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Craniopharyngioma is a congenital brain tumor with clinical characteristics of

hypothalamic-pituitary dysfunction, increased intracranial pressure, and visual field

disorder, among other injuries. Its clinical diagnosis mainly depends on radiological

examinations (such as Computed Tomography, Magnetic Resonance Imaging). However,

assessing numerous radiological images manually is a challenging task, and the

experience of doctors has a great influence on the diagnosis result. The development

of artificial intelligence has brought about a great transformation in the clinical diagnosis

of craniopharyngioma. This study reviewed the application of artificial intelligence

technology in the clinical diagnosis of craniopharyngioma from the aspects of differential

classification, prediction of tissue invasion and gene mutation, prognosis prediction, and

so on. Based on the reviews, the technical route of intelligent diagnosis based on the

traditional machine learning model and deep learning model were further proposed.

Additionally, in terms of the limitations and possibilities of the development of artificial

intelligence in craniopharyngioma diagnosis, this study discussed the attentions required

in future research, including few-shot learning, imbalanced data set, semi-supervised

models, and multi-omics fusion.

Keywords: craniopharyngioma, tumor, diagnosis, machine learning, deep learning

1. INTRODUCTION

1.1. Introduction of Craniopharyngioma
Craniopharyngioma is a common skull congenital tumor in clinical which accounts for 1.2–4.0%
of all primary skull tumors (1). Its annual incidence rate is reported about 0.05–0.2 per 100,000
individuals (2). Craniopharyngioma has a wide range of age at onset even in the prenatal and
neonatal period (3, 4). Craniopharyngioma occurs in a bimodal age distribution, with peak onset
ages ranging from 5 to 14 years and 50 to 74 years (5).

The embryonic remnant theory is generally accepted for the pathogenesis of
craniopharyngiomas. This theory believes that craniopharyngioma arises from the embryonic
enamel primordium, which is located between the Rathke capsule and the oral craniopharyngeal
tube, and is formed by residual epithelial cells remaining from craniopharyngeal duct insufficiency
(6, 7).

The clinical manifestations of craniopharyngioma are diverse, depending on the tumor
location, size, growth pattern, and the relationship with adjacent brain tissue. Craniopharyngioma
grows slowly along the suprasellar, sphenoid sinus, posterior nasopharyngeal wall to the third
ventricle, thereby forming compression on adjacent brain tissue and causing clinical manifestations
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including: (1) Symptoms of increased intracranial pressure, such
as headache, vomiting, etc. (8). (2) Sudden changes in visual
field and vision (9), which are caused by compression of the
optic chiasmatic nerve because of suprasellar lesion. (3) Growth
and developmental disorders, and decreased basal metabolic rate
(10, 11), which are caused by insufficient secretion of growth
hormone and gonadotropins because of the compression of
the anterior pituitary gland. (4) As the tumor grows up to
the suprasellar even to the bottom of the third ventricle, the
hypothalamus is compressed and damaged. As a result, lethargy
or even coma (12), electrolyte disturbance (13), diabetes insipidus
(14), obesity (15), alterations of BcT ◦ (body core temperature)
and sleep wake cycle rhythms (16), and other atypical symptoms
may occur.

1.2. Radiomics
Although it is defined as a benign tumor by the World
Health Organization (WHO), craniopharyngioma may cause
significant morbidity and mortality due to its locally aggressive
growth pattern (17). Therefore, early and accurate diagnosis
of craniopharyngioma has important significance for the
formulation of therapeutic schemes. Surgical pathological
diagnosis is the current golden standard for diagnosing
craniopharyngiomas, but it is lowly accepted by patients due
to its invasive, high expense and complex operation. Besides,
it is not easy to detect brain tissue invasion by histopathology
because of the lack of brain tissue samples (18). The inaccurate
diagnosis may affect the patient’s therapeutic schemes and
prognosis, and thus histopathology is difficult to apply to
routine clinical examination. Instead of focusing on local tiny
tissues, medical imaging can provide a more comprehensive
view of the tumor. At present, medical imaging examinations
mainly rely on neuroradiologists’ subjective judgement on tumor
tissues, they are time-comsuming, inefficient, and have subjective
bias. With the development of artificial intelligence, radiomics
can extract a large amount of image information through
imaging methods, such as computed tomography (CT), magnetic
resonance imaging (MRI), positron emission tomography (PET),
and transformation of visual image information into deep-level
features, which can quantitatively describe the image (19, 20).
The deeper mining and analysis of numerous image information
can assist neuroradiologists to make accurate diagnoses. The
combination of radiomics and artificial intelligence methods
have the advantages of being non-invasive, economical, efficient,
and reproducible, thus can be widely used in tumor diagnosis,
treatment, monitoring, and individualization of treatment.

1.3. Artificial Intelligence
Artificial intelligence (AI) is a multidisciplinary and
interdisciplinary research on the basis of computer science,
which applies the theory and method of simulating and
expanding human intelligence to every field of life (21). The
application of AI in the field of medical imaging can shorten the
image processing time and improve the reliability of diagnostic
results leveraging big data (22, 23). AI falls into the categories of
traditional machine learning (ML) and deep learning (DL). The
ML method inputs training data into the computer, gradually

learns rules and recognition patterns based on big data, and
finally analyzes the characteristic indicators to predict on new
data. ML is characterized by the need to manually design a
feature extractor to transform the original data into appropriate
feature vectors, which has great influence for the prediction of
new data (24). As an important branch of machine learning,
deep learning has shown excellent performance in the field of
image recognition (25). DL is a multi-level neural network model
that combines low-level features to form high-level features, and
then discovers the inherent characteristics of the data. It relies
on the deep neural network to simulate human brain learning
and analyzing data. Meanwhile, DL is also an algorithm highly
dependent on big data, whose performance is enhanced with the
increase in the amount of data and training intensity.

Although some attempts in the field of intelligent diagnosis of
craniopharyngioma have emerged in recent years, the research
of artificial intelligence in the diagnosis of craniopharyngioma
is still in the preliminary stage. To this end, this study
reviewed the existing research on intelligent diagnosis methods
for craniopharyngioma, and introduced these applications
of artificial intelligence technology in the diagnosis of
craniopharyngioma from the aspects of differential classification,
tissue invasiveness, gene mutation, and postoperative prediction.
With reference to literature of AI in craniopharyngiomas and
other similar tumors, this study proposed the technical route
for intelligent diagnosis of craniopharyngiomas, focusing on
MRI-based machine learning and deep learning methods. In the
future research, it requires attentions, but not limited to, few-shot
learning, imbalanced data set, semi-supervised learning, and
multi-omics research.

The rest of this review was structured as follows: section
2 reviewed the applications of artificial intelligence in the
diagnosis of craniopharyngioma from three aspects: differential
classification, tissue invasion and gene mutation prediction, and
prognosis prediction. Section 3 discussed in depth the intelligent
diagnosis route of craniopharyngioma, including traditional
machine learning and deep learning models, and a mixture of the
two. Section 4 expounded the factors that affect the development
of artificial intelligence technology in this field, and the attentions
required for future research. Finally, the conclusion of the article
was given in the last section.

2. THE APPLICATIONS OF AI IN
CRANIOPHARYNGIOMA DIAGNOSIS

Owing to the diversity of tumor shapes and types,
craniopharyngiomas have different pathogeneses, degrees
of malignancy, and therapeutic schema. Manual diagnosis
is time-consuming in clinical practice, and may produce
inconsistent results due to individual differences in patients
and doctors’ experience. Some research into the diagnosis
of craniopharyngiomas based on artificial intelligence has
emerged in recent years. In this retrospective study, Web of
Science, Google Scholar and PubMed electronic databases
were searched up to July 15, 2021. Other possible articles
were searched manually from the citation list provided
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with each article. The potential literature searches were
performed using the following keywords: “craniopharyngioma”
AND “Artificial intelligence,” “craniopharyngioma” AND
“machine learning,” “craniopharyngioma” AND “deep
learning,” “craniopharyngioma” AND “non-invasive,”
“craniopharyngioma” AND “MRI,” “craniopharyngioma”
AND “diagnosis.”

2.1. Differential Classification
(1) Tian et al. (26) employed statistical methods to investigate
the role of qualitative features and texture features on MRI
between craniopharyngioma and meningioma. The study cohort
was a single institutional database consisting of 127 patients
with craniopharyngioma or meningioma. Doctors from relevant
departments collaborated to evaluate MRI features qualitatively,
which include signal intensity, heterogeneity, cystic changes,
unenhanced area, the presence of air-fluid level, and the size and
location of the tumor. Besides, LifeX medical software was used
to extract texture features, including histogram-based matrix
(HISTO), gray-level co-occurrence matrix (GLCM), gray-level
run length matrix (GLRLM), etc. In this study, according to the
previous reports, 10 of the most commonly used texture features
were selected for analysis. IBM SPASS software and MedCalc
were utilized for statistical analysis. Chi-square tests, Fisher exact
test, and the Mann-Whitney U-test were used to evaluate the
differences between two types of tumors. Additionally, binary
logistic regression was adopted to predict the probability of
texture feature as an independent predictor. The statistical results
demonstrated that there were significant differences in five
features between the two types of tumor, including HISTO-
Skewness, GLCM-Contrast, GLCM-Dissimilarity on contrast-
enhanced images, HISTO-Skewness, and GLCM-Contrast of
T2-weighted imaging (T2WI). Later, in the logistic regression
experiment, it was found that HISTO-Skewness, GLCM-Contrast
on contrast-enhanced images, and HISTO-Skewness of T2WI
can be used as independent predictors. The statistical methods
facilitate better understanding of the data used for training, and
enhance the interpretability of the machine learning model.

(2) Zhang et al. (27) reviewed the data of 126 patients
with craniopharyngioma or pituitary adenoma from a single
institution. Qualitative MRI features mentioned in previous
reports were analyzed. Meanwhile, LifeX software was used
to extract 46 texture features of the tumor, including HISTO,
GLCM, GLRLM, GLZLM (gray-level zone length matrix), and
NGLDM (Neighborhood gray-level dependence matrix). MRI
features were evaluated by using chi-square test or Fisher test,
while texture features were evaluated by using Man-Whitney
test. Subsequently, binary logistic regression analysis was used
to evaluate whether the significant features could be used as
independent predictors. All statistical analyses were performed
with SPSS software. The analysis results showed that the
qualitative and textural features of MRI were of potential value
in the differential diagnosis of craniopharyngioma and pituitary
adenoma, which was helpful for clinicians to make decisions. The
main limitation of the study appeared as a small database in a
single institution with the exception of inevitable selection bias.
On the other hand, the results may be affected by the different

image characteristics between two types of craniopharyngioma.
Besides that, the study did not evaluate the correlation between
texture characteristics and pathology of tumor.

(3) Zhang et al. (28) adopted a machine learning model
to identify common lesions presented in the anterior skull
base with radiological parameters and clinical parameters. A
single-institution database of 235 patients with pathologically
proven pituitary adenoma, craniopharyngioma, meningioma,
or Rathke fissure cyst were involved in the study cohort.
Doctors from relevant departments utilized LifeX software to
extract 40 texture features from an MRI, combined with clinical
parameters (age, gender, etc.) to identify tumor types. In order
to screen out more relevant feature sets, five feature selection
methods were adopted, including distance correlation, random
forest (RF), least absolute shrinkage, and selection operator
(Lasso), extreme gradient boosting and gradient boosting
decision tree (GBDT). In addition, nine classification models
were employed for classification, including linear discriminant
analysis (LDA), support vector machine (SVM), RF, Adaboost,
k-nearest neighbor (KNN), Gaussian Naive Bayes (GaussianNB),
logistic regression (LR), GBDT, and decision tree (DT). To
evaluate the performance of machine learning models, indicators
such as ROC, accuracy, sensitivity, and specificity were adopted.
The SPSS software was utilized for statistical analysis, and the
Python platform and the Scikit-Learn package were utilized to
simulate machine learning algorithms. Among the 45 diagnostic
models, the combination of LASSO and LDA achieved the best
comprehensive effect, which had been reported in previous
studies with good classification performance. However, the
study cohort, simply from a single institution, was relatively
small. In addition, radiomics analysis only adopted contrast-
enhanced T1WI without other subsequences. Multi-model
imaging statistics should be integrated into the study in
future research.

(4) Prince et al. (29) tried adopting deep learning to identify
craniopharyngiomas. The imaging data were obtained via
Children’s Hospital in Colorado. Experiments were conducted
by using CT scan images and contrast-enhanced T1-weighted
MRI. In order to overcome the disadvantages of small
data sets, the study adopted a transfer learning method
to obtain the pre-training model of ImageNet through the
TensorFlow application module. Another measure to solve over-
fitting problems was a three-term loss function comprised of
sigmoid focal cross-entropy, triplet hard-loss, and CORellation
alignment, also the effectiveness of the modified loss function
was verifed in this study. In addition, a meta-heuristic
parameter optimization method was adopted to mitigate the
calculation loss of the model. The StandardScale function
of Scikit-Learn was used to preprocess the image, and the
Long Short-Term Memory model (LSTM) was employed for
classification of adamantinomatous craniopharyngioma with
other sellar/suprasellar tumors. The deep learning algorithm was
based on the TensorFlow framework, which was written and
executed by Python 3.6. The experimental results provided a
transferable and extensible computing framework for intelligent
diagnosis of rare diseases. Further optimization of classifiers
will be the next potential. Also, training on MRI and CI
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simultaneously may acquire a more robust classification model.
Furthermore, the integration of classification model into a
lightweight web-based application will accelerate deployment to
the clinical medical community.

(5) Prince et al. (30) studied a series of optimization methods
to address small data sets and subsequently adopted deep
learning algorithm to identify the pediatric adamantinomatous
craniopharyngioma. Transfer learning was an effective technique
to deal with overfitting of small data sets, which was verified
in the study. In addition, two data augmentation techniques
were utilized to expand the data set. One was the random
data augmentation technique, which used random probability
thresholds to transform the image, through cutting, rotation,
blurring, etc. The other method was transformation adversarial
networks for data augmentation (TANDA), which was an
unsupervised image generation mode based on generative
adversarial networks (GAN). Moreover, a meta-heuristic
parameter optimization was applied to reduce the computational
time. The experimental cohort involved a small data set from
Children’s Hospital Colorado and St. Jude Children’s Research
Hospital. The program was developed in the virtual environment
of python 3.6. The results showed that the performance of the
optimal model was comparable to the average of radiologists, and
the deep learning network achieved the best performance with
the combination of CT and MRI data sets. Potential next steps
include optimization of TANDA algorithm and synthetically
expanding the data set which could leverage pre-trained feature
extraction. Besides that, the study adopted only one type of
classification model. Other additional classifiers should be
explored in future research.

2.2. Prediction of Tissue Invasion and Gene
Mutation
(1) Although Craniopharyngioma is a benign tumor, it is
still possible to invade adjacent brain tissue which results
in incomplete surgical resection and poor prognosis.
Therefore, preoperative evaluation of the tissue invasion of
craniopharyngioma is helpful to formulate a more individualized
surgical scheme. Ma et al. (31) used a machine learning
algorithm combined with radiological characteristics to predict
preoperative craniopharyngioma invasiveness. The study cohort
consisted of 325 patients in a single institution. The researchers
utilized MRIcron software to manually delineating the region of
interest, and applied Z-score transformation on the images to
avoid heterogeneity bias. A total of 1,874 features were extracted
in this study. After being screened by using the Lasso feature
selection method, an optimal feature subset of 11 features
was finally selected and fed into the SVM model for invasion
prediction. The experiments used the ROC curve to evaluate
the performance of the learning model. The results suggested
that this non-invasive radiomics approach could predict the
invasiveness of craniopharyngioma, aid clinical decision making,
and improve patient prognosis.

(2) Craniopharyngiomas are classified into two histologic
subtypes: Adamantinomatous craniopharyngioma (ACP) and
papillary craniopharyngioma (PCP). BRAF and CTNNB1

mutations are found to be strongly correlated with the
pathological subtypes of craniopharyngiomas, which means the
diagnosis of pathological subtypes and gene mutations has great
significance for the effective adjuvant targeted therapy. Chen
et al. (32) discussed the prediction of BRAF and CTNNB1
mutations through radiomics method based on MRI. The
study reviewed the preoperative MRI data of 44 patients with
craniopharyngioma from a single study institution. In this study,
464 local features were obtained using quantitative location
evaluation methods, and another 555 high-throughput features
including intensity, shape, texture, and wavelet features were
extracted by using MATLAB tools. In order to reduce the
redundancy and computational complexity of features, a three-
stage feature selection method was adopted. In the first stage,
High-throughput texture features were evaluated according to
intra-class correlation coefficients (ICC), and the features with
ICC greater than 0.8 remained. In the second stage, the data set
was sampled 100 times by the bootstrap, and the feature selection
method embedded in Random Forest model was adopted to
preserve the highest average of results. In the third stage,
sequence forward selection strategy was applied to evaluate the
prediction effect of candidate feature subsets according to the
performance of Random Forest classification. Finally, the most
relevant feature subset was screened out and fed into the Random
Forest model, and then the performance of the classification
model was evaluated by 10-fold cross-validation. The method
proposed in this study achieved considerable accuracy in the
prediction of pathological subtypes and the classification of gene
mutation status.

(3) The cystic part of craniopharyngioma can easily aggress
adjacent brain tissue, making complete surgical removal difficult.
Since CTNNB1 mutation has been proved to be related to
tumor recurrence, the prediction of CTNNB1 mutation in
craniopharyngioma can facilitate surgical treatment and reduce
postoperative recurrence rates with molecular targeted drugs.
Zhu et al. (33) adopted the preoperative MRI data of children
with cystic ACP from a institutional database, quantitatively
measured the MRI by the picture archiving and communication
system (PACS), and extracted the location, quantity, shape,
maximum diameter, internal signal, cyst wall, and other
characteristics. Continuous data were assessed through Mann-
Whitney U-test, categorical data were analyzed through Fisher’s
exact test, and all the statistical analyses were carried out by
using SPASS software. The study confirmed the differences in
MRI features between patients with CTNNB1 mutation and the
control group. Through the identification of gene mutations,
appropriate preoperative inhibitors may prevent the formation
of cystic tumors and reduce the size of tumors, thereby providing
the best opportunity for surgical treatment.

(4) Prediction of BRAF mutation before surgery and
treatment with inhibitors may shrink the tumor and improve the
success rate of surgical resection. Yue et al. (34) dedicated their
research to the study of the non-invasive diagnosis method of
BRAF mutation in craniopharyngioma. The study reviewed the
information of patients with craniopharyngioma from a single
institution, and MRIs (including non-enhanced sequences and
contrast-enhanced sequences) of 52 patients were involved in the
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study. The study assessedMRI features including tumor location,
size, shape, composition, tumor cysts signal, enhancement
pattern, pituitary stalk morphology, and internal carotid artery
encasement. A Mann-Whitney test was adopted to evaluate the
continuous variables, Fisher’s exact test was used to compare the
categorical variables, and these statistical analyses were carried
out by using SPSS software. The results showed that five features
of theMRI were related to BRAFmutation, and this non-invasive
diagnostic approach provided a reference for the use of targeted
inhibitors before surgery.

(5) Due to the heterogeneity in clinical expression,
topography, and pathological features of craniopharyngioma,
the diagnosis and surgical treatment of craniopharyngioma
are still challenging in the clinic. Craniopharyngioma (CP)
may occur at any point from the sella to the third ventricle,
along the vertical hypothalamic-pituitary axis. The anatomical
relationship between craniopharyngioma and the third ventricle
is a vital factor for surgical schemes. Prieto et al. (35) discussed
the topographic classification of craniopharyngioma with
preoperative MRI. In the study, the tumors were classified
into five major categories, including sellar-suprasellar CPs,
suprasellar-pseudoventricle CPs, secondary intraventricular
CPs, infundibulo-tuberal CPs, and strictly intraventricular CPs.
The study retrospected the MRI of 200 craniopharyngiomas
selected from a recent publication, and analyzed radiologic
features related to tumor size, shape, consistency, the occupation
of the tumor of intracranial compartments, the distortions
of anatomic structures along the sella turcica–third ventricle
axis, etc. The correlations between pairs of categorical variables
were evaluated by using chi-square or Monte Carlo validation,
then the topographic classification of craniopharyngioma was
explained through multiple classification and regression tree
growing method. The statistical analysis was carried out by using
SPSS software. The experiment result identified seven radiologic
features on preoperative MRI which should be analyzed to
accurately define the topography of CP. A further step may be
the integration of specific MR imaging sequences which can
offer high-resolution.

2.3. Prognosis
Due to the tissue invasion, surgical resection of
craniopharyngioma is often incomplete, which leads to
tumor recurrence and poor prognosis. The prediction models of
prognosis require complex and abundant data, hence artificial
intelligence technology is appropriate to traditional statistical
methods. In this field, some research on the prognosis of brain
tumors such as pituitary tumors have been emerging. Inspired
by these attempts, some researchers studied the postoperative
prediction of craniopharyngioma. Hollon et al. (36) predicted
early outcomes of pituitary adenoma surgery with a machine
learning model. In the study, a retrospective review was
constructed for a cohort of 400 consecutive pituitary adenoma
treated at a tertiary care center. Naive Bayes, logistic regression
with elastic net (LR-EN) regularization (linearly combined
L1 and L2 regularization penalties), SVM, and random forest
were adopted to predict early postoperative outcomes in
pituitary adenoma patients. The experiment selected twenty-six
characteristics as predictive variables, used a grid search for the

selection of model hyperparameters, and performed a 10-fold
cross-validation for each model. After model training, LR-EN
best predicted early postoperative outcomes with 87% accuracy.
Additionally, risk factors for postoperative complications after
pituitary adenoma surgery were explored. Moreover, these
results provided insight into how to use machine learning
models to improve the perioperative management of pituitary
adenoma patients.

Shahrestani et al. (37) developed a multilayered neural
network (NN) to estimate predictors of postoperative
complications and outcomes in patients with functional pituitary
adenomas (FPAs). Three hundred forty-eight patients with FPAs
in a single center were included in the analysis. First, the study
performed multivariate regression model to test the correlation
between patient-specific characteristics and good outcomes.
Then, the NNs with strong ability in non-linear models were
trained on significant variables obtained in multivariate analysis.
Weights and bias terms were calculated from these back-
propagation models. The NN models were tested and confirmed
by using ROC curve, AUC value, and confusion matrices. The
study developed a robust prediction algorithm for recurrence,
progression, and hormonal non-remission in patients with FPAs.

Since craniopharyngioma is structurally close to the optic
nerve, visual dysfunction occurs in 53–93% of patients.
Kopparapu et al. (9) collected preoperative, intraoperative,
and postoperative variables of craniopharyngioma in a single
institution, including demographics, radiology information,
surgical approach, etc. Meanwhile, radiographic, operative, and
perioperative characteristics were qualified in this study. Besides,
the patient’s visual characteristics such as visual acuity (VA)
and visual fields (VFS) were standardized according to the
guidelines defined by the German Ophthalmological Society.
Statistical analyses were performed by using Stata software.
Categorical variables were analyzed through chi-square test, and
continuous variables were analyzed through independent-sample
t-test. Furthermore, multivariate analysis was carried out by
using logistic regression for significant variables. The analysis
result demonstrated that patients with reduced preoperative
visual acuity, specific readiographic vascular involvement, and
total surgical resection had more possibility of achieving
improved postoperative visual acuity. In addition, statistical
analysis also found that the translaminar surgical approach was
related to visual deterioration. Postoperative vision prediction is
helpful for counseling between patients and surgeons and may
facilitate the customization of surgical schemes. The limitations
of the study are consistent with other similar retrospective
reviews. A relatively small sample size affected the results of
study and resulted in non-significant findings on bivariate and
multivariate analysis.

3. STRATEGIES OF ARTIFICIAL
INTELLIGENCE IN CRANIOPHARYNGIOMA
DIAGNOSIS

In the field of clinical medical imaging, subjective diagnosis
of radiologists has inevitable bias and is time-consuming.
Moreover, it is a challenge for medical staff to address
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numerous data and high-dimensional features manually. With
the development of artificial intelligence technology and its
successful applications in many fields, more and more research
has been performed on the application of artificial intelligence
in the medical field. As shown in section 2 above, some
attempts emerged in differential classification, prediction of
tissue invasiveness and gene mutation, and prognosis detection
of craniopharyngioma. However, these works represent an
initial exploration in the diagnosis of craniopharyngioma.
Glioma and lung adenocarcinoma, similar to craniopharyngioma
in tissue invasion, with which difficulties in diagnosis and
individualization of treatment are also associated. Glioma is
one of the most aggressive brain tumors with poor prognosis
compared with other brain cancers. Diffuse invasion of tumor
cells into normal brain is a big challenge in diagnosis and
individualization of treatment (38). Lung cancer is a common
cause of cancer incidents worldwide, comprising 1/3 to 1/2
of incidents being attributed to adenocarcinoma. Due to an
increased degree of invasion with poor prognosis, evaluation
of invasion of lung nodules is important to customize the
appropriate clinical-decision scheme (39). Thus, many studies
have been dedicated to developing a new, non-invasive method
that provided a reference for accurately diagnosis before surgery
to reduce tumor recurrence and improve patients prognosis.
Inspired by this research, the study referred to the achievements
of AI diagnostic techniques for tumors (e.g., glioma, lung
adenocarcinoma), and furthermore proposed the diagnosis route
of craniopharyngioma based on artificial intelligence technology.

At present, imaging examinations are common methods
for clinical diagnosis of craniopharyngioma. Compared with
CT, MRI can clearly display the tumor location and the
anatomical relationship of adjacent tissues through multi-
directional imaging. The aforementioned studies also found that
the features extracted from MRI have significant difference for
the diagnosis of craniopharyngioma (26, 35). Therefore, the
artificial intelligence diagnosis route discussed in this study is
based on MRI.

3.1. Machine Learning Mode
While deep learning has become the technology of choice for
most AI problems, it relies excessively on large data sets, which
are difficult to collect, expensive, and time-consuming, especially
for scarce tumors like craniopharyngioma. For small data sets,
classical machine learning methods sometimes outperform deep
learningmodels, with lower computational cost, and unnecessary
high-end hardware. On the other hand, deep learning is a “black
box.” In comparison, machine learning algorithms are more
explanatory. The diagnostic route based on machine learning
method is shown in Figure 1, which mainly includes image pre-
processing, image region of interest (ROI) segmentation, feature
extraction, feature selection, machine learning modeling, and
other steps.

(1) Image pre-processing: As the acquisition of image data
is dependent on device manufacturer, device parameters
and patient position, pre-processing techniques can
correct and normalize original images to weaken the
interference information, and also improved the quality of

core areas in the image. For brain MRI, the general pre-
processing techniques usually include noise suppression, skull
stripping, non-uniform correction, intensity normalization,
and so on.

Noise suppression and non-uniformity correction can reduce
the individual differences of the collected objects and the
MRI brightness differences caused by the deviation of the
instrument and the scanning process. For image sequences with
various intensity ranges of the same image, such as T1WI and
T2WI, intensity normalization is required for preprocessing.
Skull stripping as an important part of brain image analysis
can mitigate non-uniform distribution of intensity due to
fat tissue. Skull stripping can be automatically implemented
base on contour or histogram except for when using manual
methods. Some of the pre-processing techniques in literature
are as follows: Al-Saffar and Yildirim (40) performed skull
stripping with a threshold-based method, and adopted median
filtering technology to reduce image noise. Gutta et al. (41)
used BrainSuite software for resampling all images and skull-
stripping, and used the FMRIB Software Library (FSL) toolbox
for co-registration. Analogously, Ahammed et al. (42) also
performed skull stripping by using BrainSuite software, which
adopted a brain surface extraction algorithm (BSE) to operate
the skull stripping. Aiming to solve the non-standardization
of MRI intensity, Chen et al. (43) used bias correction and
Z-score normalization which were implemented in Statistical
Parametric Mapping (SPM12) for pre-processing. Siakallis et al.
(44) performed log-transformation, normalization, bias field
correction and intensity matching on skull stripping images.
Kandemirli et al. (45) conducted pre-processing operations
including gray-level normalization and discretization. The
commonly used techniques and tools in representative literature
are listed in Table 1.

(2) ROI segmentation: Image ROI segmentation has an
important impact on the final result of medical classification.
ROI segmentation can remove surrounding tissues of the lesion
and irrelevant interference information in the background,
and identify the lesion area by describing the density, shape
and other characteristics of the ROI. In many research
studies, neuroradiologists manually delineate the ROI which
requires deliberations to demonstrate the effectiveness of the
segmentation and reach a consensus on the differences. In
addition, semi-automatic or automatic segmentation algorithms
are also feasible. Threshold segmentation, as a commonly
used method, takes the gray value of the pixel as the feature
description, and uses the threshold to distinguish background
information and segmentation targets (46). A common method
based on region, the image starts from a certain point and merges
the surrounding pixel points with the same attribute (including
gray value, texture and other features) (47). There are also
some segmentation algorithms based on specific theories, such as
minimized graph cut algorithm based on energy (48), conditional
random field method based on statistics (49), and clustering
analysis method based on fuzzy sets (50), etc. In addition, the
deep learning network can automatically obtain features from
the training data and achieve good segmentation performance
(51, 52).
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FIGURE 1 | Flow chart of diagnostic craniopharyngioma based on ML: the steps include pre-processing, ROI segmentation, feature extraction, feature selection, and
ML modeling. “TL” is the abbreviation of transformation.

Part of the research performed manual segmentation by
using ITK-SNAP, MRIcron, LifeX, and other softwares. Tekawa
et al. (53) performed semi-automatic image segmentation
by using the Analysis of Functional Neuro Images software
(NUMH Scientific and Statistical Computing Core; Bethesda,
MD, USA). In the semi-automatic segmentation procedure, the
neuroradiologist manually selected the intensity threshold to
extract the high-intensity areas of T2-weighted FLAIR images. In
addition, there were some auto-segmentation methods adopted
in retrieved literature. Al-Saffar and Yildirim (40) adopted
the LDI-means clustering algorithm for image automatic
segmentation. Ahammed et al. (42) combined k-means and
fuzzy-c-means clustering method for automatic segmentation.
Gutta et al. (41) performed segmentation with a fully automated
tumor segmentation tool, which came from the Brain Tumor
Segmentation Challenge. The aforementioned automatic
segmentation methods also achieved good performance.

Different ROI segmentation techniques in representative
literature are summarized in Table 2. Manual segmentation
methods are simple and easy to master, but there are inevitably
subjective differences. Some automatic segmentation algorithms
with better performance can optimize the clinical diagnosis
process, but their applications need to be evaluated with strict
clinical tests.

(3) Feature extraction: This is a process of integrating,
analyzing and calculating numerous features of ROI with various
algorithms, which has a significant influence on the whole
process. A high-quality feature set can not only simplify the
complexity of the images sample, but also better represent
the structural information, visual characteristics, and biological
background knowledge of images, and directly affect the
prediction effect of models. The features extracted from MRI
commonly include first-order features, morphological features,
texture features, and wavelet features (55), etc. First-order
features, also known as histogram features, are extracted from
the gray histogram of images. First-order features can only be

TABLE 1 | An overview of techniques for pre-processing based on MRI.

References Pre-processing Tool

Al-Saffar and Yildirim
(40)

Skull stripping based on
threshold,

MATLAB

Median filtering for noise
reduction

Gutta et al. (41) Skull stripping Brainsuite software

KV et al. (42) Skull stripping Brainsuite software

Chen et al. (43) Bias correction, Z-score
normalization

SPM12

Siakallis et al. (44) Logarithmic transformation,
normalization,

Offset field correction, strength
matching

Kandemirli et al. (45) Grayscale normalization,
Discretization

used to describe the gray value distribution of ROI, but cannot
describe the spatial relationship, interaction, and correlation
between adjacent voxels. Morphological features can be used
to quantitatively describe the geometric characteristics of ROI,
which are good indicators of the anatomical changes of the
tumor. Texture features represent the spatial arrangement
between the image voxel gray levels, and facilitate evaluation of
the heterogeneity inside the tumor. If two types of tumors have
similar intensity distributions but different spatial correlations,
second-order or higher-order texture features may be preferable
to first-order features in such a situation. Texture features
can also be obtained by the image Laplace transform, wavelet
transform, Gabor transform, etc. Since a single feature set with
insufficient information may lead to the risk of under-fitting in
the training model, most literature use mixed feature sets in
the research.
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TABLE 2 | An overview of techniques for ROI segmentation based on MRI.

References Manual/

semi-automatic/

automatic

Method/tool

Özyurt et al. (54) Manual MRIcron software

Tian et al. (26), Zhang
et al. (27)

Manual LIfeX software

Siakallis et al. (44) Manual ITK-SNAP 3.8

Tatekawa et al. (53) Semi-automatic Analysis of Functional
Neuro Images software

Al-Saffar and Yildirim
(40)

Automatic LDI-means clustering
algorithm

KV et al. (42) Automatic Combined k-means
and fuzzy c-means

Gutta et al. (41) Automatic A tool from competition

TABLE 3 | An introduction of feature extracted from MRI.

Feature type Feature family

First-order features Mean, maximum, minimum, median, root
mean square, energy, entropy, kurtosis,
skewness, variance, standard deviation,
uniformity, gray field, etc.

Morphological features Density, 3D maximum diameter, spherical
asymmetry, sphericity, surface area, ratio
of surface to volume, volume, etc.

Texture features Gray-level co-occurrence matrix,
gray-level run matrix, gray-level area size
matrix, gray-level correlation matrix,
adjacent gray- level difference matrix,
neighborhood gray-level dependence
matrix and gray-level run length matrix,
etc.

Common transformations Laplace transform, wavelet transform,
Gabor transform, etc.

Commonly used image features are briefly described in
Table 3, and the single or mixed feature sets extracted in the
representative literature are summarized in Table 4.

(4) Feature selection: The feature dimension obtained in
the previous feature extraction process counts from tens to
thousands, which leads to inevitable problems of computational
complexity and overfitting. The feature selection method should
be recommended to further optimize the high-dimensional
features, eliminate redundant features, screen out the most
relevant feature subsets, and avoid over-fitting. Commonly
used feature selection methods include the criterion-based
sorting methods that sort the features according to the
evaluation criterion and select the feature with a higher score
than the threshold. The general evaluation criteria include
Fisher score (58), Pearson correlation coefficient (59), mutual
information (60), etc. In addition, some heuristic rules can
also be applied in selecting subsets, such as forward/backward
search strategy (61), Markov chain (62), etc. It can also
combine the criterion-based sorting method with the search
strategy to form a two-step feature selection method, such

as the feature selection method with maximum relation and
minimum redundancy (63), which obtained good result in
reports. There are also some learning algorithms with embedded
feature evaluation, among which the decision tree is a typical
algorithm (64).

Zhang et al. (28) verified five feature selection methods
including distance correlation, random forest, Lasso, extreme
gradient boosting and gradient boosting decision tree, of which
Lasso achieved the best performance. And Ma et al. (31) also
adopted Lasso for feature selection. Gutta et al. (41) used the
importance score in the gradient boosting algorithm to select
the features. Hybrid feature selection methods were adopted
in some literature. Le et al. (56) employed a two-level feature
selectionmethod. In this method, the salient radiological features
were evaluated with F-score criterion and ranked in descending
order. Sequentially, the features were added to the model
one by one, meanwhile the recursive feature culling technique
was adopted to select the best cut-off point. Al-Saffar and
Yildirim (40) adopted mutual information (MI) to evaluate
the features, and used singular value decomposition (SVD)
method to reduce feature dimension. Kandemirli et al. (45)
firstly used the intraclass correlation coefficient to eliminate
the features with score lower than 0.75, and then adopted the
intrinsic feature selection method of XGBoost or additional
feature selection methods (such as Boruta, low variance filter,
and multicollinearity analysis) for further selection. Gao et al.
(57) obtained the top 15 features according to Chi-square
evaluate criterion, and drew a heatmap by using Seaborn library
to identify the highly correlated features. Finally, the optimal
feature subset was selected in terms of the feature importance of
Random Forest algorithm. Chen et al. (32) proposed a three-stage
feature selection method. In the first stage, intraclass correlation
coefficients were used to screen robust variables. Sequentially,
the robust texture features, location features, and clinical features
were evaluated according to the feature score of Random Forest,
and the top-ranked features were retained. In the third stage,
a sequential forward search strategy was adopted to select the
optimal feature subset.

The feature set and feature selection methods used in
representative literature are compared in Table 4. Although there
are a lot of mature feature selection methods, there are still
problems involved in designing effective methods for specific
scenarios. In the retrieved literature, Lasso is a linear regression
model with the constraint term of L1 norm added behind the
cost function. It carries out variable screening and complexity
adjustment through the control parameter lambda, and is widely
used in the medical field. In addition, the combination of
different types of feature selection methods and the design of
appropriate evaluation criterion according to specific scenarios
are also required for further research.

(5) Machine learning modeling: In this procedure, a high-
quality classifier is generated through sample training, and the
feature vectors obtained after feature extraction and selection
are fed into the classifier, thereby outputting the diagnosis
results. Machine learning algorithms are classified as supervised
learning and unsupervised learning. Supervised learning models
are commonly used in the current medical field, such as random
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TABLE 4 | An overview of features extracted from MRI and feature selection methods.

References Original feature set Dimension Extraction

tool

Selection method

Zhang et al. (28) First-order features, GLCM, GLZLM, NGLDM,
GLRLM, gender, age

40+2 LifeX Distance Correlation, RF, Lasso, XGBoost, and
GBDT

Ma et al. (31) First-order statistics, shape, GLCM, GLRLM,
GLSZM, NGTDM, GLDM, Wavelet features

1,874 MATLAB Lasso

Gutta et al. (41) First-order feature, shape, GLCM, GLRLM,
GLSZM, NGTDM, GLDM

1,284 PyRadiomics Importance score from gradient boosting
algorithm

Le et al. (56) Intensity, image derivative, geodesic, texture,
posterior probability maps

704 Cancer
Imaging
Phenomics
Toolkit

F-score evaluation criterion, recursive feature
elimination

Al-Saffar and Yildirim (40) GLCM, intensity 40 MI evaluation criterion, SVD

Kandemirli et al. (45) Intensity, shape, GLCM, GLRLM, GLSZM,
GLDM

3,255 Pyradiomics Intraclass correlation coefficient, XGBoost’s
inherent feature selection and additional feature
selection method

Gao et al. (57) First order features, shape, GLCM, GLRLM,
GLSZM

1,421 PyRadiomics Chi2 verification, Seaborn library, inherent
feature selection of RF

Chen et al. (32) Local feature, intensity, shape, texture and
wavelet features

1,091 MATLAB Intraclass correlation coefficients, feature
scores of RF, forward search strategy

gray-level co-occurrence matrix; GLZLM, gray-level zone length matrix; NGLDM, neighborhood gray-level dependence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level

size zone matrix; NGTDM, neighboring gray tone difference matrix; GLDM, gray-level dependence matrix.

forest (RF), artificial neural network (ANN), support vector
machine (SVM), logistic regression (LR), and so on.

The machine learning models used in representative literature
are compared in Table 5. Based on the principle of maximum
interval separation, SVM can mitigate the structural risk by
minimizing the model complexity and training error, and has
became an important tool for data classification in the field of
pattern recognition. SVM can solve problems of high dimension
and overfitting, and is often recommended in small sample
classification scenarios.

3.2. Deep Learning Mode
A machine learning algorithm requires complex feature
engineering, which needs to explore and analyze the data set,
reduce dimension of the feature set, and finally select the optimal
feature subset to feed to the machine learning model. In contrast,
the deep learning method is a kind of end-to-end learning, which
has a strong learning ability and is easy to be transplanted. In
many fields, deep learning algorithms perform far better than
machine learning algorithms based on large amounts of data.
Herein, craniopharyngioma diagnosis based on deep learning
includes data augmentation and design of models.

(1) Data augmentation: Data is the driving force for deep
learning models. Feeding abundant data into the training process
can significantly improve the performance of the deep learning
model. Whereas, in the field of medical research, due to the
difficulty of data collection and the high cost of data labeling,
the training data are not so sufficient, which results in poor
model generalization and insufficient credibility of deep learning
models. Data augmentation technology generates new data by
transforming existing data, which is an important measure to
expand the number of samples and improve the generalization

TABLE 5 | An overview of ML model in literatures.

References ML model The best one

Le et al. (56) KNN, NB, RF, SVM,
XGBoost

XGBoost

Al-Saffar and Yildirim
(40)

Multi-layer perceptron,
RBF-SVM

Kaplan et al. (65) KNN, ANN, RF, A1DE,
LDA

KNN

Kandemirli et al. (45) XGBoost

Tatekawa et al. (53) SVM

Gao et al. (57) LR, SVM, RF RF

Zhang et al. (66) LR, SVM LR

Siakallis et al. (44) SVM

Zhang et al. (28) LDA, SVM, RF,
Adaboost, KNN,
GaussianNB, LR,
GBDT, DT

Lasso+LDA

Chen et al. (32) RF

Ma et al. (31) SVM

ability of deep learning models. Therefore, data augmentation is
widely used in the training process of deep learning models in the
medical field. Data augmentation techniques can be implemented
by transforming a single image or mixing information of
multiple images. The geometric transformation commonly used
in medical images is a typical data deformation operation
(67), which generates new samples through rotation, mirroring,
translation, cropping, etc. In addition, SMOTE, mixup and
other methods can mix information from multiple images and
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synthesize new samples (68, 69).With the further development of
artificial intelligence, novel data augmentation methods such as
adversarial learning, meta-learning, and reinforcement learning
have emerged and achieved good performance (70–72).

Data deformation technology was commonly utilized in most
of the literature to achieve data augmentation, which can quickly
and directly expand the data set. In (73), flips, rotation, shift,
zoom, ZCA whitening, shearing, and brightness operations were
used to achieve data augmentation. In (74), methods such as
vertical flip, horizontal flip, image rotation of 90 degrees, 270
degrees, and image transpose were adopted to expand the data
set by 6 times. In (75), Augmenter library was utilized to
implement a cascade of rotation, zooming, shearing, and flipping
techniques with certain probability, and elastic transformation
was combined for data augmentation. As a result the training
data set was increased by 20 times. In (76), eight different data
augment techniques, including flip vertical, flip horizontal, rotate
at 180 degree, rotation at 90 degree, noise, shear, blurr, and
crop & scale were compared. The results showed that rotation
at 90 degree and 180 degree achieved the best performance. In
(77), contrast conversion, brightness conversion, sharpening and
flipping were used to expand the data, and the training data
was increased by four times. In (78), elastic transformation was
used for data expansion. Autoaugment tool was used in (79),
and multiple geometric transformation strategies were used to
expand the data set to 23 times. In (80), the inversion technique
in geometric transformation was adopted, and the classification
accuracy was improved from 82.46 to 96.4% through data
augmentation. In (81), data augmentation was carried out by
using random clockwise rotation, counterclockwise rotation, and
vertical flipping techniques.

Some literature also utilized GAN technology for data
synthesis. For example, Carver et al. (82) used GAN network
to generate high-quality images. Price et al. (30) employed two
data augment techniques, one was a random process that used
probability thresholds for sample transformations, and the other
was a transformation adversarial network for data augmentation
(TANDA). The relative simplicity of the image led to the
advantage of random augment over TANDA. TANDA method
was more advantageous for complex data sets where the target
and background were indistinguishable.

Image deformation technology, as a basic image augmentation
method, has been widely used for preprocessing in the field
of image processing, and most of the methods are integrated
into the machine learning library for deep learning applications.
However, the transformation rules are not universal, and some of
them only perform well on specific data sets. Data augmentation
based on GANwhich can generate the virtual image sample close
to reality provides a new solution for data augmentation. More
important, virtual images generated fromnoise images can enrich
the randomness and diversity of samples, thus greatly improving
the performance of the model. Nevertheless, the GAN training
process is extremely complex and requires a large amount of
computation, which limits its application in large image data sets.
The techniques for data augmentation are listed in Table 6.

(2) Design of deep learning model : Deep neural networks
are developed on the basis of the early artificial neural network.

TABLE 6 | An overview of techniques for data augmentation.

References Techniques for data

augmentation

Ismael et al. (73) Flips, rotations, shifting,
zooming, ZCA whitening,
shearing, brightness
manipulation

Zhang et al. (74) Flips, rotations, image transpose

Özcan et al. (75) A chain of rotation, zooming,
shearing, flippling, and elastic
transforms

Safdar et al. (76) Flips, rotations,noise, shear,
blurr, crop and scale

Wu et al. (77) Contrast & brightness
conversion, sharpening, flippling

Diaz-Pernas et al. (78) Elastic transformation

Zhuge et al. (79) Geometric transformation

Mzoughi et al. (80) Geometric transformation

Atici et al. (81) Rotations, flippin

Carver et al. (82) GAN

Prince et al. (30) TANDA, random transformations

Through the deeper neural network structure, the expression
ability and the performance of the whole network have been
greatly improved. With the breakthrough of deep learning in the
traditional image recognition field, many classical deep learning
frameworks have emerged, especially since large-scale image data
sets became open source. In deep learning models, convolutional
neural network can be considered as one of the most classic
networkmodels (83), which is usually composed of convolutional
layer, pooling layer, full connection layer, etc. The convolutional
layer obtains the feature information of the image through
convolution operations, and synthesizes the local features to
global features. The pooling layer is used to reduce the dimension
of features and improve computational efficiency of the network.
The full-connection layer combines the pooled multiple groups
of features into a group of signals, and performs classification
and recognition tasks through the classifier. Many classic
networks have evolved from the convolutional neural network.
For example, the AlexNet network uses rectifying linear units
(RELU) to introduce non-linearity, adopts dropout technology to
selectively ignore some neurons to avoid overfitting, and stacks
maximum pooling layers to improve the disadvantage of average
pooling (84). As a result, AlexNet can learn more complex object
and hierarchical architectures. In addition, the VGG network
from the University of Oxford adopts continuous and multiple
3∗3 convolution to simulate the effect of larger convolution
kernel (85). This technology can extract more complex features,
but the drawback is the increase of parameter number and the
requirement of computing power. Therefore, various network
variants are derived to address this drawback. Typically, the
ResNet adds cross-layer connections to form residual elements,
which solves the problems of network degradation and gradient
explosion caused by the deepening of the network layer (86).
Additionally, in terms of the problem that a convolutional neural
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network can not extract and retain the time series, the recurrent
neural network (RNN) maintains the dependency relationship
in data through the serial structure (87), which is suitable for
time series data. There are also other variants of deep learning
networks that have also achieved good performance in the
field of medical imaging (88, 89). Deep learning models in the
representative literature are summarized as follows:

Özcan et al. (75) adopted CNN network comprised of 7
convolution layers, a full connection layer, and a classifier
of Softmax function. The proposed model obtained high
performance and robustness in glioma grading. Chang et al.
(90) used a CNN network to classify the gene mutation of
glioma. Francisco et al. (78) adopted a CNN network to
differential diagnosis of meningioma, glioma, and pituitary
tumor, and achieved a high classification accuracy. Mehmet
et al. (81) adopted a CNN network to automatically detect
high-grade glioma and achieved good performance. Prince
et al. (30) adopted a CNN network with parameter optimizer
to realize the non-invasive diagnosis of adamantinomatous
craniopharyngioma.Wu et al. (77) employed three CNNnetwork
models (AlexNet, ResNet, Inception-V3) to classify glioma and
encephalitis. The results of the automatic classification were
compared with the performance of the radiologists and acquired
satisfying performance. Mzoughi et al. (80) graded glioma by
using a 3DCNN network, which fused local and global context
information through a small convolution kernel. Wang et al.
(91) developed and validated a 3DCNN model for classification
of different types of lung cancer. The performance of the
proposed classification model was compared to radiologists and
obtained a higher score. Ismael et al. (73) identified three
types of brain tumors (meningiomas, gliomas, and pituitary
tumors) on MRI with the Resnet50 framework that is a 50-
layer variant of the residual network. Zhuge et al. (79) proposed
two automatic methods for glioma grading, one of which
was a 3DConvNet structure, and the other was a ResNet
structure combined with a pyramid network. Safdar et al. (76)
used YOLO3 model to assess the effect of data augmentation
methods. Carver et al. (82) adopted a 2D-UNET network
to evaluate the segmentation performance of the synthetic
image. Baid et al. (92) segmented glioma images with a 3D-
UNET network. Prince et al. (29) adopted the long short-term
memory (LSTM) network to realize the non-invasive diagnosis
of adamantinomatous craniopharyngioma.

3.3. Hybrid Model
The quality of the data set is pivotal to the performance of AI
algorithms. The input data can be the feature vectors extracted
by the algorithm, or the raw data directly entered into the end-to-
end learning system. The imaging features mentioned in section
3.1 can express and quantify the hidden information in the image,
while their ability to describe the global information of images is
insufficient, and the ability to filter noise is weak. By contrast,
CNN itself as an excellent feature extractor, can obtain global
high-order features (93). Therefore, some researches developed a
hybrid model of traditional machine learning and deep learning,
which could better match multi-source heterogeneous medical
data and obtain more comprehensive information.

Deepak and Ameer (94) employed the modified GoogleNet to
extract deep CNN features, and subsequently fed these features
into SVM and KNN classifier models. The performance of
classification for brain tumors was improved with the proposed
hybrid model. Ning et al. (95) fused the radiomics features with
depth features extracted by the CNN network, and performed
feature selection to screen out the optimal feature subset. Finally,
SVM was used for grading gliomas. The results demonstrated
that integrating radiomics features and deep features for gliomas
grading is feasible. Zhang et al. (96) combined the depth
features extracted from the pre-trained CNN with texture
features and morphological features, and evaluated the effects of
these features by machine learning classifier. The experimental
results suggested that the combination of features extracted by
deep learning and radiomics is superior to a single modeling
method. Li et al. (97) proposed a feature learning method
based on generative adversarial network. AlexNet was used
as feature extractor, while SVM was used for classification.
The experimental results achieved high classification precision.
Xia et al. (98) developed models based on deep learning
and radiomics features respectively, and then applied an
information-fusion method to fuse the prediction performance
of the two models. The proposed fusion model improved the
classification performance of non-invasive adenocarcinoma and
invasive adenocarcinoma.

4. DISCUSSION

4.1. Few-Shot Learning
At present, AI has achieved high performance in many fields,
which rely on a mass of labeled samples and iterations of trained
models. In the medical field, AI performs well in some scenarios
where large amounts of training data are available, such as skin
diseases and diabetic retinopathy (99, 100), etc. However, for
most scenarios, the data collection and labeling are laborious and
time-consuming. Besides that, some privacy ethics and obstacles
are also difficult to overcome. All of these are real challenges for
the applications of AI in the medical field.

According to the retrieved literature, the application of AI
in craniopharyngioma has been emerging in the last 5 years.
Data sets reported in most of the literature were from a single
institution. The lack of standard databases and the small sample
size of data sets affect the application of AI in diagnosis
of craniopharyngioma. When experiments are carried out on
small data sets, overfitting is inevitable and the generalization
performance is often queried, especially in high-risk tasks like
tumor diagnosis. Therefore, few-shot learning aiming to learn
quickly from a small data set, is an issue worthy of further
research. Several measures that can be implemented to deal with
few-shot learning are discussed below.

(1) Data augmentation can expand a data set with
transformation rules and prevent the over-fitting of the model.
As a straightforward and simple solution, it has been commonly
used in the retrieved literature. Common transformation rules
include shift, rotation, scale, crop, flip, and other operations on a
single sample. Other algorithms are also available to operate on
multiple samples, such as SMOTE, mixup, etc. These methods
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with minor changes to the original images, can quickly and
simply obtain a large amount of new data.

(2) Data synthesis can synthesize new data through neural
networks, among which generated adversarial network (GAN)
is the most representative one. The GAN framework includes
generators and discriminators (101). The goal of the generator
is to generate a large number of samples close to reality, while the
discriminator should correctly distinguish between real samples
and simulated samples. The game theory and confrontation
training mode of GAN endow it with a strong ability in
data augmentation.

(3) Feature enhancement enriches the diversity of samples by
augmenting the sample feature space, and consequently expands
the data sets. Typically, Schwartz et al. (102) developed a network
comprised of encoders and decoders to generate new data. The
encoder learned to extract the transferable deformations between
pairs of samples of the same category in the data set, while the
decoder learned how to apply these deformations to the samples
in the new category to generate new data.

(4) Other more advanced strategies include meta-learning
strategy, measurement learning strategy, parameter optimization
strategy (103, 104). Meta-learning strategy is currently a
novel research framework. In few-shot learning, meta-learning
strategy learns meta-knowledge from prior tasks, and uses
prior knowledge to guide the model to learn quickly. Through
calculating the distance between the samples to be classified
and the known ones, measurement learning strategy acquires
the adjacent categories to determine the results of the samples
to be classified. This algorithm does not need to fine-tune
labeled images, but compares the image to be classified with
the known ones to perform classification. Another problem
of few-shot learning is that the generalization ability of the
network deteriorates due to iterations of few parameters on
small data sets, which results in the lack of credibility in
the classification performance of the models. The parameter
optimization strategy focuses on optimization of the basic
learner through an optimizer, thus improving the credibility and
generalization ability of the classifier.

(5) Transfer learning is a common technique used in
deep learning frameworks. Considering that most of tasks are
correlated, transfer learning can accelerate and optimize the
learning efficiency of the model by transferring the pre-trained
model parameters to the new model, rather than learning from
scratch. For deep learning models, the transfer method applies
the pre-training model to a new task by fine-tuning (105).
For the transfer learning method, the source domain and the
target domain do not need the same distribution of data, which
overcomes the shortcomings of traditional machine learning, and
has a great advantage in the case of few samples in the target
domain and sufficient samples in related fields.

4.2. Classification of Imbalanced Data Sets
Most data sets in the medical field are unbalanced, that is, the
sample size of one category is much smaller than that of another.
The imbalanced data set may cause the neglection of the minority
category samples leading to underfitting, or the overemphasis of
the minority category samples leading to overfitting. In order

to design the learning model with more reliable ability, it is
necessary to address the problem of the imbalanced data set.

(1) Data pre-processing is an effective method to solve
this problem. It can be performed by deleting the samples
of the majority category or adding to the samples of the
minority category to reduce the difference in the sample number.
According to the difference in sampling methods, over-sampling,
under-sampling, and a combination of the two methods are all
feasible (106).

(2) In an imbalanced data set, the costs of misclassification
on the majority and minority categories are different, and the
misclassification of the minority category should cost higher.
Based on this premise, cost sensitive methods are feasible
methods to deal with an imbalanced data set, which assign
different costs to misclassification of different categories by
introducing cost matrix, and then construct classifiers with the
goal of minimizing cost value (107).

(3) Additionally, the ensemble learning method is another
measure to mitigate the influence of an imbalanced data
set. Ensemble learning models combine several different weak
learners together to form a strong learner. The generalization
performance of the model is improved by taking advantage of
the differences between each base learner. A typical example is
Adaboost algorithm (108). In the training process, the algorithm
will assign higher weight to the samples with a large prediction
error, and the model will pay more attention to these samples in
the next iteration.

4.3. Research on Semi-supervised
Learning
In the medical field, manual labeled data are expensive and
scarce, while a large number of unlabeled image data resources
are left idle. The semi-supervised learning method based on
a small number of labeled samples and a large number of
unlabeled samples is more suitable in such real conditions.
The recommended techniques for semi-supervised learning are
as follows:

(1) Generative models as the early semi-supervised learning
methods, establish the relationship between prediction models
and unlabeled data based on clustering assumption and manifold
assumption, and assume that all data are “generated” by the same
potential model. Typical algorithms include Gaussian mixture
model, Expectation-Maximum method, Naive Bayes method,
and others (109–111).

(2) The self-training method is an incremental algorithm
(112) that firstly uses a small number of labeled data to train an
initial classification model, and then adopts this model to predict
all unlabeled data. Only the samples with high confidence will be
added to the training set for re-training, and the iterations are
repeated until the termination condition is satisfied.

(3) The co-training method consists of several classification
models. First, each base classifier is initialized with labeled data,
and then the classifier selects the “most confident” unlabeled data,
assigns the predicted category of samples and adds them to the
labeled data set. The labeled data set is updated and provided
to another classifier, and the iterations are repeated until each
classifier does not change (113).
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(4) The graph-based method maps the data set into a
composition that presents the organizational relationship
between the sample data. In the graph, the nodes of
the graph represent the sample points, and the edges
represent the similarity relationship between two sample
points. And then the labels are spread from labeled data to
unlabeled data based on the adjacency relationship on the
graph (114).

(5) Semi-supervised SVM is an extension of SVM on semi-
supervised learning (115). After adding unlabeled data into the
feature space, semi-supervised SVM tries to find a partitioning
hyperplane that still divides the labeled data and passes through
the low-density region of the samples.

4.4. Multi-Omics Model Research
Traditional single omics has some limitations in interpreting
disease due to its complexity. The development of multi-
omics technology provides abundant materials for the study
of complex diseases. Genomics, epigenomics, transcriptomics,
proteomics, and metabolomics are all important components
of systems biology. Multi-omics research can study diseases
more comprehensively by integrating the data of different omics
effectively. Adding some clinical parameters such as gender and
age to the feature set is a preliminary attempt. In addition,
Guo et al. (116) graded glioma by utilizing radiomics and
clinical parameters, such as age and markers of inflammation
in the blood. Chen et al. (117) combined histology images and
genomics to predict survival outcomes, and the results performed
higher than single omics experiments. In the future, it will be
an important research direction that comprehensively analyzes
complex diseases like cancers by combining multi-omics data.

5. CONCLUSION

With the successful applications of AI in many fields, research
on the application of AI in diagnosis of craniopharyngioma
has emerged in recent years. This study reviewed the existing
applications of artificial intelligence in craniopharyngioma
from the aspects of differential classifications, brain tissue
invasiveness and gene mutation prediction, and postoperative
prediction. Leveraging the relevant literature on other similar
tumors, the artificial intelligence-based diagnostic routes were
further proposed. Traditional machine learning methods
are more explanatory and less computation is required.
Intelligent diagnosis of craniopharyngioma based on traditional
machine learning included steps of image preprocessing, image
segmentation, feature extraction, feature selection, machine
learning modeling. Deep learning model is an end-to-end
learning framework, which heavily relies on a mass of data.

Therefore, diagnosis of craniopharyngioma based on deep
learning is usually included steps of data augmentation and
design of model. The study also proposed the methods that
could be adopted in each step. The applications of artificial
intelligence technology in the diagnosis of craniopharyngioma
are still in the preliminary period. The lack of standard data
sets and small data sets may affect the development of artificial
intelligence technology in this field. In view of the existing
research, this study discussed the attentions required for
future research. Few-shot learning is one of the first works
to be addressed. Data augmentation, data synthesis, feature
enhancement, some advanced learning strategies, and transfer
learning are available measures for learning on a small data
set. In addition, future research should also pay attention
to the problem of imbalanced data sets. Over-sampling or
undersampling technology, cost sensitive method, and ensemble
learning methods are recommended solutions. Another research
direction should point to the semi-supervised learning model
which is a suitable choice for the medical field with scarce labeled
data. Additionally, multi-omics fusion mode can better describe
complex diseases like cancers.
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