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Bacterial Community Composition
Associated with Pyrogenic Organic
Matter (Biochar) Varies with Pyrolysis
Temperature and Colonization
Environment
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Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of
Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, China® Department of Land, Air, and
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ABSTRACT Microbes that colonize pyrogenic organic matter (PyOM) (also called
biochar) play an important role in PyOM mineralization and crucially affect soil bio-
geochemical cycling, while the microbial community composition associated with
PyOM particles is poorly understood. We generated two manure-based PyOMs with
different characteristics (PyOM pyrolyzed at the low temperature of 300°C [i.e.,
PyOM300] and at the high temperature of 700°C [i.e,, PyOM700]) and added them to
high-carbon (4.15%) and low-C (0.37%) soil for microbial colonization. 16S rRNA
gene sequencing showed that Actinobacteria, particularly Actinomycetales, was the
dominant taxon in PyOM, regardless of the PyOM pyrolysis temperature and soil
type. Bacterial communities associated with PyOM particles from high-C soils were
similar to those in non-PyOM-amended soils. PyOM300 had higher total microbial
activity and more differential bacterial communities than PyOM700. More bacterial
operational taxonomic units (OTUs) preferentially thrived on the low-pyrolysis-
temperature PyOM, while some specific OTUs thrived on high-pyrolysis-temperature
PyOM. In particular, Chloroflexi species tended to be more prevalent in high-
pyrolysis-temperature PyOM in low-C soils. In conclusion, the differences in colo-
nized bacterial community composition between the different PyOMs were strongly
influenced by the pyrolysis temperatures of PyOM, i.e., under conditions of easily
mineralizable C or fused aromatic C, and by other properties, e.g., pH, surface area,
and nutrient content.

IMPORTANCE Pyrogenic organic matter (PyOM) is widely distributed in soil and flu-
vial ecosystems and plays an important role in biogeochemical cycling. Many studies
have reported changes in soil microbial communities stimulated by PyOM, but very
little is known about the microbial communities associated with PyOM. The mi-
crobes that colonize PyOMs can participate in the mineralization of PyOM, so chang-
ing its structure affects the fate of PyOMs and contributes to soil biogeochemical cy-
cling. This study identified the bacterial community composition associated with
PyOMs on the basis of high-throughput sequencing and demonstrated that both
PyOM pyrolysis temperature and the colonization environment determined the bac-
terial community composition. Our work increases our understanding of the domi-
nant phylogenetic taxa associated with PyOMs, demonstrates mechanisms mediating
microbial metabolism and growth in PyOMs, and expands a new research area for
pyrogenic organic matter. This study identified the bacterial community composition
associated with PyOM, which is widely distributed in the environment. Most bacte-
rial OTUs preferentially thrived on PyOM pyrolyzed at low temperature, while some
specific OTUs thrived on PyOM pyrolyzed at high temperature.
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yrogenic organic matter (PyOM) produced by pyrolysis (usually called biochar) or

natural fires is widely distributed in agricultural lands (1), wildfire-affected forests
(2), and fluvial ecosystems (3). PyOM can exist in soil for thousands of years (4) and can
constitute up to 80% of total soil organic carbon (5). In general, PyOM is intentionally
applied to enhance soil carbon sequestration and improve soil fertility (6, 7). Recently,
the research emphasis has been gradually switching from the application effects of
PyOM (8-10) to the microbially mediated mechanisms of C and N cycling (11, 12). Some
studies have already reported how PyOM alters soil microbial abundance and diversity
and how changes in microbial community composition affect soil C and nutrient
dynamics (13-15). For example, Whitman et al. (2016) (15) found that the relative
abundance of Gemmatimonadetes tended to increase only in response to PyOM and
not in response to fresh organic matter. Xu et al. (2014) (14) showed that the presence
of PyOM increased bacterial diversity and the relative abundance of Bacteroidetes,
Gemmatimonadetes, and TM7 and decreased the relative abundance of Acidobacteria
and Chlorofiexi.

PyOM has distinctive properties such as high biochemical stability, a highly porous
structure, high alkalinity, and special nutrient composition (16, 17). In addition, PyOM
is a heterogeneous material. PyOM properties differ greatly as pyrolysis conditions and
feedstocks change (18). For instance, the C content, pH, and surface area of manure-
based biochar increased from 29%, 8.5, and 4.8 m2.g~" to 38%, 10.1, and 32.7 m?g~—",
respectively, when the pyrolysis temperature was increased from 300°C to 700°C (19).
The distinctive properties of PyOM can favor specific microbial colonization and prob-
ably result in a great differentiation of the microbial community between different
PyOMs as well as between PyOM and the adjacent soil. After colonization of PyOM,
microbes can use it as their habitats, participate in PyOM mineralization, and, finally,
affect PyOM fate and contribute to soil C and N cycling (20). A few studies have shown
how PyOM particles harbor microbial communities that are different from those
harbored by soils (12, 21, 22). For example, Proteobacteria and Actinobacteria were more
abundant in PyOM particles than in adjacent control soils (12). However, due to the
insufficient number of studies and the wide diversity of PyOM types, the different
microbial community compositions associated with PyOMs are still poorly understood.

Two main factors might modulate microbial colonization in PyOMs: intrinsic prop-
erties (e.g., aromaticity, pH, surface area) and the surrounding environment. In general,
the pyrolysis temperature greatly affects PyOM properties (23): low pyrolysis temper-
atures result in PyOM with more easily mineralizable C, lower pH, lower surface area,
etc., while high pyrolysis temperatures result in PyOM with higher levels of fused
aromatic C, higher pH, and greater surface area (24); such examples of PyOM are widely
distributed in natural environments (25). Additionally, environmental conditions, e.g.,
soil physical and chemical characteristics (26), especially organic C status, can also
influence PyOM-associated microbial communities (22).

In this study, we produced PyOMs at pyrolysis temperatures of 300°C and 700°C,
using manure as feedstock, which is different from lignocellulose-based feedstock and
yet is very commonly used in soil ecosystem studies. Two PyOMs were then added to
two representative soils, a low-C-content soil (pH of 4.53, 0.37% C, and 0.06% N) (a
Psammaquent [Ps] soil) and a high-C-content soil (pH of 5.55, 4.17% C, and 0.35% N) (an
Argiustoll [Ar] soil) to investigate, by 16S rRNA gene sequencing, the community
composition of bacteria colonized in PyOMs. Our objectives were (i) to gain compre-
hensive information concerning bacterial community composition associated with
PyOM particles and to determine the differences between PyOM particles and non-
PyOM-amended soils (also called control soils) and (ii) to elucidate how the PyOM
pyrolysis temperature and the colonization environment affect bacterial community
composition. We hypothesized that the presence of a low-pyrolysis-temperature PyOM
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TABLE 1 Basic properties of PyOM300 and PyOM700

PyOM Volatile Fixed Molar BET“ Extractable NH,* Extractable NO;—
type pH matter (%) carbon (%) C (%) H (%) N (%) H/C (m2 g~1) (mg kg—") (mg kg—")
PyOM300 7.2 48.0 153 353 4.48 3.03 1.52 4.9 40.2 18.5

PyOM700 9.6 8.4 357 29.9 1.40 1.64 0.56 52.6 16.1 8.6

9BET, Brunauer-Emmett-Teller surface area.

would lead to larger differences in bacterial community composition than those seen
with control soil, due to the availability of more easily mineralizable C together with
other distinctive properties (e.g., pH, surface area, etc.) whereas high-pyrolysis-
temperature PyOM would also harbor a specific microbial community due to its fused
aromatic structure.

RESULTS

PyOM properties. The molar H/C (the higher the molar H/C, the lower the degree
of fused aromatic C) in PyOM300 was higher than in PyOM700 (Table 1). PyOM300 had
a higher proportion of volatile matter (48.0%) than PyOM700 (8.4%), whereas the fixed
proportion of carbon in PyOM300 (15.3%) was lower than that in PyOM700 (35.7%)
(Table 1). This result was consistent with nuclear magnetic resonance (NMR) spectra
showing that the aromatic C was the dominant structure in PyOM700 whereas there
were a variety of examples of aliphatic C, e.g., carbonyls (e.g., C=0 and C-O) and alkyls
(e.g., OCH, CH2, and CH3), detected in PyOM300 in addition to aromatic C (Fig. 1a). The
pH and surface area of PyOM300 (7.2 and 4.9 m2g~") were lower than those of
PyOM700 (9.6 and 52.6 m2-g—"), while the N mineral contents (i.e., NH,™ and NO;™) in
the two PyOMs were similar (Table 1).

Total microbial abundance and activity. At the end of a 240-day incubation,
numerous microbial cells were observed in PyOM300, whereas only a small number
were observed in PyOM700, regardless of soil type (Fig. 1b and Fig. S1 in the supple-
mental material). Two-way analysis of variance (ANOVA) showed that the PyOM type
significantly influenced soil microbial respiration and the dissolved organic carbon
(DOC) concentration. PyOM300 addition significantly increased the soil microbial res-
piration rate in both Psammaquent (Ps) soil and Argiustoll (Ar) soil, and the increase in
the Ps soil was larger than in the Ar soil. PyOM700 addition had no effects on the
respiration rate in the Ps soil and significantly decreased the respiration rate in the Ar
soil (Fig. 1¢). Similarly, PyOM300 addition had larger effects on soil DOC concentrations
than PyOM700 addition, and the increase in the Ps soil was larger than in the Ar soil
(Fig. 1d).

Bacterial composition. The dominant phylum in PyOMs was Actinobacteria (with an
average relative abundance of 50.1%), followed by Proteobacteria (18.2%), Chloroflexi
(13.0%), and Acidobacteria (8.8%), regardless of PyOM type and soil type (Fig. 2a to d).
In addition, the relative abundances of Actinobacteria in PyOMs (71.8% for PyPs300
[PyOM300 extracted from Psammaquent soil], 40.0% for PyPs700 [PyOM700 extracted
from Psammaquent soil], 55.7% for PyAr300 [PyOM300 extracted from Argiustoll soil],
and 33.2% for PyAr700 [PyOM700 extracted from Argiustoll soill) were significantly
higher than those in the control soils (28.5% for Psammaquent soil without PyOM
addition [PsCK] and 12.9% for Argiustoll soil without PyOM addition [ArCK]), and the
abundance in PyOM300 (i.e., PyPs300 and PyAr300) was significantly higher than in
PyOM700 (i.e., PyPs700 and PyAr700) (Fig. 2a). Consistently, at the order level, Actino-
mycetales, from the phylum of Actinobacteria, was the most dominant member in all
PyOMs (with an average relative abundance of 48.7%) and was more dominant in
PyOM300. Two-way ANOVA showed that PyOM type and soil type significantly affected
the relative abundance of Actinobacteria. In addition, with respect to the PyOMs
extracted from Ps soil, PyPs300 had significantly higher relative abundances of Proteo-
bacteria and lower relative abundances of Chloroflexi and Acidobacteria than PyPs700
(Fig. 2b to d). With respect to the PyOMs extracted from Ar soil, PyAr300 had signifi-
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FIG 1 Relevant microbial biomass and activity parameters under PyOM300 and PyOM700 conditions. (a) NMR spectra. (b) SEM spectra. (c) Respiration rates.
d, day. (d) DOC concentrations. Different lowercase and uppercase characters represent significant differences (P < 0.05) in the results seen with Ps and Ar
treatments, respectively. SEM images were taken at the end of the incubation experiment to show the microbial colonization in PyOM particles that were
extracted from soils.

cantly higher relative abundances of Acidobacteria and lower relative abundances of
Proteobacteria and Firmicutes than PyAr700 (Fig. 2b, d, and e). Indicator genera in
PyOM300 and PyOM700 (irrespective of soil type) and in the control soils are shown in
Fig. 2f to i. Most of the indicators in PyOM300 and PyOM700 were from the phylum
Actinobacteria. The indicators with the highest abundances in PyOM300 and PyOM700
were Actinomadura (Actinobacteria) (Fig. 2f) and Peseudonocardia (Actinobacteria)
(Fig. 29g), respectively. The indicator genera with the highest abundances of PsCK and
ArCK were Pullulanibacillus (Firmicutes) (Fig. 2h) and “Candidatus Solibacter” (Acidobac-
teria) (Fig. 2i).

Bacterial diversity and community similarity patterns. Permutational multivari-
ate analysis of variance (PERMANOVA) showed that both PyOM type (R? = 0.63, P <
0.01) and soil type (R? = 0.66, P < 0.01) significantly affected community similarity
patterns (Fig. 3a). Bacterial taxonomic community composition in PyPs300 separated
largely from that in the control soil (PsCK) (P < 0.05 [by PERMANOVAY)), and the same
trend was observed with PyAr300. However, PyPs700 and PyAr700 showed no signif-
icant differences in bacterial community composition from PsCK and ArCK, respectively
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FIG 2 Relative abundances of dominant phyla in each treatment and indicator genera in PyOM300, PyOM700, and control soils. Values in Ps and Ar soil samples
followed by the same lowercase and uppercase letter, respectively, are not significantly different at a P value of <0.05. (a) Actinobacteria. (b) Proteobacteria.
(c) Chloroflexi. (d) Acidobacteria. (e) Firmicutes. (f) Indicator genera in PyOM300, regardless of soil type. (g) Indicator genera in PyOM700, regardless of soil type.
(h) Indicator genera in PsCK. (i) Indicator genera in ArCK. Acti., Actinobacteria; Firm., Firmicutes; Prot., Proteobacteria; Acid., Acidobacteria; Verri., Verrucomicrobia.

(P > 0.05) (Fig. 3a). Also, PyPs300 and PyAr300 had significant differences in bacterial
community composition from PyPs700 and PyAr700, respectively (P < 0.05) (Fig. 3a). All
the Ar treatments clustered together (excluding the PyAr300 treatment), while the Ps
treatments showed a more dispersed pattern (Fig. 3a).

As the two different soils had different original bacterial community compositions,
we identified the bacterial OTUs in the PyOMs whose relative abundances were twice
as large as in the control soils (Fig. 3b and c; see also Table S1 in the supplemental
material). The proportions of total differentially abundant OTUs in PyOM300 (58.2% in
PyPs300 and 57.0% in PyAr300) were larger than those in PyOM700 (48.7% in PyPs700
and 33.6% in PyAr700) (Table S1); therefore, PyOM300 had a greater number of
differentially abundant OTUs than PyOM700. t test analysis showed that the Log,-fold
change of OTUs in PyOM300 was significantly larger than that in PyOM700 (P < 0.05)
(Fig. 3b and c) and therefore that the relative abundance of OTUs in PyOM300 differed
more from that in the control soil than did that in PyOM700. Most of the OTUs preferred
PyOM300 (Fig. 4a and b), while a small number of OTUs preferred PyOM700, especially
the OTUs from phyla Chloroflexi and Actinobacteria in PyOMs from Ps soil (Fig. 4a) and
from Actinobacteria in PyOMs from Ar soil (Fig. 4b).
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DISCUSSION

Total microbial activity. In general, PyOM is often modeled as two carbon pools:
a persistent C pool and a labile C pool (27). Low pyrolysis temperature results in PyOM
that contains more easily mineralizable C (28), which is readily utilized by microorgan-
isms. High pyrolysis temperature induces a large fraction of fused aromatic C that is
difficult for microorganisms to oxidize (29, 30). In this study, total microbial activity, as
indicated by qualitative scanning electron microscopy (SEM) spectra and CO, respira-
tion rate and DOC concentration data, in PyOM300 was significantly higher than in
PyOM700. This result is very consistent with previous studies where the respiration
rates in PyOMs and/or PyOM C mineralization rates were higher with decreasing
pyrolysis temperature (31-34). For instance, Luo et al. (2011) (34) used '3C isotope
tracing and found that only 0.14% of PyOM at a pyrolysis temperature of 700°C was
mineralized after 87 days of soil incubation, while a significantly higher proportion (i.e.,
0.61%) of PyOM was mineralized at 350°C. Thus, the presence of easily mineralizable C,
as a substrate for bacteria to consume and proliferate, is considered to be one of the
principal factors determining the total microbial activity. Although other properties of
PyOM (e.g., pH) that play important roles in microbial activity changes should not be
neglected, easily mineralizable C is more important because most bacteria can use it as
an energy source.

Bacterial composition responds to PyOM pyrolysis temperature. Although some
studies have reported that the easily mineralizable C fraction has a great effect on total
microbial activity, how the easily mineralizable C fraction and other PyOM character-
istics affect microbial community composition remains unknown. Our results showed
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FIG 4 Log,-fold change in relative abundance of differentially abundant OTUs in PyOM300 and PyOM700 (a and b) and in Ps soil and
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that the bacterial composition in PyOM300 is clearly different from that in PyOM700
and control soil. In addition, PyOM300 had a larger proportion of differentially abun-
dant OTUs and larger changes in abundance of these OTUs than PyOM700 (Fig. 3b and
c and 4a and b; see also Table S1 in the supplemental material). Because the aliphatic
C fraction of PyOM increases with decreasing pyrolysis temperature, these results likely
indicated that the aliphatic C fraction of PyOMs plays an important role in determining
bacterial community composition, which agrees with previous studies (35-37). For
example, Whitman et al. (2016) (15) showed that PyOM caused fewer changes in
bacterial community composition than aliphatic C-sufficient stover substrate in soils. In
addition, the majority of OTUs that preferred aliphatic C were from members of the
phyla Actinobacteria and Proteobacteria (Fig. 4), most of which are normally regarded as
decomposers or heterotrophs (38, 39), further supporting the idea of the importance of
easily mineralizable C in PyOMs.

More importantly, we also found that some specific OTUs tended to thrive on
high-pyrolysis-temperature PyOMs. These OTUs may metabolize aromatic C (e.g., poly-
cyclic aromatic hydrocarbons, xylenols, cresols, etc.) as energy sources rather than easily
mineralizable C for their proliferation and growth. To date, many studies have indicated
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that some specific microbes can utilize aromatic C as an energy source (40-43). For
example, Griebler et al. (2004) (42) evaluated the intrinsic bioremediation potential in
a tar oil-contaminated aquifer and showed some evidence for in situ biodegradation of
aromatic hydrocarbons. We also found that Chloroflexi members preferentially thrived
on high-pyrolysis-temperature PyOM (Fig. 4a) rather than low-pyrolysis-temperature
PyOM. Generally, some Chloroflexi are known as anaerobic halorespiring bacteria that
use halogenated organics as energy sources during redox reactions (44). Therefore, the
graphite-like structure of high-pyrolysis-temperature PyOM can probably act as an
electron transport shuttle (45) and the porous structure would provide more anaerobic
sites for use by them to metabolize halogenated organics. Other OTUs which prefer
high-pyrolysis-temperature PyOM are mainly from Actinobacteria and are discussed
below.

Given that C sources, i.e., aliphatic C in low-pyrolysis-temperature PyOM or aromatic
C in high-pyrolysis-temperature PyOM, can favor some specific OTUs over others, we
assumed that the differences in the physicochemical properties of the two PyOMs
would also attract some specific bacteria and benefit their microbial growth and
proliferation. Some (but not all) of the potential mechanisms in addition to carbon
sources are as follows. (i) High-pyrolysis-temperature PyOM had a more porous struc-
ture and a greater surface area than low-pyrolysis-temperature PyOM (Table 1), features
which can directly attract some specific microbes, e.g., filamentous bacteria, to colonize
or can protect them from predators in surrounding soils (6). In addition, the porous
structure can also absorb soluble organic matter, gases, and mineral nutrients, which
could provide a habitat for microbes to metabolize and grow. However, how pore size
(i.e., that of macropores, mesopores, and micropores) selectively affects microbial
colonization needs further investigation. (ii) pH is one of the most important environ-
mental factors affecting bacterial relative abundance and diversity (46), and the peak
diversity appeared in soils with near-neutral pHs (47). Given that the PyOM300 had a
neutral (i.e, 7.2) pH (Table 1), we assumed that the greater differences in the abun-
dances of OTUs in low-pyrolysis-temperature PyOM may be also attributable to the
appropriate pH environment for microbial growth. (iii) The graphite-like structure of
PyOM can promote electron transportation when anaerobic bacteria participate in
redox reaction (45), and Yu et al. (2015) (48) demonstrated that the promotion ability
of PyOM increased as the pyrolysis temperature increased. This is another possible
reason why some specific OTUs preferentially thrived on PyOM700. (iv) High-pyrolysis-
temperature PyOM has higher mineral content than low-pyrolysis-temperature PyOM,
a feature which is essential for microbial growth and metabolism (10). As manure-based
PyOM had high total N content compared to other PyOMs, there is an assumption that
N content also affects microbial community composition. However, the N mineral
content (NH,* and NO5; ™) in PyOM300 was close to that in PyOM700 and comprised
only a very small proportion of total N (Table 1). Thus, we do not attribute the
differential preference of microbial colonization to the mineral N contents. However,
the effects of other minerals (e.g., P, K, etc.) on microbial colonization need further
investigation. Also, the potential mechanisms are likely to interact, and isolating all
these different mechanisms is a great challenge that future studies will have to address.

Bacterial composition responds to soil type. As different colonization environ-
ments have different characteristics, e.g., different levels of original C content, we
assumed that the bacterial community composition in high-C soil, which was more
closely related to PyOMs, would not be much changed. In our study, the Ps soil, which
has undergone high weathering (49), had a very low nutrient status, e.g., 0.37% organic
C content (Table 2). In contrast, the Ar soil had undergone moderate weathering and
had a high nutrient status, e.g., 4.15% organic C content (Table 2), which is closer to that
in the two PyOMs (about 30%) than to that in the Ps soil (0.37%) (Table 1). Therefore,
the Ar soil might provide sufficient carbon for microbial growth and metabolism. Thus,
the bacterial community composition in the PyOMs added to the high-C soil did not
greatly change, while the PyOMs from low-C soil had a much larger community
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TABLE 2 Basic properties of Ps soil and Ar soil and PyOM extraction efficiency
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EBC Total organic C  Texture (clay/silt/sand)  Total N % PyC300 extraction % PyC700 extraction
Soil pH (cmol kg=")? (g kg—") (%/%/%) (g kg=') efficiency efficiency
Psammaquent  4.53 1.23 3.7 (7/24/69) 0.6 31 44
Argiustoll 5.55 10.00 415 (26/47/27) 35 25 40

aThe total amounts of exchangeable base cations (EBC) were calculated as the sum of exchangeable K+, Na*,

composition change. Here, we should point out that the OTUs in low-pyrolysis-
temperature PyOM (PyOM300) from high-C soil showed no significant difference from
that from the low-C soils (P > 0.05) (Fig. 4c), suggesting that the easily mineralizable C
fraction in PyOM300 probably had the overwhelming effects on microbial community
composition change. This effect induced a great change in bacterial community
composition even when the colonization environment was C sufficient. In contrast, the
C status of high-pyrolysis-temperature PyOM (PyOM700) differed greatly from that in
the low-C soil but was closer to that in the high-C soil, resulting in a larger change in
the bacterial community in low-C soil than in high-C soil (Fig. 4d).

Our study for the first time demonstrated the potential mechanisms of the differ-
ential colonization of the bacterial community in PyOMs with different properties and
incubated under different conditions, with results that were very different from those
of previous studies that identified only the dominant phyla associated with one type of
PyOM (12, 21, 22). Our results provide an advanced insight into the ecological contri-
bution of each phylogenetic taxonomy at the OTU level to PyOM mineralization and
soil biogeochemical cycling.

Actinobacteria in PyOMs. The phylum Actinobacteria, particularly the order Actino-
mycetales, comprising a group of Gram-positive aerobic bacteria with high G+C
content in their DNA and primarily filamentous bacteria (50), had the highest relative
abundance (with an average value of 50.1%) in the PyOMs, regardless of PyOM pyrolysis
temperature and colonization environment. This phenomenon is consistent with a
study by Taketani et al. (2013) (21). They reported that the abundance of Actinobacteria
was higher in fire-burned wood PyOM from Amazonian dark earth than in dark earth
itself. Sun et al. (2016) (12) also showed that the relative abundance of Actinobacteria
in PyOM pellets was higher than that in adjacent control soils.

In general, Actinobacteria (especially Actinomycetales) are heterotrophic bacteria
which play a major role in the decomposition of organic matter (39). The growth of
Actinobacteria in PyOMs could be attributed to the fraction of easily mineralizable C in
PyOMs as they were more abundant in low-pyrolysis-temperature PyOMs than in
high-pyrolysis-temperature PyOM, which had more fused aromatic C. Whitman et al.
(2016) (15) showed that Actinomycetales responded more strongly to stover addition
(easily mineralizable C) than to PyOM, which contained only a small fraction of easily
mineralizable C. Watzinger et al. (2014) (43) showed that PyOM was being mineralized
by Actinomycetales in planosol soil during a short-term incubation. These studies to
some extent showed that the C substrate is the principal factor mediating Actinobac-
teria growth in PyOMs. At the OTU level, although a large number of actinobacterial
OTUs preferred aliphatic C, some OTUs from Actinobacteria (e.g. Actinospicaceae,
Pseudonocardia, Mycobacterium) tended to thrive on PyOM700, the PyOM with high
aromaticity (Fig. 4a and b). One possible reason is that some OTUs presumably
preferentially used aromatic C as an energy source rather than easily mineralizable C.
Moreover, due to the unique properties of PyOMs produced at high pyrolysis temper-
ature, i.e., those with a highly porous structure and an extensive surface area, these
PyOMs, providing an appropriate habitat, would stimulate Actinobacteria (especially
Actinomycetales) growth on the basis of a sufficient carbon source supply. Although it
is difficult to identify whether the hyphae and spores (Fig. S2) were from fungi or
Actinobacteria, we can still predict that the porous structure and high surface area are
likely to absorb microbial spores and to be particularly suitable for the colonization and
growth of microbial hyphae (51).
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Our study identified the differentially abundant taxa colonized in PyOMs compared
with control soil at fine taxonomic resolution and investigated the potential ecological
roles of the dominant taxa that would increase PyOM degradation and contribute to
soil biogeochemical cycling. Due to PyOM heterogeneity, we also examined the pos-
sibility of the effects of different PyOM variances on bacterial community composition.
We found that the changes in total microbial activity and bacterial community com-
position are a result of microbial differential preferences for carbon source of PyOM and
other PyOM characteristics (e.g., pH, porosity of structure, surface area, and nutrients).
More importantly, some specific OTUs tended to thrive on high-pyrolysis-temperature
(e.g., 700°C) PyOM, which was likely attributable to the capacity of these OTUs to use
aromatic C as well as to colonize the unique PyOM structure. Further studies should
target the ecological role of each specific taxon associated with PyOMs and its role in
PyOM mineralization and soil biogeochemical cycling.

MATERIALS AND METHODS

PyOM preparation and soil collection. Dry autoclaved swine manure was pyrolyzed at tempera-
tures of 300°C and 700°C and was designated PyOM300 and PyOM700, respectively. The feedstock was
placed in stainless steel trays, covered with a tight lid, and pyrolyzed under oxygen-limited conditions
in a muffle furnace. The heating rate was 2.5°C:min~", and the residence time was 0.5 h. After pyrolysis,
the PyOM samples were ground and sieved using pore sizes between <3 mm and >2 mm. (Preliminary
experiments showed the PyOM particles with this size range were easily extracted from soils). Quanti-
tative '3C solid-state nuclear magnetic resonance (NMR) spectroscopy (BrukeBiospin, Germany) was
performed at a magic-angle spinning (MAS) frequency of 14 kHz to quantify the aliphatic and aromatic
structures in PyOM300 and PyOM700. Other methods for analysis of PyOM characteristics are described
in Text 1 in the supplemental material. The basic properties of the PyOMs are given in Table 1. Two types
of soil, a Psammagquent soil (termed “Ps soil”) and an Argiustoll soil (termed “Ar soil”), were collected from
upland cropland in the Jinqu Basin of Zhejiang Province, China, and from maize farmland in Heilongjiang
Province, China, respectively. Soil samples were collected from the topsoil (depth, 0 to 10 ¢cm) after
surface organic residues were removed and were then air-dried, crushed, and sieved using pore sizes of
<2 mm. The basic properties of the soils are given in Table 2.

Microbial colonization. To stimulate microbial activity, soils were preincubated aerobically (i.e.,
under open-air conditions) for 2 weeks at 25°C and at 30% water-holding capacity. Then, PyOM300 and
PyOM700 were added to the soils at 30 g-kg~' (3% [wt/wt]). The PyOM-soil mixtures (500 g soil and 15 g
PyOM) were then incubated aerobically in plastic bags (the bags were slightly open in order to maintain
adequate oxygen throughout) with three replicates, at 25°C in darkness at 70% water-holding capacity.
We also set up the control soil without PyOM addition. The moisture of each treatment was readjusted
by adding sterile water every 5 days. All the incubation processes were conducted in a superclean
environment. After 240 days of incubation, the soils were homogenized and then subsampled for
measurement of respiration rates and dissolved organic carbon (DOC) levels. Details of the methods used
are provided in Text 1.

PyOM extraction and SEM observation. The method of PyOM extraction from soils was modified
from that described previously by Lin et al. (2012) (52). Briefly, 200 g of soil PyOM mixtures was added
to beakers, each with 1,000 ml of sterile water. The mixtures were then stirred gently for 2 min, and the
isolated PyOMs in the suspension were collected on a sieve during the agitation. In this process, the
PyOM pieces remain on the sieve surface and the soil particles pass through it. The PyOM particles were
then collected manually, gently rinsed with sterile water to remove the residual soil particles, and then
stored at —80°C (soil particles not able to be removed are considered the PyOM-sphere). The same
washing treatments were also conducted in control soils. This extraction method is based on the
assumption that the bacteria in the PyOMs were not damaged by water washing, which is similar to
natural processes, e.g., rain leaching and water irrigation. The extraction rates are shown in Table 2.
Scanning electron microscopy (SEM) (FEI, Netherlands) analysis was conducted to observe the coloni-
zation of microbes in the PyOMs that were extracted from soils using the method described by Dai et
al. (2013) (17). All SEM figures presented in the manuscript were representatively selected, and other
images were presented in Fig. S1 in the supplemental material.

DNA extraction and sequencing and data processing. We extracted DNA from extracted PyOMs
and control soils using a Mo Bio PowerSoil DNA isolation kit (Mo Bio Laboratories, USA) following the
manufacturer’s instructions. The amplification of the V3-V4 region of the 16S rRNA gene in each sample
in triplicate was conducted using a ABI GeneAmp 9700 system (Thermo Fisher Scientific, Waltham, MA,
USA) and TransStart Fastpfu DNA polymerase. The forward and reverse primers were 338F (5'-ACTCCT
ACGGGAGGCAGCA-3’) and 806R (5'-GGACTACHVGGGTWTCTAAT-3’), respectively. The detailed proce-
dures were conducted by Shanghai Majorbio Bio-pharm Technology Co., Ltd., China. Triplicate amplified
samples were then purified, pooled, and sequenced with a MiSeq PE300*2 sequencing platform (lllumina,
USA). Overall, treatments with three replicates are abbreviated as follows: PsCK (Psammaquent soil
without PyOM addition), PyPs300 (PyOM300 extracted from Psammaquent soil), PyPs700 (PyOM700
extracted from Psammagquent soil), ArCK (Argiustoll soil without PyOM addition), PyAr300 (PyOM300
extracted from Argiustoll soil), and PyAr700 (PyOM700 extracted from Argiustoll soil).
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The raw data that contained two paired-end reads were processed with QIIME (version 1.7.0;
http://qiime.org/) (53). Briefly, paired-end reads were combined to form tags based on overlaps and were
then filtered, trimmed, and optimized as follows: (i) removal of bases with an average quality level of
<Q20; (ii) minimal overlapping length of 10 bp; (iii) mismatching ratio of overlapped region of =0.2.
Operational taxonomic units (OTUs) at a 97% similarity level were defined and clustered using USEARCH
(version 7.1), and the taxonomy was assigned based on the Greengenes database (release 13.5;
http://greengenes.secondgenome.com/) (54). All the sequencing data were resampled to the minimum
sequencing depth of 30,000 reads. Raw data have been deposited in the GenBank Sequence Read
Archive.
Statistical analysis. Two-way analysis of variance (ANOVA) was used to test for differential results
caused by differences in pyrolysis temperature and soil type among the following treatments: (i) CO,
respiration rates and DOC concentrations and (ii) relative abundances of the dominant bacterial phyla.
We explored bacterial community patterns using nonmetric mutidimensional scaling plots (NMDS) of
taxonomic similarity (Bray-Curtis) and the vegan R package (55). Nonparametric PERMANOVA (permu-
tational multivariate analysis of variance) was conducted to investigate the effects of soil and PyOM type
on bacterial community similarity (56). The R package “DESeq2” (57) was used to identify those OTUs of
which the relative abundance differed significantly from control soil results (58). In the data processing,
the PsCK was designated the control for treatments of both PyPs300 and PyPs700, and the ArCK was
designated the control for treatments of both PyAr300 and PyAr700. The selection criterion was based
on P values adjusted by the Benjamini and Hochberg correction method. Thus, OTUs with a Log,-fold
change in relative abundance of >1 and an adjusted P value of <0.1 were selected for further analysis
and termed “differentially abundant OTUs.” These differentially abundant OTUs can provide in-depth
information related to how the bacterial composition in PyOMs differed from that in control soil at a fine
taxonomic resolution. t tests were conducted to show the significance of the difference (P < 0.05) in the
values of Log,-fold change between two PyOMs and between two soils. Indicator genera representing
the specialists that can be found in one type of PyOM but not in other PyOMs were identified using the
indicator value metric (Indval) (59) as implemented in the labdsv R package (60).
Accession number(s). Raw sequencing read data have been deposited in the GenBank Sequence
Read Archive under accession no. SRX1853875.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/
mSphere.00085-17.

TEXT S1, PDF file, 0.2 MB.
FIG S1, PDF file, 0.2 MB.

FIG S2, PDF file, 0.2 MB.
TABLE S1, PDF file, 0.02 MB.
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