because antibodies against VAR2CSA anti-
gens are particularly low or absent in primigravidae who
are exposed to the antigen for the first time, while women
generally acquire VAR2CSA antibodies during successive
pregnancies [7, 11, 15].

Currently, one of the main methods to prevent malaria in
pregnancy and its related morbidity is intermittent prevent-
ive treatment with sulfadoxine-pyrimethamine (IPTp-SP),
which consists of systematically administering SP at ante-
natal care (ANC) visits from second trimester onwards, re-
gardless of malaria infection status [16]. Although this
strategy is currently effective in preventing malaria-related
low birth weight [17], the increasing resistance against SP
and the declining overall malaria prevalence may warrant
alternative approaches such as intermittent screening and
treatment [1, 18]. However, due to low parasite densities,
standard diagnostic methods like microscopy and rapid
diagnostic tests (RDTs) are suboptimal [19, 20]. Molecular
diagnostic techniques such as (real-time) polymerase chain
reaction (PCR), are usually of limited use in endemic
settings because of technical, infra-structural and financial
requirements. Therefore, there is the need for alternative
diagnostic approaches to reliably diagnose P. falciparum in-
fections during pregnancy.
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In the current diagnostic landscape, there is increasing
interest in identifying and using host biomarkers to diag-
nose infection; for malaria in pregnancy, several poten-
tial biomarkers have been suggested (systematically
reviewed by Ruizendaal et al.) [12]. Based on this review,
a combination of markers of inflammation, angiogenesis
and lipid metabolism was selected for further evaluation
in the current study. The included biomarkers were: in-
flammatory markers interleukin 10 (IL-10), tumor ne-
crosis factor-a (TNF-a) and soluble tumor necrosis
factor receptor II (sTNF-RII); angiogenesis marker ‘sol-
uble fms-like tyrosine kinase 1’ (sFlt-1); and markers of
lipid metabolism leptin and apolipoprotein B (Apo-B).
The levels of these potential biomarkers were studied in
malaria-infected and uninfected pregnant women living
in Nanoro, Burkina Faso. This is a highly endemic area
for malaria in which pregnant women are commonly in-
fected with malaria, albeit frequently without clinical
symptoms [21]. Women were followed-up during preg-
nancy until delivery. Malaria diagnosis and biomarker
analysis was performed at three time-points: second tri-
mester, third trimester and delivery.

Methods

Study area

The study was conducted in the Nanoro health
centre catchment area, situated approximately 85 km
North-West of Ouagadougou, the capital of Burkina
Faso. Malaria is highly seasonal with intense trans-
mission during the rainy months (June — October),
with a peak towards the end of the rainy season.

Study population, procedures and design

This study aimed to identify host biomarkers that can be
used to support malaria diagnosis. The study was nested
within a cluster-randomized controlled trial (COSMIC study,
trial registration numbers ISRCTN372259296 Current
Controlled Trials and NCT01941564 clinicaltrials.gov). Full
details of the trial have been reported elsewhere [22]. In the
cluster-randomized controlled trial 1800 women from 30
different villages were included, of which 160 women were
included in the current case-control study. Pregnant women
were enrolled at first ANC visit and followed-up until deliv-
ery. Women were enrolled in the study if they were resident
in the area and did not report hypersensitivity to sulphona-
mides. Women known to be HIV infected were excluded.

At each ANC visit, women received standard antenatal
care, including intermittent preventive treatment with
sulfadoxine-pyrimethamine according to national guide-
lines and as advised by the World Health Organization.
[16] Furthermore, demographic and clinical data were
reported in a case record form and a blood slide and
blood spots on Whatman 3MM or 1 MM filter paper
(spots of at least 12 mm diameter) were collected from



Ruizendaal et al. Biomarker Research (2017) 5:34

finger prick blood. At first ANC visit (usually second
trimester), second or third ANC visit (third trimester)
and at delivery a venous blood sample was collected in
vacutainer tubes containing ethylenediaminetetraacetic
acid (EDTA). At delivery, birth weight was registered
and a placental biopsy for histological analysis was col-
lected. Gestational age at delivery was assessed by the
new Ballard score [23].

The current study was set up as a case-control study.
Initial cases and controls were defined by 18S P. falciparum
real-time PCR results from peripheral blood spots collected
at delivery. By using a random number generator, 79 mal-
aria positive (cases) and 81 malaria negative (controls) preg-
nant women were selected. Blood samples were analysed
using commercial ELISA kits for the 6 selected biomarkers
(IL-10, TNF-a, sTNF-RII, sFlt-1, leptin and Apo-B). For
statistical analyses of biomarker results the case-control
definition was abandoned, instead the following definitions
of malaria infection were used: peripheral malaria infection
(positive by real-time PCR or microscopy, see below for
methods) or placental malaria infection (acute or chronic
infection, see below for methods).

DNA extraction and real-time PCR of filter paper blood
spots

Blood spots on filter paper collected at ANC visits and
delivery were air dried, sealed in bags with silica and
transported to the central laboratory (Unité de
Recherche Clinique de Nanoro, URCN) where they were
stored at ambient temperature until shipment to the
Netherlands (Academic Medical Centre, Amsterdam) for
molecular analyses. For each woman at each of the three
time-points one blood spot per collected filter paper was
punched using Acu-punch skin biopsy punchers
(acuderm® inc, Florida, USA) and transferred to a 5 mL
polystyrene tube. DNA extraction was performed using
the Nuclisens EasyMag (bioMérieux, Marcy-I'Etoile,
France) system as previously described [24]. Samples of
extracted DNA were stored at -20 °C. P. falciparum
DNA was detected by real-time PCR as previously
described with some minor adjustments in primer con-
centrations and probe sequence [24—27]. In each PCR
run a dilution series of P. falciparum FCR3 culture was
included (10* parasites/ul. — 1 parasites/uL), as well as
positive (FCR3 spiked EDTA blood from healthy donors,
Dutch blood bank) and negative extraction controls
(EDTA blood from healthy donors, Dutch blood bank).

Microscopy slides

Blood slides collected at ANC visits and delivery were
Giemsa stained (3%) for 45—-60 min. Slides were read inde-
pendently by two microscopists. Parasites were counted
against 200 leukocytes, or 500 leukocytes if the count was
less than 10 parasites/200 leukocytes. Slides were considered
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negative if no parasite was detected in 100 high power fields.
Any discrepancies in the two readings were resolved by a
third independent reader.

Placental histology

Placental biopsies of +1 cm?® were collected from the
maternal side of the placenta and preserved in 10%
neutral buffered formalin. The tissue was subse-
quently embedded in paraffin wax and stored at 4 °C
until shipment to the Medical Research Council The
Gambia (MRCGQG) for further evaluation. Four milli-
meter thick paraffin embedded tissue sections were
stained with hematoxylin-eosin after which they were
read by a trained microscopist. Spot checks were
done by a senior lab technician on a random sample
of biopsies. Histology results were categorized into:
acute infection (parasites present, but no pigment),
chronic infection (both parasites and pigment
present), past infection (only pigment present) and no
infection (no parasites, no pigment) [28].

Biomarker ELISA

Venous blood samples collected at ANC visits and at deliv-
ery were stored and transferred in cooling boxes to the cen-
tral laboratory in Nanoro within one day. The exact time
and date of blood collection as well as the time and date of
further processing of the sample in the laboratory were
documented to enable estimation of storage and transfer
time. Blood samples were centrifuged at 1000 g for 15 min
after which the plasma was aliquoted in 1.5 mL cryotubes
and stored at —80 °C. Plasma samples were shipped to the
Netherlands (Academic Medical Centre, Amsterdam) on
dry ice for further analyses. Commercially available quanti-
kine ELISA kits for human samples were used according to
the manufacturer’s instructions to test the following
biomarkers: IL-10, TNF-«, sTNF-RII, sFlt-1, leptin and
Apolipoprotein-B (R&D Systems, Minneapolis, USA). The
sensitivities of the quantikine ELISA kits for the respective
biomarkers were 3.9 pg/mL, 55 pg/mL, 2.3 pg/mL,
13.3 pg/mL, 7.8 pg/mL and 9.97 ng/mL. Measurements
below the detection limit were given half the concentration
of the detection limit.

Statistical analyses

Data were analysed using Stata 14.1. Differences in baseline
characteristics such as age, haemoglobin, gravidity, infection
status at enrolment and delivery and (low) birth weight
were analysed by linear or logistic regression with robust
standard errors to account for clustering of women in vil-
lages. Regression analyses with robust standard errors were
also used to associate the biomarkers with peripheral and
placental malaria infection, (low) birth weight, parasite
density and storage time. Sub-analyses were performed for
trimester of sample collection and gravidity. A diagnostic
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model was created by selecting the biomarkers with clinic-
ally relevant and significant differences between malaria-
infected and uninfected women. The dataset was randomly
divided into a test and validation set. Based on the distribu-
tions of the test set in both malaria positive and malaria
negative women, cut-off points were manually determined
for the biomarkers of interest. Sensitivity and specificity for
the different end scores in the validation set were calculated
using logistic regression analyses with robust standard
errors. Confidence intervals (95%) and p values are re-
ported, unadjusted for multiple comparisons.

Results

For the randomly selected 79 cases and 81 controls, 430
plasma samples were available for biomarker analyses
(Fig. 1). The Ballard score was missing for 22 partici-
pants (13.8%), while the available scores resulted in a
wide unrealistic gestational age distribution with a range
of 34 up to 47 weeks. Therefore, the trimester of sample
collection was determined by considering samples
collected at delivery as full term (n=155), samples
collected during 84 days prior to delivery as third tri-
mester (1 =148) and those collected more than 84 days
prior to delivery as second trimester samples (n =127).
The mean age was 254+ 6.0 years and none of the
participants showed signs of preeclampsia during follow-
up. Hemoglobin levels at delivery were equal in cases
and controls. There were slightly more primigravidae
among cases (25.3%) than controls (19.8%), but the dif-
ference was not statistically significant (p = 0.371). There
were no differences in infection rates at enrollment
between cases and controls, both by real-time PCR (48.7
versus 46.9%, p=0.799) and microscopy (30.4 versus
32.1%, p =0.798). At delivery, only 43% of cases (34/79)
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detected by real-time PCR were also positive by micros-
copy. In contrast, most real-time PCR negative samples
at delivery were also microscopy negative (only 2.5%, 2
out of 81, tested positive). Only 11.9% (8/67) of women
with a peripheral infection detected by real-time PCR
had a concurrent active placental infection, while 4.5%
(3/67) of real-time PCR negative controls had an active
placental infection (Table 1). The birthweight and the
prevalence of low birth weight babies did not signifi-
cantly differ between cases and controls. The median
number of IPTp-SP doses was 3 (IQR 2-4), which did
not significantly differ between cases and controls.

Stability of biomarkers in EDTA blood

The influence of the storage and transport time of EDTA
samples to the central laboratory on the markers was
assessed (Additional file 1: Table S1). None of the
markers were significantly affected by time, except for
sFlt-1 which slowly increased over time (p =0.001). In
multivariate analyses including storage and transport
time, none of the associations between biomarkers and
peripheral or placental malaria infection were affected.

Biomarker levels in women with and without peripheral
malaria infections

At each time point (second trimester, third trimester
and delivery) the levels of the biomarkers were
compared between women with and without peripheral
malaria infection (Fig. 2). Peripheral infection was de-
fined as being real-time PCR and/or microscopy positive
for P. falciparum. For nine biomarker measurements
during pregnancy the real-time PCR data was missing,
and one microscopy result was missing. For sFlt-1 and
STNE-RII there were 33 (7.7%) and 34 (7.9%) samples

1121 w omen enrolled
into COSMIC trial (July
2014 - September

2015)

(146 positive at delivery\
for P. falciparum by

(975 negative at delivery\
for P. falciparum by

real-time PCR real-time PCR
N l J . l J
e ™ e R
Random selection: Random selection:
79 cases 81 controls

\)A‘\/
430 plasma samples available:

2nd trimester: 127 samples

31 trimester: 148 samples
delivery: 155 samples

Fig. 1 Flow chart of participants included in the biomarker analyses

Missing samples:
30 no visit at correct timepoint
20 no sample taken (of w hich 5 at delivery)
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Table 1 Clinical characteristics of participants included in the biomarker analyses

Total (n=160) Cases (n=79) Controls (n=81) p value

Age in years, mean (SD) 254 (+ 6.0) 252 (+ 6.2) 25.7 (+ 5.8) 0.560
Preeclampsia 0 0 0 -
Hemoglobin at delivery in g/dL mean (SD) 120 (1.5) 119 (1.6) 121 (1.4) 0.527
Gravidity

Primigravidae % (n) 225 (36) 253 (20) 19.8 (16) 0.371

Secundigravidae % (n) 175 (28) 16.5 (13) 185 (15) 0.784

Multigravidae % (n) 60 (96) 58.2 (46) 61.7 (50) 0.595
Infected at first visit

By microscopy % (n) 31.3 (50/160) 304 (24/79) 32.1 (26/81) 0.798

By real-time PCR % (n) 47.8 (76/159) 48.7 (38/78) 46.9 (38/81) 0.799
Infected at delivery

By microscopy, % (n) 22.5 (36/160) 43.0 (34/79) 2.5 (2/81) <0.001

By placental biopsy, % (n) 82 (11/134) 11.9 (8/67) 45 (3/67) 0.165

Birthweight in kg, mean (SD) 3.01 (0.57) 2.94 (0.62) 3.07 (0.52) 0.130

Low birth weight < 2500 g, % (n) 9.5 (15/158) 7.7 (6/78) 11.3 (9/80) 0410

IPTp-SP doses, median (IQR) 3(2-4) 3 (2-4) 3(2-3) 0627

respectively that fell outside the range of the standard
curve. Repeated measurements were not conclusive as
the adjusted mean difference was >10%. Therefore these
measurements were excluded from the initial analyses,
but included for sensitivity analyses (see below).

Both inflammatory markers IL-10 and sTNF-RII were
significantly higher in infected than in uninfected
women at all time-points (p <0.001) (Fig. 2). Although
TNEF-a also showed significant higher levels in malaria
infected women, many samples were below the TNF-a
assay detection limit (127/176 samples with peripheral
infection and 238/254 uninfected samples). The
remaining biomarkers did not show consistent differ-
ences between malaria infected and uninfected women
during pregnancy, except for leptin, but in second tri-
mester this difference was not significant (p =0.094).
Multivariate analyses, including age and gravidity, did
not substantially change the associations between any of
the markers and malaria infection. Sensitivity analyses
including the primary or repeated measurements of the
excluded sTNF-RII and sFlt-1 samples, did not result in
different conclusions, except that p values for the de-
crease in sFlt-1 levels in second trimester were signifi-
cant (p=0.012, p=0.017 and p =0.029 for primary and
repeated measurements respectively).

Sub-microscopic peripheral malaria infections and
biomarker levels

Sub-analyses were performed for differences in biomarker
concentrations between women with sub-microscopic per-
ipheral infections compared with uninfected women. Only

IL-10 and sTNF-RII remained significantly increased in sec-
ond and third trimester in women with sub-microscopic in-
fections compared with uninfected women. There was no
longer a difference in these cytokine levels between infected
and uninfected women at delivery (Fig. 3).

Biomarker levels in women with and without placental
malaria infections

IL-10 and sTNF-RII were significantly higher in women
with an active placental infection (both acute and chronic)
than in those without (p values <0.001 and 0.006 respect-
ively) (Fig. 4). These two markers were also significantly
increased at time of delivery if ‘any malaria infection’
(both placental and/or peripheral) was compared with no
malaria infection (p < 0.001). Multivariate analyses, includ-
ing age and gravidity, did not change the results.

Regression analyses were also performed for biomarker
levels during pregnancy compared with a chronic malaria
infection (active chronic or past chronic) at delivery. In-
creased IL-10, TNF-a, sSTNF-RII and Apo-B levels in sec-
ond trimester were significantly associated with chronic
PM infections at delivery (p =0.001; p =0.025; p < 0.001
and p =0.001 respectively). In the third trimester, higher
levels of IL-10 and sTNF-RII were associated with an in-
creased risk of chronic PM infection at delivery (p = 0.002
for both).

The biomarker levels at delivery were compared for
women with chorioamnionitis (7 = 44) and without (1 = 22),
as determined by placental histology. None of the markers
showed significant differences (Additional file 1: Table S2).
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Biomarker levels in comparison with parasite density

Regression analyses for the association between each of
the biomarkers and parasite density were based on
microscopy results (Table 2). IL-10, TNF-a, sTNF-RII
and sFlt-1 were positively associated with parasite
density (p < 0.001, p = 0.001, p = 0.003 and p = 0.008, respect-
ively). Multivariate analyses adjusting for gravidity and age
did not change these associations. Repeating the analysis

using real-time PCR estimations of parasite densities (includ-
ing sub-microscopic infections) produced similar results, ex-
cept that sFIt-1 was no longer significantly associated with
parasite density (p = 0.344) (data not shown).

Biomarker levels in comparison with birth weight

Birth weights were similar in women with peripheral
malaria compared to women without peripheral malaria
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at delivery (p = 0.184) (Table 1). Birth weights were also
similar between women with and without a placental
infection (both for active or chronic placental infection;
p=0.873 and p=0488 respectively). An inverse
correlation was seen for IL-10 levels and birth weight
(p=0.006) at delivery, but not for IL-10 concentra-
tions in second and third trimester (Table 3). A
positive correlation for Apo-B and birth weight was
seen at delivery (p = 0.027) and also in second and third tri-
mester (p =0.020 and p =0.076 respectively). However, in
multivariate analyses adjusting for age, gravidity and mal-
aria infection no associations were observed for any of the
biomarkers and birth weight. Also, none of the markers
were significantly associated with low birth weight
(<2500 g) at any time point. (Additional file 1: Table S3).

Prediction model using IL-10 and sTNF-RII for malaria
during pregnancy

Participants of the study were randomly assigned to a
test set (n =80) and a validation set (# = 80). Based on
the distributions of the individual biomarkers in malaria

positive versus negative women (peripheral diagnosis) in
the test set (Additional file 2: Figure S1), a scoring model
using IL-10 and STNEF-RII levels was developed for
predicting a malaria infection during second and third
trimester (Tables 4 and 5). Delivery samples were not
included in these evaluations, as for preventing malaria-
related morbidity there is no clinical use in identifying P.
falciparum infections at delivery. For IL-10, a score of 0
was given for measurements <30 pg/mL, a score of 1 was
given for measurements between 30 and 75 pg/mL and a
score of 2 was given measurements over 75 pg/mL. For
STNE-RII a score of 0 or 1 was given to levels below or
above the threshold of 3700 pg/mL respectively. By using
real-time PCR and microscopy as reference test, a cut-off
value of 2 points (<2 is negative, >2 is positive) for the
model in the validation set resulted in a sensitivity of
88.9% (95% CI 45.7-98.7) and specificity of 83.3% (95% CI
57.1-94.9) in primigravidae; 81.8% (95% CI 48.8—-95.50)
and 100.0% (95% CI 71.5-100.0) for secundigravidae; and
56.5% (95% CI 41.7-70.2) and 94.3% (95% CI 86.3—97.8%)
for multigravidae (Table 5).
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were compared with samples from women with placentas without parasitized erythrocytes (past/no infection, n=119). For sTNF-RII these
numbers were n=9 for acute/chronic and n= 109 for past/no infection and for sFlt-1 n=9 for acute/chronic and n= 101 for past/no infection.
Pf=P. falciparum infection

Performance of the model was also assessed for micros-
copy negative samples only, to verify whether the model
could be of use for diagnosing sub-microscopic infections.
However, in our validation set none of the primigravidae
had a sub-microscopic infection, hence the biomarkers
model was of no additional value in these cases. For

secundigravidae 2 out of 3 (66.7%) sub-microscopic infec-
tions would be detected by the model, without any false
positive results. For multigravidae 5 out of 12 (41.7%)
women with sub-microscopic infections would be identi-
fied, while 3 out of 51 (5.9%) women would have a false
positive test result.
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Table 2 Association of parasite density with biomarker levels by
regression analyses with robust variance estimators
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Table 4 Prediction model for malaria during pregnancy based
on IL-10 and sTNF-RII levels

Biomarker N Coeff? 95% ClI p Biomarker Threshold (pg/mL) Points
IL-10 93 0.25 0.15 035 <0.001 IL-10 <30 0
TNF-a 93 017 0.08 0.27 0.001 30-75 1
STNF-RII 73 0.14 0.05 0.23 0.003 >75 2
sFIt-1 84 0.17 0.05 0.29 0.008 STNF-RII <3700 0
Apo-B 93 -0.02 -0.09 0.05 0632 >3700 1
Leptin 93 -0.05 -0.22 0.1 0516 Maximum 3

Biomarkers and parasite density are on the log scale. Parasite density was
based on microscopy results

Coeff coefficient

?One log increase in biomarker per one log increase of parasite density

Discussion

Two inflammatory markers were useful as biomarkers
for malaria in pregnancy: the cytokine IL-10 and soluble
cytokine receptor sTNF-RII. Both markers were signifi-
cantly higher throughout pregnancy and at delivery in
malaria infected women (both for peripheral malaria and
placental malaria) than in uninfected women, as was
shown previously [29-33]. Furthermore, higher levels of
IL-10 and sTNF-RII during pregnancy were associated

Table 3 Association of biomarker levels with birth weight by
regression analyses with robust variance estimators

Biomarker N Coeff? 95% Cl p
Delivery
IL-10 149 -0.30 -0.58 -003 0.006
TNF-a 149 0.05 -0.12 023 0.543
STNF-RII 137 -0.09 -023 0.05 0.208
SFlt-1 127 0.01 -0.23 0.26 0.905
Apo-B 149 0.16 0.02 0.30 0.027
Leptin 149 -0.10 -0.67 0.17 0447
Third trimester
IL-10 141 -0.02 -0.10 0.06 0.680
TNF-a 141 0.06 -0.08 0.19 0.393
STNF-RII 137 0.08 -0.16 032 0493
sFIt-1 134 -0.16 -0.31 —-0.01 0.037
Apo-B 141 0.1 -0.01 0.23 0.076
Leptin 141 -0.04 -0.12 0.05 0.365
Second trimester
IL-10 123 0.00 -0.05 0.05 0.999
TNF-a 123 0.15 -0.11 041 0.240
STNF-RII 105 0.03 -0.10 0.16 0611
sFIt-1 119 -0.13 -0.37 0.1 0.264
Apo-B 123 0.12 0.02 023 0.020
Leptin 123 0.02 -0.10 0.14 0.733

with chronic placental malaria at delivery. The fact that
IL-10 and sTNF-RII have been identified as potential
biomarkers in other studies with different populations of
pregnant women and different methodologies, [29-33]
reinforces the notion that both markers are strongly as-
sociated with malaria infection. This is supported also by
the association of both markers with parasite density in
this study. Interestingly, recent research also suggests
that STNF-RII in urine can be used as a biomarker for
malaria in pregnancy [34].

As a novelty to previous research, the discriminative
properties of the two markers were translated into a
model for the diagnosis of malaria during pregnancy,
with a high sensitivity (88.9%, 95% CI 45.7-98.7) and fair
specificity (83.3% (95% CI 57.1-94.9) for primigravidae.
For secundi- and particularly multigravidae the model
was less adequate in terms of sensitivity, possibly
because IL-10 and sTNE-RII responses are negatively in-
fluenced by the immunity acquired during previous
pregnancies and by lower parasite densities. As primi-
gravidae are at highest risk of malaria infection and of

Table 5 Sensitivity and specificity for model cut-off scores
compared with peripheral malaria by real-time PCR or
microscopy

Sensitivity%  95% Cl Specificity%  95% Cl

Primigravidae

Model >0 100 664 100 542 349 723

Model >1 889 457 987 833 571 949

Model >2 778 445 939 100 858 100
Secundigravidae

Model >0 90.9 511 990 636 304 875

Model >1 818 488 955 100 715 100

Model >2 545 201 852 100 715 100

Multigravidae

Model >0 826 602 937 566 447 678

Model >1 565 417 702 943 863 978

Model >2 173 74 357 981 893 997

Biomarkers are on the log scale, twins and stillborn babies excluded
Coeff coefficient
“One kg increase per one log increase of biomarker. Univariate analyses

Model > 0: score 0 = negative, score > 0 = positive; Model > 1: score 0/1 =
negative, score > 1 = positive; Model > 2: score
0-2 = negative, score > 2 = positive
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malaria-related morbidity [35], the model is still clinic-
ally relevant.

A model using host biomarkers would be most
likely of use as an addition to current malaria diag-
nostics. For example, given the limited sensitivity of
RDT and field microscopy, the biomarkers model
might assist in identifying women with malaria infec-
tions not detected by these tests. Therefore, the
additional value of the model was assessed for sub-
microscopic infections (RDTs were not performed) in
the current study. Unfortunately, the number of sub-
microscopic infections were relatively small and none
were found in primigravidae in the validation set. In
secundi- and multigravidae, it seems that the model
results in few false positive diagnoses of malaria, yet,
the sensitivity for detecting sub-microscopic infections
can still be improved.

Initially, the idea to generate sufficient sensitivity and
specificity of the biomarkers model was the inclusion of
markers from different groups or pathways involved in
PM, e.g. sFlt-1, leptin and Apo-B, and not solely (anti)in-
flammatory markers. As these other markers could not
be included in the model, it is unclear whether the com-
bination of IL-10 and sTNF-RII is sufficiently specific for
diagnosing malaria. Both markers are involved in inflam-
matory processes and may increase during infectious or
inflammatory diseases other than malaria. IL-10, pro-
duced by numerous immune cells, has both anti- and
pro-inflammatory effects: it can inhibit antigen presenta-
tion and pro-inflammatory Thl cytokine expression, yet
it can also have stimulatory effects on B-cells and nat-
ural killer cells (reviewed in [36, 37]). It was already
shown that pregnant women with influenza also present
with increased concentrations of IL-10. In contrast, IL-
10 levels were within normal range in women infected
with the parasitic disease filariasis [38, 39]. For sTNF-
RIIL, that has mainly an anti-inflammatory effect by pre-
venting circulating TNF-« from activating its cell bound
receptors [40], there is a lack of available data on its dy-
namics in pregnant women with other infectious dis-
eases. However, it is unlikely that increased sTNF-RII
levels are unique to malaria infections, as higher levels
have been found in non-pregnant individuals with for
example dengue infection [41]. Furthermore, increased
STNE-RII levels have been associated with preeclampsia
[42]. The combination of IL-10 and sTNF-RII as pro-
posed in the model should therefore be evaluated in lar-
ger cohorts and in populations with other inflammatory
diseases to assess its specificity. Furthermore, it would
be of value to study additional promising markers based
on recent literature and a literature review [12], e.g. the
angiopoietins [43], low and high density lipoproteins
(LDL and HDL) [44], complement component 5a (C5a)
[14], or interferon-y induced protein 10 (IP-10) [29, 30].
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Interestingly, a recent study in non-pregnant individuals
revealed that the combination of haptoglobin with
STNE-RII or IL-10 could be used to discriminate be-
tween bacterial, viral or malaria infections [45].

This study has some limitations. Inherent to this
type of explorative biomarker study is the risk of
overfitting when creating a diagnostic or predictive
model. Furthermore, there was no information on
concurrent infectious diseases other than chorioam-
nionitis that may have influenced the level of bio-
markers in the study population. As stated before, the
model should be evaluated in other populations, pref-
erably in a prospective manner. Another limitation is
the uncertainty in estimations of the gestational age
by considering all births full-term, which may have
resulted in some samples being allocated to the
wrong trimester. However, because for most bio-
markers there were no large differences in the results
of samples collected in second or third trimester, it
was not considered to be of substantial impact to the
results. Nevertheless, the uncertainty in gestational
age estimations made it impossible to relate the bio-
markers to outcomes such as preterm birth or small
for gestational age. For future surveys, one of the
recommendations would be to perform ultrasound
imaging throughout pregnancy to have reliable esti-
mates of gestational age and, more importantly, to
enable more direct comparisons of fetal growth with
malaria infections and biomarker levels.

Conclusions

This study has shown that both IL-10 and sTNEF-RII are
biomarkers of peripheral and placental malaria infection.
More importantly, a new approach of combining these
biomarkers in a prediction model resulted in high sensi-
tivity and specificity for detecting microscopically proven
malaria infections in primigravidae. However, as confi-
dence intervals were large and there is a risk of overfit-
ting, the potential of this model should be confirmed in
other studies. Furthermore, as a biomarkers model is
probably of most value for sub-microscopic infections,
an increase in sensitivity for detecting (sub-)microscopic
infections should be pursued, while at the same time
specificity might need improvement if other infectious
diseases are prevalent. The current model can therefore
serve as a step-up for future pursuits in creating a diag-
nostic model for malaria in pregnancy. Addition of one
or two other markers to the model, such as haptoglobin,
Cb5a, angiopoietins, HDL/LDL, or IP-10 should be
considered. In this era of rapidly changing malaria
epidemiology, rapid spread of drug resistance and the
increased demand for reliable diagnostics for malaria in
pregnancy, the field of biomarkers could play an ex-
tremely important role.
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