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Abstract: Ferroptosis is a non-apoptotic form of cell death driven by iron-dependent lipid peroxidation.
Recent evidence indicates that inhibiting ferroptosis could alleviate cerebral ischemia/reperfusion
(CIR) injury. γ-glutamylcysteine (γ-GC), an intermediate of glutathione (GSH) synthesis, can upregu-
late GSH in brains. GSH is the co-factor of glutathione peroxidase 4 (GPX4), which is the negative
regulator of ferroptosis. In this study, we explored the effect of γ-GC on CIR-induced neuronal fer-
roptosis and brain injury. We found that γ-GC significantly reduced the volume of cerebral infarction,
decreased the loss of neurons and alleviated neurological dysfunction induced by CIR in rats. Further
observation showed that γ-GC inhibited the CIR-caused rupture of the neuronal mitochondrial outer
membrane and the disappearance of cristae, and decreased Fe2+ deposition and lipid peroxidation in
rat cerebral cortices. Meanwhile, γ-GC altered the expression of some ferroptosis-related proteins
in rat brains. Mechanistically, γ-GC increased the expression of GSH synthetase (GSS) for GSH
synthesis via protein kinase C (PKC)ε-mediated activation of nuclear factor erythroid 2-related factor
(Nrf2). Our findings suggest that γ-GC not only serves as a raw material but also increases the GSS
expression for GSH synthesis against CIR-induced lipid peroxidation and ferroptosis. Our study
strongly suggests that γ-GC has potential for treating CIR injury.

Keywords: γ-glutamylcysteine; cerebral ischemia/reperfusion injury; glutathione; glutathione syn-
thetase; ferroptosis; lipid peroxidation

1. Introduction

Stroke is a major cause of mortality and adult physical disability worldwide [1]. As
the elderly population has expanded, stroke-related death and disability has caused a
heavy social and economic burden. The Global Burden of Disease Study 2017 indicated
that China had the highest number of prevalent cases of stroke in the world [2]. Almost
80% of strokes are ischemic strokes, the incidence and mortality of which have increased
over the past three decades in China [3]. Ischemic stroke is caused by arterial occlusion,
leading to a temporary lack of glucose and oxygen supply in the affected brain area [4].
Since the brain is a highly energy-consuming organ, an uninterrupted supply of oxygen
and glucose is essential [5]. Thus, ischemia and hypoxia will result in a tissue ischemic
damage [6]. Timely restoration of blood flow to ischemic brain areas, such as through
thrombolytic treatment, is the primary therapeutic strategy recommended by the current
clinical guidelines [7]. However, reperfusion therapy after a period of severe or complete
ischemia often cannot reverse but instead enhances tissue damage in the affected brain
area, which is called cerebral ischemia/reperfusion injury [8].

Antioxidants 2022, 11, 1653. https://doi.org/10.3390/antiox11091653 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox11091653
https://doi.org/10.3390/antiox11091653
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://doi.org/10.3390/antiox11091653
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox11091653?type=check_update&version=1


Antioxidants 2022, 11, 1653 2 of 20

During the cerebral ischemia/reperfusion, oxidative stress induced by reactive oxygen
species (ROS) accumulation plays a pivotal role in the pathophysiological changes of brain
tissue damage [9]. When the blood supply to a region of the brain is blocked, the nutrients
and oxygen in those tissues are decreased significantly, leading to the disorder of energy
metabolism. As oxygen becomes enriched during blood reperfusion, pro-oxidant enzymes
and oxygen as a substrate in mitochondria contribute to the rapid generation of ROS.
Large amounts of ROS lead to the breakdown of antioxidant systems, followed by DNA
damage, protein dysfunction and lipid peroxidation [10]. Since there are high metabolic
rates of oxygen consumption, high levels of polyunsaturated fatty acids (PUFAs) and low
antioxidant enzyme activity, neurons are more susceptible to lipid peroxidation than other
cells [11].

Ferroptosis is a non-apoptotic form of cell death, which is characterized by excessive
iron-dependent lipid peroxidation [12,13]. Abnormal accumulation of labile Fe2+ could
directly catalyze the formation of free radicals via Fenton chemistry, which leads to intra-
cellular lipid peroxidation Glutathione peroxidase 4 (GPX4), utilizing GSH as a cofactor;
this enzyme is required for the clearance of lipid ROS [14]. GSH depletion could result
in GPX4 inactivation and subsequent lipid ROS accumulation and ferroptosis [15–17].
Previous research has demonstrated that iron overload aggravates brain damage induced
by focal ischemia and early reperfusion [18]. Tuo et al. reported that CIR increased iron
accumulation and lipid peroxidation in lesioned hemispheres of mice [19]. We suspect
that inhibiting lipid peroxidation and ferroptosis may be an effective strategy to alleviate
cerebral ischemia/reperfusion injury.

Clinical studies have shown that low levels of GSH are associated with a higher
risk of stroke compared with the reduction of other endogenous antioxidants [20]. GSH
synthesis involves two consecutive ATP-dependent reactions in cytoplasm. In the first
step, glutamate-cysteine ligase (GCL), also called γ-glutamylcysteine synthetase (GCS),
catalyzes the reaction between the γ-carboxyl group of glutamate and L-cysteine to γ-
glutamylcysteine (γ-GC). GCL is a rate-limiting enzyme, which is feedback-inhibited by
GSH. The second step is catalyzed by GSH synthetase (GSS), which links glycine to γ-GC
to form GSH [21]. Exogenous GSH is difficult to transport into cells due to an extreme
concentration gradient and the hydrolyzed effect of extracellular γ-glutamyl transpeptidase
(GGT) [22,23]. N-acetyl cysteine (NAC) is used to supply intracellular GSH levels, but NAC
is first deacetylated to cysteine and is then catalyzed by both GCL and GSS to synthesize
GSH [24]. Since cysteine is easily produced in the liver through conversion from the other
sulfur-containing amino acids, supplementing with NAC to increase intracellular GSH
is of little value [25]. Therefore, finding more effective agents for increasing intracellular
GSH remains a critical challenge. Anderson and Meister first reported that γ-GC increases
the cellular GSH levels in the kidney [26]. It was reported that the intracerebroventricular
administration of γ-GC dose-dependently increases GSH levels in the substantia nigra and
in the rest of the brain stem of rats [27]. A single intravenous injection of γ-GC to mice
significantly increases GSH levels in the brain in vivo, suggesting that γ-GC is capable of
crossing the blood–brain barrier [28]. More recently, it was reported that γ-GC maintains
redox control, both in in vitro and in vivo models, by acting as a glutathione peroxidase-1
(GPX1) cofactor. Nuclear factor erythroid 2-related factor (Nrf2) regulates the expression of
genes involved in antioxidant defenses [29]. Protein kinase C (PKC) kinases induce Nrf2
phosphorylation, which is established as the upstream signal of Nrf2 activation [30].

Since cerebral ischemia/reperfusion injury is reported to be related with lipid peroxi-
dation and ferroptosis, here we investigated whether γ-GC could inhibit CIR-induced lipid
peroxidation and ferroptosis and analyzed the related mechanism.

2. Materials and Methods
2.1. Animals and Reagents

Male Sprague-Dawley (SD) rats (260–300 g) were purchased from Xipuer-Beikai Ex-
perimental Animal Co., Ltd. (Shanghai, China). The animal study was approved by the
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Medical Laboratory Animal Research Institute of Medical Sciences China (Permit Number:
SYXK (Su) 2019-0056). All treatment of rats in this study was in strict agreement with the
guidelines on ARRIVE and recommendations from an NIH-sponsored workshop regarding
experimental design and reporting standards [31]. Animals were housed at 20–24 ◦C, with
40–60% humidity in a 12 h light/12 h dark cycle and with food and water ad libitum.

γ-glutamylcysteine (γ-GC) was obtained from Prof. ZM Yin (Nanjing Normal Uni-
versity, China). NAC (CAS: 616-91-1) was purchased from Sigma Aldrich (St. Louis, MO,
USA). ML385 (HY-100523), and ε-V1-2 (HY-P0154) was purchased from MedChem Express
(Shanghai, China).

2.2. Rat Middle Cerebral Artery Occlusion/Reperfusion (MCAO/R) Model

Transient acute focal cerebral ischemia was induced by occlusion of the middle cere-
bral artery as previously described [32]. Rats were anesthetized by intraperitoneal injection
of 1% pentobarbital sodium, and then the right common carotid artery bifurcation was
exposed. A monofilament was inserted into the right internal carotid artery through the ex-
ternal carotid artery stump. After 90 min, the monofilament was withdrawn for reperfusion.
Rats were randomly divided into four groups, including Sham, MCAO/R, MCAO/R+γ-
GC (688 mg/kg) and MCAO/R+NAC (522 mg/kg) groups. Similar procedures but without
occlusion of the middle cerebral artery were performed on Sham rats. Rats were admin-
istrated with γ-GC and NAC orally at the onset of reperfusion. Twenty-four hours after
reperfusion, neural dysfunction was evaluated using the deficit grading system introduced
by Longa et al. [33], and brain sections were stained with 2,3,5-triphenylterazolium chloride
(TTC, Sigma Aldrich, St. Louis, MO, USA) to evaluate the infarction size after MCAO/R
(see Supplementary Methods).

2.3. Cell Culture and Oxygen-Glucose Deprivation and Reoxygenation (OGD/R) Model

Primary cortical neurons were harvested from embryonic day 18.5 SD rats as described
previously [34]. Cells were cultured in neurobasal medium supplemented with 2% B27
and 1% Glutamax at 37 ◦C with 5% CO2. Rat pheochromocytoma (PC12, CRL172.1TM) cells
purchased from ATCC (Manassas, USA) were cultured in DMEM supplemented with 10%
FBS, 1% penicillin/streptomycin at 37 ◦C with 5% CO2.

The OGD/R model was established as previously described [35]. In brief, cells were
incubated using a specialized hypoxia incubator, which contained an anaerobic gas mixture
(95% N2 and 5% CO2) kept at 37 ◦C. Primary cortical neurons were maintained in glucose-
free DMEM medium without FBS, and then the cells were transferred to a hypoxic incubator
to incubate at 37 ◦C for 1 h before reoxygenation. PC12 cells were maintained in glucose-free
DMEM medium without FBS, and then the cells were transferred to a hypoxic incubator to
incubate at 37 ◦C for 4 h before reoxygenation. For reoxygenation, the cells were refreshed
with normal culture medium under normoxic conditions (95% O2 and 5% CO2) for 12 h.
Control cells were incubated in serum-free DMEM in a normoxic incubator chamber.

2.4. Fluoro-Jade B Staining and Immunofluorescence Microscopy

Rats were anesthetized with 1% pentobarbital sodium and perfused intracardially
with 4% paraformaldehyde. The rat brains were post-fixed in 4% paraformaldehyde
overnight and embedded in paraffin blocks, which were cut into 10 µm-thick coronal
sections at 200 µm intervals. The sections were de-paraffinized with xylene followed by
rehydration. Fluoro-Jade B (FJB) slices were incubated with 0.06% potassium permanganate
solution for 15 min and 0.001% FJB staining solution for 30 min at room temperature.
After mounting with an anti-fluorescence quencher, images were visualized with a Leica
DM4000B fluorescence microscope (Leica, Germany).

For immunofluorescence staining, brain sections were boiled for 20 min in sodium
citrate buffer (0.01 M, pH 6.0) for antigen retrieval after being dewaxed and rehydrated
and were blocked with 3% BSA. The slides were incubated with primary antibodies at 4 ◦C
overnight. Antibody information is included in the Supplementary Materials. After being
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washed three times with PBS, the slides were incubated with the fluorescence-conjugated
secondary antibodies at room temperature in the dark for 1 h. Sections were coverslipped
with polar mounting anti-fluorescence quencher. Fluorescent signals were viewed using a
Leica DM4000B fluorescence microscope (Leica, Wetzlar, Germany).

2.5. Confocal Microscopy

PC12 cells were rinsed with PBS three times and were fixed in 4% paraformaldehyde
for 15 min at room temperature. After being permeabilized with 0.1% Triton X-100 for
30 min, cells were blocked with 3% BSA for 40 min and incubated with primary antibody
overnight at 4 ◦C. Cells were rinsed with PBS three times and were incubated with FITC-
conjugated secondary antibody at room temperature in the dark for 1 h followed by
incubating with DAPI solution for 5 min. After being mounted with anti-fluorescence
quencher mounting medium, the fluorescent signals were visualized under a Nikon C1
confocal laser microscope (Nikon, Tokyo, Japan).

2.6. Immunoblotting and Coimmunoprecipitation Assay

Rat cortical tissue and cell proteins were extracted using RIPA Lysis Buffer (Beyotime,
Shanghai, China) supplemented with protease inhibitor cocktail (Roche, IN, USA). Proteins
were quantified with a BCA kit (Beyotime, Shanghai, China); equivalent amounts of
proteins (30 µg) were electrophoresed on 12% SDS-PAGE, followed by transferring onto
0.2 µm pore-size polyvinylidene fluoride (PVDF) membranes (Millipore, Billerica, MA,
USA). After blocking with 5% non-fat milk solution for 1 h at room temperature, the
membranes were washed with TBS-Tween-20 (0.1%, v/v). The membranes were incubated
with corresponding primary antibodies at 4 ◦C overnight and then incubated with HRP-
conjugated secondary antibodies (Bioworld, St. Louis Park, MN, USA) for 1 h at room
temperature. The antibody-antigen complexes were visualized by the chemiluminescence
method using the enhanced ECL Immunoblotting System (Bio Tanon, Shanghai, China).

For coimmunoprecipitation, cell pellets were lysed with ice-cold lysis buffer, and
lysates were centrifuged (12,500× g) at 4 ◦C for 15 min. Proteins were immunoprecipitated
with 5 µg Nrf2 antibody at 4 ◦C overnight. The immunocomplexes were incubated with
precleared protein A/G-agarose beads (Santa Cruze Biotechnology, Dallas, TX, USA) at
4 ◦C for 2 h and were washed with the lysis buffer. Samples were then subjected to
immunoblotting.

2.7. Quantitative Real-Time PCR (qRT-PCR)

Acyl-CoA synthetase long-chain family member 4 (ACSL4), GPX4, ferritin heavy chain
(FTH1), transferrin (TF), solute carrier family 7 member 11 (SLC7A11) and GSS expression
were measured using quantitative real-time PCR. Total RNA was extracted using TRIZOL
reagent (Thermo Fisher Scientific, MA, USA). RNA concentrations were assessed using a
NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, USA), and then 1 µg total
RNA was reverse-transcribed to cDNA using a HiScript II RT reagent kit (Vazyme, Nanjing,
Jiangsu, China) according to the manufacture’s protocol. Aliquots of 10 ng cDNA were
used as templates for real-time PCR reactions. qRT-PCR was performed using AceQ qPCR
SYBR Green Master Mix (Vazyme, Nanjing, China) and was run on the Step One Plus Real
Time PCR system (Applied Biosystems, Foster City, CA, USA). qRT-PCR ran for 40 cycles
with a Tm of 60 ◦C. Relative gene expression was calculated using the 2−∆∆Ct method [36]
and was normalized to β-actin. All primer sequences are listed in Supplementary Table S1.

2.8. Fe2+ Level Measurement

Intracellular Fe2+ levels were measured using an Iron Assay Kit (Abcam, Cambridge,
MA, USA) according to the manufacturer’s instructions. Rat cortical tissues or cells were
homogenized in iron assay buffer and centrifuged at 16,000× g for 10 min. To detect Fe2+

levels, an iron probe containing an iron chromogen Ferene S was added to each sample.
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Samples were incubated with the iron probe at 37 ◦C for 60 min. The absorbance was
measured using a microplate reader (Tecan, Crailsheim, Germany) at 593 nm.

2.9. Measurement of GSH, MDA and H2O2 Levels

Rat cortical tissues of ipsilateral hemispheres were homogenized, and cells were lysed.
Samples were centrifuged at 10,000× g for 10 min, and the supernatants were collected.
GSH and GSSG contents in the supernatant of tissues and cells were detected using the
GSH and GSSG Assay Kit (Beyotime, Shanghai, China) according to the manufacturer’s
protocol. To measure the Malondialdehyde (MDA) and H2O2 levels, rat cortical tissues or
cells were homogenized or lysed, respectively. Samples were centrifuged at 12,000× g for
10 min, and the supernatants were collected. MDA and H2O2 levels in the supernatants
were detected by using MDA Assay Kit (Beyotime, Shanghai, China) and H2O2 Assay Kit
(Beyotime, Shanghai, China), respectively, according to the manufacturer’s instructions.

2.10. GPX Activity Determination

Rat cortical tissues and cells were homogenized or lysed, respectively, and then were
centrifuged at 12,000 rpm for 10 min. The supernatants were subjected to measurement
of glutathione peroxidase (GPX) activity with the GPX Assay Kit (Beyotime, Shanghai,
China) according to the manufacturer’s instructions. In brief, samples were incubated with
a solution containing 1 mM GSH, 0.2 mM NADPH and 0.4 U/mL glutathione reductase for
15 min at room temperature. A total of 0.22 mM tert-butyl hydroperoxide was added to
samples to initiate the reaction. The rate of decrease in absorption of NADPH at 340 nm
was measured. GPX activity was defined based on the consumption of NADPH per minute
per milligram of protein. NADPH consumption was calculated by using a millimolar
extinction coefficient for an NADPH of 6.22.

2.11. Statistical Analysis

All data are presented as mean ± SD. Statistical analyses were performed using
GraphPad Prism 8.0 (GraphPad). Statistical significance was determined using one-way
ANOVA followed by Turkey’s post hoc test or two-way ANOVA with the Bonferroni post
hoc test for multiple comparisons; p < 0.05 denotes statistical significance.

3. Results
3.1. γ-GC Protects against MCAO/R-Induced Neuron Death

Neuron damage or death is the main phenomenon in CIR-induced brain injury [37,38].
The rat MCAO/R model was used to observe the effect of γ-GC on neuron death in
the rat brain after cerebral ischemia/reperfusion. Rats were orally administrated with
γ-GC (688 mg/kg body weight) 1.5 h after MCAO was performed. Twenty-four hours after
reperfusion, the rat brains were subjected to TTC staining. As shown in Figure 1A, there was
no cerebral infarction in Sham rats, whereas the infarction volume in rats of the MCAO/R
group increased. γ-GC significantly reduced the infarction volume in the affected brain
area. Although NAC also decreased the infarction volume, it showed weaker efficiency
than γ-GC. Consistently, γ-GC apparently reduced neurological deficit scores, suggesting
that γ-GC alleviated CIR-induced neurological dysfunction (Figure 1B). Since CIR-induced
brain injury is related with neuron damage, we next observed if γ-GC could affect cerebral
neuron death induced by MCAO/R. Nissl staining (see Supplementary Methods) showed
that the number of neurons in the MCAO/R-affected cortex of the ipsilateral hemisphere
decreased, suggesting neuron loss after MCAO/R. Compared with saline-treated MCAO/R
rats, γ-GC but not NAC treated MCAO/R rats showed more Nissl-positive cells in the
brains (Figure 1C). On the other hand, the number of FJB-positive neurons was markedly
increased in the rat cortex after MCAO/R, whereas γ-GC administration reduced the
number of positive neurons, and the effect of γ-GC was better than NAC (Figure 1D). Taken
together, the above results indicate that γ-GC effectively inhibited MCAO/R-induced
neuron death.
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Figure 1. γ-GC inhibits MCAO/R-induced neuron death. Rats were treated with γ-GC (688 mg/kg
body weight) and NAC (522 mg/kg body weight) 1.5 h after being subjected to MCAO. Twenty-four
hours after reperfusion, the following observations were performed. (A) The brain sections were
subjected to TTC staining to measure the infarction volume. (B) Neurological deficits of rats were
evaluated. (C) Paraffin sections of rat cerebral cortex were stained with Nissl staining solution, and
then Nissl positive cells were counted (Scale bar, 50 µm). (D) Paraffin sections of the rat cerebral
cortex were co-stained with FJB (Green) and NeuN (Red) (Scale bar, 20 µm), and the FJB+/NeuN+

cells were counted. Data are mean ± SD (n = 6, 6 rats/group), ## p < 0.01 versus Sham group,
* p < 0.05 and ** p < 0.01 versus MCAO/R + saline group, & p < 0.05 versus MCAO/R + γ-GC group.

3.2. γ-GC Inhibits MCAO/R-Induced Neuronal Ferroptosis

Previous reports show that ferroptosis is involved in cerebral ischemia/reperfusion
injury [18,19]. We investigated whether γ-GC affected neuronal ferroptosis. A typical
ferroptosis characteristic is the injury of mitochondrion [39]. As shown in Figure 2A,
MCAO/R resulted in the injuries of cerebral neuron mitochondrial morphology, including
the reducing or vanishing of mitochondria crista and rupturing of the outer membrane
(see Supplementary Methods). Interestingly, these mitochondrial injuries were significantly
alleviated by γ-GC treatment. We next proceeded to explore the effect of γ-GC on the
accumulation of excessive lipid peroxidation, a hallmark of ferroptosis [40]. In neurons,
Fe2+ could convert H2O2 into the most active hydroxyl radical through Fenton reaction,
thus facilitating lipid peroxidation of cell membrane and leading to ferroptosis [41,42].
In the present study, γ-GC significantly reduced not only the cerebral H2O2 level after
MCAO/R but also inhibited the MCAO/R-induced increase of MDA, an end-product
of lipid peroxidation (Figure 2B,C). Further immunofluorescence staining showed that
γ-GC suppressed MCAO/R-induced increase of 4-hydroxy-2-nonenol (4-HNE) in cerebral
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neurons (Figure 2D). The key reason for ferroptosis is the abnormal accumulation of reactive
free iron (Fe2+) in cells. As shown in Figure 2E, the MCAO/R-upregulated cerebral Fe2+

level was apparently inhibited by γ-GC. Next, we examined the mRNA and protein levels
of ferroptosis related protein by qPCR and immunoblotting assays. Results from the qPCR
assay indicated that MCAO/R led to the reduction of cerebral FTH1, GPX4 and SLC7A11
mRNA levels and the increase of ACSL4 and TF mRNA levels. γ-GC reversed MCAO/R-
induced alterations of FTH1, GPX4, ACSL4 and TF but not SLC7A11 both in mRNA and
protein levels (Figure 2G,F). Further immunofluorescence analyses demonstrated that γ-GC
inhibited MCAO/R-induced changes of protein levels of FTH1, GPX4, ACSL4 and TF but
not SLC7A11 in cortical neurons (Figure S1). Overall, these findings demonstrated that
γ-GC effectively inhibited MCAO/R-induced neuronal ferroptosis.
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(688 mg/kg body weight) 1.5 h after being subjected to MCAO. Twenty-four hours after reperfusion, the
following observations were performed. (A) The ultrastructure of neurons in the cortex was detected
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by transmission electron microscopy (Scale bar, 2 µm and 500 nm). (B,C) H2O2 and MDA contents
in cortex tissues were determined using the commercial detecting kits. (D) Paraffin sections of rat
cerebral cortex were immunofluorescence stained with 4-HNE (Green) and NeuN (Red), and the
4-HNE/NeuN double-stained cells in the cortex were quantitatively analyzed (Scale bar, 20 µm).
(E) Fe2+ content in cortex tissue was tested using an iron assay kit. (F,G) The protein and mRNA
levels of the indicated protein in cortex tissues were detected by immunoblotting and qRT-PCR assay.
Data are mean ± SD (n = 3, 3 rats/group). # p < 0.05 and ## p < 0.01 versus Sham group; * p < 0.05
and ** p < 0.01 versus MCAO/R + saline group.

3.3. γ-GC Increases the GSH Level in Neurons In Vivo and In Vitro

In cerebral stroke, the decrement of GSH levels in the brain may aggravate oxidative
stress [43]. GSH is a cofactor of GPX4 that can detoxify lipid peroxidation and inhibit
ferroptosis [44]. As the precursor dipeptide of GSH, exogenous γ-GC supplement might
increase cellular GSH level. As expected, γ-GC but not NAC significantly upregulated
the GSH level and GSH/GSSG ratio and increased GPX enzyme activity in the cerebral
cortex after MCAO/R (Figure 3A–C). We then treated primary neurons with 0.25, 0.5, 1
or 2 mM γ-GC and treated PC12 cells with 0.85, 1.7, 3.5 or 7 mM γ-GC after cells were
exposed to OGD/R. The reduction of cell viability induced by OGD/R was inhibited by 0.5,
1 and 2 mM γ-GC in primary neurons and 3.5 and 7 mM γ-GC in PC12 cells (Figure S2).
Next, we examined the effect of γ-GC on GSH levels after cells were exposed to OGD/R.
The results showed that γ-GC significantly upregulated GSH levels and the GSH/GSSG
ratio and GPX activity in primary neurons (Figure 3D–F) and PC12 cells (Figure 3G–I) after
OGD/R, respectively. Collectively, the above results indicate that γ-GC increased neuronal
GSH levels, suggesting that γ-GC could enhance the enzyme activity of GPX4 and as a
result inhibit neuronal ferroptosis.
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(688 mg/kg body weight) 1.5 h after being subjected to MCAO. Twenty-four hours after reperfusion,
(A) GSH content, (B) GSH/GSSG ratio and (C) GPX enzyme activity in cortical tissue were determined
(n = 6, 6 rats/group). (D–F) Primary cortical neurons were treated with indicated concentration of
γ-GC after OGD (n = 3). Twelve hours after reoxygenation, (D) GSH content, (E) GSH/GSSG ratio and
(F) GPX enzyme activity were determined. (G–I) PC12 cells were treated with indicated concentration
of γ-GC after OGD (n = 3). Twelve hours after reoxygenation, (G) GSH content, (F) GSH/GSSG ratio
and (I) GPX enzyme activity were determined. Data are mean ± SD, # p < 0.05 and ## p < 0.01 versus
Sham group or control cells; * p < 0.05 and ** p < 0.01 versus MCAO/R group or OGD/R treated cells.

3.4. γ-GC Increases GSS Expression In Vivo and In Vitro

GSS is the enzyme for GSH synthesis from γ-GC [21]. We found that the mRNA
and protein levels of GSS significantly decreased in the cortical tissue after MCAO/R
(Figure 4A,B). Importantly, γ-GC significantly inhibited MCAO/R-induced reduction of
cortical GSS mRNA and protein levels (Figure 4A,B). The immunofluorescence result
demonstrated that the MCAO/R-induced decrease of GSS/NeuN positive cell numbers
was inhibited by administration of γ-GC, suggesting γ-GC promoted GSS expression in
neurons (Figure 4C). Further in vitro study was performed to evaluate the effect of γ-GC
on GSS expression in detail. We treated PC12 cells with 1.7, 3.5 and 7 mM γ-GC after
cells were exposed to OGD/R. Results from qRT-PCR and immunoblotting showed that
γ-GC significantly elevated GSS mRNA and protein levels, and γ-GC at concentration
of 3.5 mM showed the strongest effect (Figure 4D,E). As shown in Figure 4F,G, 3.5 mM
γ-GC time-dependently elevated GSS mRNA and protein levels in PC12 cells during 8 h
of observation after cells were subjected to OGD/R. Overall, both in vivo and in vitro
studies indicate that γ-GC increases neuronal GSS expression after MCAO/R and OGD/R,
suggesting that γ-GC increases GSH not only by acting as the precursor dipeptide of GSH
but also by promoting GSS expression.

3.5. γ-GC Activates Neuronal Nrf2 In Vivo and In Vitro

Nrf2, a master transcription factor, is responsible for maintaining redox homeostasis
in ischemic stroke [45]. In the present study, we found that γ-GC increased the total Nrf2
protein and phosphorylated Nrf2 protein levels after MCAO/R (Figure 5A). Consistently,
immunofluorescence assay also showed that γ-GC increased the total Nrf2 protein and
phosphorylated Nrf2 protein levels in cortical neurons (Figure 5B). We then observed the
cytoplasmic and nuclear distribution of Nrf2 in PC12 cells by using confocal microscopy.
As shown in Figure 5C, γ-GC facilitated nuclear translocation of Nrf2 in OGD/R-exposed
PC12 cells 8 h after reoxygenation. Immunoblotting assay also showed that γ-GC increased
nuclear Nrf2 and reduced cytosolic Nrf2 in OGD/R-exposed PC12 cells 8 h after reoxy-
genation (Figure 5D; see Supplementary Methods). Keap1, a repressor of the Nrf2 pathway,
plays a key role in regulating Nrf2 activity [46]. The immunoblotting assay showed that
γ-GC suppressed the ODG/R-induced increase of Keap1 protein level 8 h after reoxygena-
tion (Figure 5E). Results from co-immunoprecipitation assay showed that γ-GC facilitated
the dissociation of Nrf2 from Keap1 (Figure 5F). These data strongly suggest that γ-GC
activates Nrf2 and promotes its nuclear translocation during cerebral ischemia/reperfusion.
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Figure 4. γ-GC increases neuronal GSS expression in vivo and in vitro. (A–C) Rats were treated with
γ-GC (688 mg/kg body weight) 1.5 h after being subjected to MCAO (n = 3, 3 rats/group). Twenty-
four hours after reperfusion, the following observations were performed. (A,B) The mRNA and
protein levels of GSS were detected by qRT-PCR and immunoblotting assays, respectively. (C) Paraffin
sections of the rat cerebral cortex were co-immunostained with GSS and NeuN antibodies, and the
numbers of GSS+/NeuN+ cells in the cortex were quantitatively analyzed (Scale bar, 20 µm). PC12
cells were treated with OGD for 4 h (n = 3), and γ-GC (1.7, 3.5 and 7 mM) was added into the cell
culture at the onset of reoxygenation. (D,E) Twelve hours after reoxygenation, the mRNA and protein
levels of GSS were detected by qPCR and immunoblotting. (F,G) PC12 cells were treated with γ-GC
(3.5 mM) for the indicated time after reoxygenation, and then mRNA and protein levels of GSS were
detected by qRT-PCR and immunoblotting assays, respectively. Data are mean ± SD, # p < 0.05 and
## p < 0.01 versus Sham group or control cells; * p < 0.05, ** p < 0.01 and *** p < 0.001 versus MCAO/R
group or OGD/R cells.
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Figure 5. γ-GC activates neuronal Nrf2. (A,B) Rats were treated with γ-GC (688 mg/kg body weight)
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1.5 h after being subjected to MCAO (n = 3, 3 rats/group). Twenty-four hours after reperfusion,
(A) the total and phosphorylated Nrf2 protein levels were detected by immunoblotting and (B) the
numbers of phosphorylated Nrf2 (p-Nrf2)/NeuN and Nrf2/NeuN positive cells were observed using
fluorescence-microscopy (n = 3). (C–E) PC12 cells were treated with OGD for 4 h (n = 3). γ-GC
was added into the cell culture at the onset of reoxygenation. Twelve hours after reoxygenation,
(C) Nrf2 (Green) distribution was observed with confocal scanning microscopy (the nucleus was
stained with DAPI), (D) protein levels of Nrf2 in cytoplasmic and nuclear fractions of PC12 cells were
determined by immunoblotting, and (E) the protein level of Keap1 was detected by immunoblotting.
(F) Co-immunoprecipitation assay was used to test the interaction of endogenous Nrf2 with Keap1.
Data are mean ± SD, # p < 0.05, ## p < 0.01 versus Sham group; * p < 0.05 and ** p < 0.01 versus
MCAO/R group or the group indicated.

3.6. γ-GC Increases GSS Expression through Activating Nrf2

The above results show that γ-GC promoted phosphorylation and nuclear translo-
cation of Nrf2. We next explored if the activation of Nrf2 is important for the effect of
γ-GC on GSS expression. PC12 cells were pretreated with Nrf2 inhibitor ML385 (2 µM)
and then were subjected to OGD/R followed by γ-GC (3.5 mM) treatment. The result from
immunoblotting showed that ML385 significantly suppressed γ-GC-induced elevation of
GSS protein level in OGD/R-treated PC12 cells (Figure 6A). Consistently, the γ-GC-induced
increase of GSH in PC12 cells was also inhibited by ML385 (Figure 6B,C). Since the level of
GSH in cells is the key factor for ferroptosis inhibition, ML385 reversed the effects of γ-GC
in decreasing MDA and Fe2+ deposits and enhancing GPX activity and cell viability after
OGD/R (Figure 6D–G). Collectively, these results indicate that γ-GC protects neuronal
from ferroptosis by activating Nrf2 to increase GSS expression and GSH levels.

3.7. γ-GC Activates Nrf2 through Promoting Phosphorylation of PKC-ε

We next explored the underlying mechanism by which γ-GC activated Nrf2. PKC, a
ubiquitous protein kinase, is upstream Nrf2 [47]. Hence, we observed if γ-GC activated
Nrf2 through phosphorylating PKC. As shown in Figure 7A, γ-GC significantly increased
the phosphorylated protein level of PKC in the cerebral cortex after MCAO/R. Further
immunofluorescence observation showed that γ-GC apparently increased the level of
phosphorylated PKC in cerebral cortical neurons after MCAO/R (Figure S3). There are
various PKC isoforms in the brain, among which PKC-α, PKC-δ and PKC-ε are involved
in ischemic injury [48,49]. We thus detected the effects of γ-GC on the phosphorylation of
PKC-α, PKC-δ and PKC-ε in OGD/R-treated PC12 cells. The results showed that OGD/R
did not alter the total levels of PKC-α, PKC-δ and PKC-ε, but elevated phosphorylated
PKC-α and PKC-δ levels and reduced phosphorylated PKC-ε levels (Figure 7B). We noted
that γ-GC reversed OGD/R-induced reduction of PKC-ε phosphorylation but did not affect
phosphorylation of PKC-α and PKC-δ (Figure 7B). To observe if γ-GC activated Nrf2 by
phosphorylating PKC-ε, we pretreated PC12 cells with PKC-ε inhibitor ε-V1-2 and then
detected the effect of γ-GC on Nrf2 activation during OGD/R. The results from confocal
microscopy and immunoblotting assay showed that after ε-V1-2 treatment, γ-GC failed to
promote nuclear translocation of Nrf2 (Figure 7C,D), suggesting that γ-GC activated Nrf2
in PC12 through phosphorylating PKC-ε during OGD/R.



Antioxidants 2022, 11, 1653 13 of 20Antioxidants 2022, 11, x FOR PEER REVIEW 14 of 22 
 

 
Figure 6. γ-GC increases the protein level of GSS and GSH contents in PC12 cells through activating 
Nrf2. PC12 cells were pretreated with Nrf2 inhibitor ML385 (2 μM) 2 h before OGD and then were 
treated with γ-GC (3.5 mM) at the onset of reoxygenation for the indicated time. (A) Immunoblot-
ting was performed to measure the protein level of GSS. (B,C) Intracellular GSH content and the 
GSH/GSSG ratio were determined. (D–G) The MDA and Fe2+ levels, GPX enzyme activity and cell 
viability were detected using commercial detection kits. Data are mean ± SD (n = 3), ## p < 0.01 versus 
control group, * p < 0.05 and ** p < 0.01 versus OGD/R cells or the group indicated, && p < 0.01 versus 
OGD/R+γ-GC cells. 

 

A

B C

D E

F G

Figure 6. γ-GC increases the protein level of GSS and GSH contents in PC12 cells through activating
Nrf2. PC12 cells were pretreated with Nrf2 inhibitor ML385 (2 µM) 2 h before OGD and then were
treated with γ-GC (3.5 mM) at the onset of reoxygenation for the indicated time. (A) Immunoblot-
ting was performed to measure the protein level of GSS. (B,C) Intracellular GSH content and the
GSH/GSSG ratio were determined. (D–G) The MDA and Fe2+ levels, GPX enzyme activity and cell
viability were detected using commercial detection kits. Data are mean ± SD (n = 3), ## p < 0.01
versus control group, * p < 0.05 and ** p < 0.01 versus OGD/R cells or the group indicated, && p < 0.01
versus OGD/R+γ-GC cells.
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Figure 7. γ-GC activates Nrf2 through promoting phosphorylation of PKC-ε. (A) Rats were treated
with γ-GC (688 mg/kg body weight) after being subjected to 1.5 h of MCAO. Twenty-four hours
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after reperfusion, ischemia cerebral cortical tissues were subjected to immunoblotting by using PKC
and p-PKC antibodies (n = 3, 3 rats/group). (B) PC12 cells were treated with OGD for 4 h (n = 3).
γ-GC was added into cell culture at the onset of reoxygenation. Twelve hours after reoxygenation,
the cell lysates were subjected to immunoblotting by using PKC-α, PKC-δ, PKC-ε, p-PKC-α, p-PKC-δ
and PKC-ε antibodies (n = 3). (C,D) PC12 cells were pretreated with PKC-ε inhibitor ε-V1-2 (20 µM)
2 h before OGD and then were treated with γ-GC at the onset of reoxygenation, and after the
indicated time for reoxygenation, cells were subjected to confocal scanning microscopy to detect the
distribution of Nrf2 (n = 3, (C)), and the nuclear and cytoplasmic fractions of protein were subjected
to immunoblotting by using Nrf2 antibody (n = 3, (D)). Data are mean ± SD, # p < 0.05 and ## p < 0.01
versus Sham group or indicated group; * p < 0.05 and ** p < 0.01 versus MCAO/R group or indicated
group. n.s.:not significant.

4. Discussion

Cerebral ischemia/reperfusion injury is an inevitable secondary injury caused by
vessel recanalization, which may exacerbate damage and dysfunction of the ischemic brain
area [50,51]. During cerebral ischemia/reperfusion, massive O2 arrives and produces
large amounts of ROS [10]. Because of high metabolic rates of oxygen consumption and
high levels of PUFAs, neurons are known to be more susceptible to oxidative stress than
other organs [11]. Increasing evidence demonstrates that ischemic stroke causes the rapid
depletion of cellular GSH [52–54]. Ferroptosis is a recently described form of cell death
driven by iron-dependent lipid peroxidation [55]. Recently, studies have shown that iron
overload aggravates ischemic insult induced by focal ischemia and early reperfusion, and
inhibiting ferroptosis could alleviate CIR-induced brain injury [18,56]. In the present study,
γ-GC significantly decreased infarct volume and neurological deficit scores in MCAO/R
rats. Administration of γ-GC at 1.5 h after MCAO is effective for inhibiting cerebral
ischemia/reperfusion-induced oxidative stress and brain tissue injury. The development of
cerebral ischemia/reperfusion injury is different between humans and rats; thus, the γ-GC
administration is also different. Consistently, γ-GC inhibited cortical neuron loss and death
occurred in the ischemic hemisphere. We noted that the neuroprotective effect of γ-GC is
better than NAC. It is not surprising that NAC is a cysteine prodrug for synthesis of GSH
through two-step enzyme catalyzed reaction, and it appears to be an effective drug only
for decreasing the toxicity of acetaminophen overdose [25]. Γ-GC, as an precursor for GSH
synthesis, readily penetrated the BBB and immediately synthesized GSH just catalyzed by
GSS [28].

Our study first found that γ-GC alleviates CIR-induced neuronal ferroptosis. As the
main driving force of ferroptosis lipid peroxidation induces the instability of the mitochon-
drial membrane [55], mitochondrial morphology alterations display typical characteristics
of ferroptosis, including reduction or vanishing of mitochondria crista and rupturing of
the outer membrane [39]. In the present study, these ferroptosis-related mitochondrial
morphology alterations in MCAO/R rats were significantly inhibited by γ-GC. H2O2 exac-
erbates lipid peroxidation via Fenton reaction [41], and both MDA and 4-HNE are major
end-products of lipid peroxidation [57]. The MDA and 4-HNE levels are related with
the extent of cerebral ischemia/reperfusion injury and ferroptosis [58]. As expected, we
found that γ-GC treatment not only increased GSH in the brain of MCAO/R rats but also
suppressed MCAO/R-induced increments of H2O2, 4-HNE and MDA levels in rat cortical
tissue after MCAO/R. Our study also demonstrated that γ-GC remarkably inhibited the
MCAO/R-induced iron depositions in the cerebral cortex.

Ferroptosis is a complex process regulated by various proteins. ACSL4 is a key
enzyme that regulates lipid composition and contributes to ferroptosis [59]. SLC7A11
is the cystine/glutamate transporter involved in GSH synthesis [60]. As the important
negative regulator of ferroptosis, GPX4 utilizes reduced GSH as a cofactor to reduce lipid
hydroperoxides to lipid alcohols and thus mitigates lipid peroxidation [14]. TF promotes
cellular iron uptake, but FTH1 is a ubiquitous intracellular protein that stores iron in a



Antioxidants 2022, 11, 1653 16 of 20

soluble, non-toxic and readily available form [61]. TF and FTH1 play the opposite role
in ferroptosis development. Therefore, it was not surprising that in MCAO/R rats, the
expression of ACSL4 and TF increased, and the expression of SLC7A11, GPX4 and FTH1
in the cerebral cortex decreased. We found that γ-GC significantly suppressed MCAO/R-
induced changes of ACSL4, TF, GPX4 and FTH1 but not SLC7A11. Among these proteins,
GPX4 is the key regulator for inhibiting ferroptosis. Since GSH acts as the reducing
substrate of GPX4, the neuronal GSH is indispensable for mitigating lipid peroxidation and
inhibiting ferroptosis [62]. GSH depletion directly suppresses GPX4 activity and triggers
lipid peroxidation [63]. Cerebral ischemia/reperfusion may cause the rapid depletion
of cellular GSH in brains [52–54]. As the brain presents a low ability to synthesize and
regenerate GSH [64], to increase GSH is important for enhancing the activity of GPX4 and
inhibiting ferroptotic neuron death.

Exogenous GSH supplementation shows no significant effect due to its poor bioavail-
ability [65,66]. As noted, γ-GC has been reported to act as an effective and safe agent
for augmentation of GSH [67]. In the present study, both our in vivo and in vitro studies
indicated that γ-GC remarkably increased the GSH level, which was reduced in the rat
MCAO/R and cell OGD/R models. GSS is critical enzyme for GSH synthesis and catalyzes
the addition of L-glycine to γ-GC to form GSH [68]. GSS deficiency results in cell membrane
rupture due to the lack of GSH [69]. In the present study, we found that MCAO/R down-
regulated rat cortical GSS, which suggested that if γ-GC acted merely as the raw material
for GSH synthesis, it might not increase GSH level apparently. Interestingly, the results of
the present study indicated that exogenous γ-GC significantly enhances the expression of
GSS. This finding displayed a novel function of γ-GC, as the precursor γ-GC also worked
as a regulator of the GSH synthase system to raise GSH levels.

Transcription factor Nrf2 induces the expression of cytoprotective and detoxification
genes [70]. It has been reported that Nrf2 could drive the expression of GSS and enhance
the level of reduced GSH [71]. As expected, γ-GC increased the total protein level and
phosphorylation of Nrf2 after MCAO/R in vivo and OGD/R in vitro. Normally Nrf2
combines with Keap1, which retains Nrf2 in the cytoplasm. Γ-GC down-regulated Keap1
to reduce the combination between Nrf2 with Keap1 and resulted in Nrf2 translocating
from cytoplasm into the nucleus. PKC is upstream of Nrf2, and phosphorylated PKC may
activate Nrf2 [45]. In the present research, we found that γ-GC enhanced the phospho-
rylation of PKC in the rat cortical cortex after MCAO/R. Previous studies have reported
that PKC-α, PKC-δ and PKC-ε are involved in ischemic injury [48,49]. We found that γ-GC
promoted phosphorylation of PKC-ε but not PKC-α and PKC-δ. After PKC-ε inhibitor
treatment, the effects of γ-GC in promoting the phosphorylation and nuclear translocation
of Nrf2 were suppressed, suggesting that γ-GC actives Nrf2 through phosphorylating PKC-
ε. To evaluate whether γ-GC enhanced GSS expression, we used specific Nrf2 inhibitor
ML385 to pretreat neuronal cells before OGD/R. As expected, ML385 apparently reversed
γ-GC-induced enhancement of GSS expression and increased GSH levels in OGD/R cells.
ML385 also reversed the γ-GC-induced an increase of cell viability and GPX activity and
the reduction of MDA and Fe2+ levels in OGD/R cells. These results confirmed that γ-GC
inhibited neuronal ferroptosis in cerebral ischemia/reperfusion through activating Nrf2
to enhance GSS expression and upregulate GSH levels. The mechanism in detail is that
γ-GC not only acts as a raw material replenishing intracellular GSH but also promotes GSH
synthesis by increasing GSS expression via regulating the PKC-ε/Nrf2 pathway.

5. Conclusions

Taken together, this study demonstrates that γ-GC attenuates cerebral ischemia/
reperfusion injury through inhibiting neuronal lipid peroxidation and ferroptosis. The
most important finding in the present study is that, as the precursor of GSH, γ-GC also
promotes the expression of GSS for GSH synthesis. The mechanism analysis indicates that
γ-GC upregulates GSS via activating the PKC-ε/Nrf2 pathway. Our research provides a
novel strategy for the treatment of cerebral ischemia/reperfusion.
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