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Abstract
Asymmetric cell division is one of the fundamental processes to create cell diversity in
the early stage of embryonic development. During this process, the polarity formation
in the cell membrane has been considered as a key process by which the entire polar-
ity formation in the cytosol is controlled, and it has been extensively studied in both
experiments and mathematical models. Nonetheless, a mathematically rigorous anal-
ysis of the polarity formation in the asymmetric cell division has been little explored,
particularly for bulk-surface models. In this article, we deal with polarity models pro-
posed for describing the PAR polarity formation in the asymmetric cell division of a
C. elegans embryo. Using a simpler but mathematically consistent model, we exhibit
the long time behavior of the polarity formation of a bulk-surface cell. Moreover, we
mathematically prove the existence of stable polarity solutions of the model equation
in an arbitrary high-dimensional domain and analyse how the boundary position of
polarity domain is determined. Our results propose that the existence and dynamics
of the polarity in the asymmetric cell division can be understood universally in terms
of basic mathematical structures.
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1 Introduction

The polarity formation emerging during the early stage of embryonic development
is a spectacular mechanism wherein a single mother cell of fertilised egg creates
completely different daughter cells through asymmetric cell divisions (Campanale
et al. 2017; Gönczy 2005). Because the polarity formation has initial and central
roles during the entire process of asymmetric cell divisions, an elucidation of the
polaritymechanismhas been extensively explored in both experimental and theoretical
approaches (see the recent reviewpapers;Lang andMunro2017;Rappel andEdelstein-
Keshet 2017; Cortes et al. 2018). In particular, the PAR polarity formation in a C.
elegans embryo has been well studied as one of a representative biological model.
In the asymmetric cell division of C. elegans embryo, anterior PARs (aPAR) and
posterior PARs (pPAR) are exclusively formed in an asymmetrical manner, which
plays a key role in redistributing the cytosol substrates (Fig. 1a). PAR proteins are
mostly upstream regulators that control the downstream proteins and a series of the
processes of asymmetric cell division (Cuenca et al. 2002;Hoege andHyman2013;Wu
et al. 2018). During the initial stage, aPAR and pPAR are homogeneously distributed
in the membrane and cytosol, respectively. After the symmetry is broken by sperm
entry, the pPAR spreads from the posterior pole, and the growth of the domain of
pPAR polarity stops at approximately half the egg length with the formation of the
two segregated polarity domains of aPAR and pPAR. This is consequently maintained
for approximately 16 min, and a mother cell prepares for cell division (Gönczy 2005).

Owing to the key role of PAR polarity in asymmetric cell division, several mathe-
matical models for the PAR polarity formation have been suggested and well-explored
in recent years (Cortes et al. 2018; Goehring et al. 2011b;Marée et al. 2006; Seirin-Lee
and Shibata 2015; Seirin-Lee 2016b, 2020; Trong et al. 2014). Although the details of
their model descriptions are different, a mathematical structure that generates a polar-
ity pattern is taken into account universally, and the bi-stability structure in the kinetic
terms and the property of mass conservation have been noted as the basal conditions.
Nonetheless, few studies on the PAR polarity in terms of high-dimensional models
reflecting the cell geometry of a bulk cytosol space and a surface cell membrane have
been conducted numerically or mathematically. In particular, a rigorous mathematical
analysis of the PAR polarity formation has been poorly explored, and most of the
previous studies have been based on numerical observations. Although some math-
ematical studies have been conducted on PAR polarity models, they have dealt with
one-dimensional problems or reduced systems with less variables (Kuwamura et al.
2018; Morita and Ogawa 2010; Morita 2012; Seirin-Lee et al. 2020). Moreover, the
most fundamental question for the existence and stability of polarity solutions with
two exclusive polarity domains has been infrequently studied owing to mathemati-
cal difficulties. Here, related to bulk cytosol-surface models, we refer to studies on
Turing-type instability (Levine and Rappel 2005; Morita and Sakamoto 2018, 2020;
Rätz andRöger 2012, 2014), the existence and stability of a polarized solution reduced
on the sphere (Diegmiller et al. 2018), and polarized patterns numerically shown in 3-
dimensional domainswith complex geometries (Cusseddu et al. 2019), where different
types of reaction–diffusion systems are investigated. The readers who are interested in
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a basic mathematical theory may refer to Sharma andMorgan (2016) for the existence
of time global solutions.

In this article, we consider the aPAR-pPARpolaritymodels suggested by Seirin-Lee
and Shibata (2015) and Goehring et al. (2011b), and extend these models to include a
high-dimensional case with a cell geometry composed of a bulk cytosol space and a
cell membrane. The cell membrane consists of a lipid bilayer and contains membrane
proteins which diffuse laterally through the membrane (Cooper 2000). Because a
typical eukaryotic cell has a cell membrane thickness of 5–10 nm compared to a cell
diameter of about 50 µm, the cell membrane can be considered as a surface domain
with thin thickness (Fig. 1b(b1)). Then, the model system is described as follows:

∂t Pm = Dm�Pm − Foff(Am)Pm + γ Pc in �ε,

∂t Pc = Dc�Pc in �′,
Dc∂ν Pc = Foff(Am)Pm − γ Pc on �,

∂t Am = Dm�Am − Foff(Pm)Am + γ Ac in �ε,

∂t Ac = Dc�Ac in �′,
Dc∂ν Ac = Foff(Pm)Am − γ Ac on �,

(1.1)

where �′ is a bulk cytosol and �ε = � × Dε. �(= ∂�′) is the surface of a bulk
cytosol space and Dε is the thickness of cell membrane which is sufficiently small.
In addition, Pm and Am denote the concentrations of pPAR and aPAR proteins in
the membrane, respectively, while Pc and Ac denote the concentrations of pPAR and
aPAR proteins in the cytosol, respectively. � stands for the Laplace operator defined
in the bulk domain �′ and the cell membrane domain �ε. We do not consider the flux
between cell membrane and extracellular space, so that zero flux boundary condition
is assumed in the outer surface of cell membrane.

As |Dε| → 0, the model (1.1) can be directly reduced to a bulk-surface model
(Fig. 1b(b2)) described as follows:

∂t Pm = Dm�� Pm − Foff(Am)Pm + γ Pc on �,

∂t Pc = Dc�Pc in �′,
Dc∂ν Pc = Foff(Am)Pm − γ Pc on �,

∂t Am = Dm�� Am − Foff(Pm)Am + γ Ac on �,

∂t Ac = Dc�Ac in �′,
Dc∂ν Ac = Foff(Pm)Am − γ Ac on �,

(1.2)

where �� is the Laplace-Beltrami operator on �.
The kinetic terms, Foff and Foff, imply the translocation of pPAR by aPAR and

aPAR by pPAR from the membrane to the cytosol. In many polarity models, the off-
rate functions have been expressed in terms of nonlinear functions, allowing a bi-stable
property. In this study, we consider two types of off-rate functions, which have been
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a

b

c

Fig. 1 PARs polarity in asymmetric cell division and schematic diagram of model. a PAR polarity process
in a C. elegans embryo is divided into three phases: symmetry breaking during the initial phase, the
patterning(establishment) phase of an emerging pattern, and the maintenance phase of the stationary state
of polarity. A, P indicate the points of anterior and posterior poles, respectively. b Schematic diagram
of model reductions is shown. Gray-coloured regions imply cytoplasm and black-colored thick line region

implies cell membrane. Dε and D
′
ε are the cross-sectional areas of membrane and cytoplasmic spaces which

are separated by the inner boundary region (�) between cellmembrane and cytosol.�′ indicates bulk cytosol
space in R

N , and �′
ε is the cytosol region around the cell membrane region, �

′
ε . c The domain shapes of

� = (0, L) × D are shown with respect to Neumann and periodic boundary conditions. D is defined by
the edge points of line, the vertical line, and cross-sectional area in one, two, and three dimensional spaces,
respectively (color figure online)
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explored as a Hill function type in Seirin-Lee and Shibata (2015) using

Foff(Am) = α + K1Am
2

K + Am
2 , Foff(Pm) = α + K1Pm

2

K + Pm
2
, (1.3)

and have been studied in Goehring et al. (2011b) through

Foff(Am) = α + K2Am
2, Foff(Pm) = α + ˜K2Pm

2, (1.4)

where α and α are the basal off-rates of pPAR and aPAR, respectively, and K , K1, K ,
K 1, K2, and ˜K2 are positive constants determining the off-rate effects. In addition,
γ and γ are on-rates parameters. Note that the original models for PAR polarity
include advection terms (flow effects) because an acto-myosin contraction causes
an advective transport (flow) in both the membrane and cytosol after the symmetry
breaking (Goehring et al. 2011b; Niwayama et al. 2011). However, we neglect the
advection terms in our model because the flow effect is ceased in the maintenance
phase (approximately, 13 minutes later after symmetry breaking) where the polarity
domains stop spreading (Munro and Nance 2004; Goehring et al. 2011b). In addition,
the purpose of this study is to focus on the long time behavior of the polarity solutions.

In this paper, we explore the high-dimensional polarity models, (1.1) and (1.2),
and confirm the existence of stable polarity solutions using numerical simulations.
We then prove the existence and stability of such solutions with respect to a high-
dimensional case through a simplification of the model (1.1), called a cell membrane
periphery model, and a model reduction to a shadow system of the bulk-surface model
(1.2). In our study, a rigorous proof for the existence of stable polarity solutions in
the aPAR and pPAR polarity models within an arbitrary high-dimensional domain is
proposed. Based on our analysis, we further explore how the boundary position of the
polarity domains is determined. Our results suggest that the existence and dynamics
of the PAR polarity during asymmetric cell division can be understood based on a
basic mathematical structure, which should be held universally without dependence
on a specific choice of parameter values.

We remark that ourmathematical analysis is carried out bymaking use of the energy
functional under the assumption of a large difference of diffusion coefficients of the
proteins in the membrane and the cytosol. We refer to Mori et al. (2011) for another
approach to identify the polarity boundary in a simpler model called the wave pinning
model of two-component reaction–diffusion equations. In the wave pinning model,
the authors succeeded in obtaining a reasonable approximation of polarity boundaries
in one-dimensional domain by using asymptotic analysis with the membrane diffusion
coefficient as a small parameter of the membrane diffusion coefficient. In Cusseddu
et al. (2019), a similar analysis is performed on the bulk-surface version of the model
in Mori et al. (2011).
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2 Models and simulations

2.1 Model reductions

2.1.1 Nonlinearity of off-rate functions

Wehere show that themodel of (1.4) suggestedbyGoehring et al. (2011b) is close to the
model of (1.3) suggested by Seirin-Lee and Shibata (2015). By using an approximation
through a Taylor expansion around small concentration of Am and small concentration
of Pm for the off-rate functions (1.3), respectively, we have

Foff(Am) = α + K1Am
2

K + Am
2 ≈ α + K1

K
A2

m + O(A3
m), and

Foff(Pm) = α + K1Pm
2

K + Pm
2

≈ α + K1

K
Pm

2 + O(P3
m).

(2.1)

This approximation implies that the model of (1.4) can be considered as a special case
of the model of (1.3) by taking K2 = K1/K and ˜K2 = K 1/K . Furthermore, the two
models show little differences in the qualitative dynamics in the long time behavior and
it may be sufficient to choose either of them in order to understand the mathematical
structure of a stable polarity pattern (see Sect. 2.2). Therefore, we choose the nonlinear
off-rate functions by (2.1) when we perform mathematical investigation.

2.1.2 A cell membrane periphery model

The diffusion coefficient of protein in the cytosol is generally much larger than that in
the membrane (Goehring et al. 2011b; Kuhn et al. 2011). We thus assume that the fast
diffusions of aPAR and pPAR in the cytosol lead to a well-mixed state and that the
concentrations of aPAR and pPAR in the cytosol quickly approach to a uniform state
in the region far from the membrane. Then, as for the polarity patterns in the model
systems (1.1) with (1.3) or (1.4), it is reasonable to consider the peripheral region of
the membrane (Fig. 1b(b4)). Thus, the model (1.1) can be directly considered in a cell
membrane periphery domain by defining the cytoplasmic domain with �′

ε ≡ � × D
′
ε

instead of�′, where D
′
ε is the sufficiently small cross-sectional area of cytosol region in

the periphery of the cellmembrane.Note thatwith the assumption of |Dε| = |D′
ε| � 1,

wemay consider the model (1.1) on a domain where the cell membrane and cytoplasm
are overlapped. That is,

∂t Pm = Dm�Pm − Foff(Am)Pm + γ Pc,

∂t Pc = Dc�Pc + Foff(Am)Pm − γ Pc,

∂t Am = Dm�Am − Foff(Pm)Am + γ Ac,

∂t Ac = Dc�Ac + Foff(Pm)Am − γ Ac

(2.2)
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on �
′
ε = � × D(⊂ R

N ) where |D| = |Dε| = |D′
ε|. Therefore, we can simplify

the model (1.1) to the above model defined on a high-dimensional space under the
Neumann boundary conditions or periodic boundary conditions.

With setting

k := K1/K (or K2), τ := (K/K 1)k (or ˜K2k),

in (2.1), and in terms of the new variables and parameters defined by

Pm = u1, Pc = v1, Am = u2, Ac = v2, Dm = d1, Dc = D1,

τ Dm = d2, τ Dc = D2, γ = γ1, τγ = γ2, α = α1, τα = α2,

we rewrite the system (2.2) as follows:

∂t u1 = d1�u1 − (α1 + ku2
2)u1 + γ1v1, (2.3)

∂tv1 = D1�v1 + (α1 + ku2
2)u1 − γ1v1, (2.4)

τ∂t u2 = d2�u2 − (α2 + ku2
1)u2 + γ2v2, (2.5)

τ∂tv2 = D2�v2 + (α2 + ku2
1)u2 − γ2v2, (2.6)

where

d1 < D1, d2 < D2 (2.7)

in a bounded domain �(⊂ R
N ) with the Neumann boundary condition or periodic

boundary conditions. The condition (2.7) is due to the fact that the diffusion coefficient
of protein in the cytosol is generally larger than that in the membrane (Goehring
et al. 2011a, b; Kuhn et al. 2011). � is given to � × D = (0, L) × D where D is a
bounded domain of RN−1. Figure 1b(b4)-(b6) and 1C show the cases of N = 1, 2, 3.
L represents the perimeter length of the cell and |D| represents the thickness or cross-
sectional area (which does not have to be a disk) of the cell membrane or cytoplasmic
domain in two and three dimensional spaces, respectively. We call the system (2.3)–
(2.6) a cell membrane periphery model. The dynamics of PAR polarity in a C. elegans
embryo can be understood as the case of a cell membrane periphery model with
periodic boundary conditions.

2.1.3 A shadow system of bulk-surface model

We introduce a shadow system of the bulk-surface model (1.2) in this subsection. As
seen in the later Sect. 3.2, we reduce the stationary equations of the cell periphery
model (2.3)–(2.6) to a simpler system. Then, we show that the reduced equations
can be obtained as the Euler–Lagrange equations of some energy functional and,
interestingly, the shadow system of the bulk-surface model (1.2) with (1.4) has a
similar form to the gradient flow of the functional. Thus, the mathematical results for
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the cell membrane periphery model (2.3)–(2.6) can be directly applied to the shadow
system of the bulk-surface model (1.2) with (1.4) (Fig. 1b(b3), (b7))(See Section 3.4).

Let us return to a bulk-surface diffusion model (1.2). Namely, we consider the
equation for Pc and Ac in a bulk domain �′, where the mass transport takes place
on the boundary � = ∂�′. The bulk-surface diffusion with mass transport on the
boundary in a non-dimensional form is given by

∂t Pm = Dm�� Pm − Foff(Am)Pm + γ Pc on �,

∂t Pc = Dc�Pc in �′,
Dc∂ν Pc = Foff(Am)Pm − γ Pc on �,

∂t Am = Dm�� Am − Foff(Pm)Am + γ Ac on �,

∂t Ac = Dc�Ac in �′,
Dc∂ν Ac = Foff(Pm)Am − γ Ac on �,

with initial data

Pm(x, 0) = pm(x) (x ∈ �), Pc(x, 0) = pc(x) (x ∈ �′),
Am(x, 0) = am(x) (x ∈ �), Ac(x, 0) = ac(x) (x ∈ �′).

This system has the following conservation of mass:

∫

�′
Pc(x, t)dx +

∫

�

Pm(x, t)dx� =
∫

�′
pc(x)dx +

∫

�

pm(x)dx�,

∫

�′
Ac(x, t)dx +

∫

�

Am(x, t)dx� =
∫

�′
ac(x)dx +

∫

�

am(x)dx�,

because

d

dt

(∫

�′
Pcdx +

∫

�

Pmdx�

)

= 0,
d

dt

(∫

�′
Acdx +

∫

�

Amdx�

)

= 0.

We set

m̃1 := 1

|�|
(∫

�′
Pcdx +

∫

�

Pmdx�

)

,

m̃2 := 1

|�|
(∫

�′
Acdx +

∫

�

Amdx�

)

.

We reduce the equations to a shadow system on � by taking Dc, Dc → ∞
(Fig. 1b(b2),(b3)) as

Pc(x, t) → ξ(t) := 1

|�′|
∫

�′
Pc(x, t)dx,
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Ac(x, t) → η(t) := 1

|�′|
∫

�′
Ac(x, t)dx,

and the system turns to be

∂t Pm = Dm�� Pm − Foff(Am)Pm + γ ξ on �,

∂t Am = Dm�� Am − Foff(Pm)Am + γ η on �,
(2.8)

and

m̃1 = |�′|
|�| ξ + 1

|�|
∫

�

Pm(x, t)dx,

m̃2 = |�′|
|�| η + 1

|�|
∫

�

Am(x, t)dx .

(2.9)

Then we have equations for ξ and η as

ξ̇ = 1

|�′|
∫

�

Fof f (Am)Pmdx + γ
|�|
|�′|ξ,

η̇ = 1

|�′|
∫

�

Fof f (Pm)Amdx + γ
|�|
|�′|η,

which are derived by taking the spatial average of the bulk equations for Pc and Ac

and applying the Green formula. However, these equations for ξ and η are obtained
by differentiating (2.9) with respect to t and using (2.8). Hence, it suffices to handle
(2.8) under the constraint (2.9) as the shadow system.

Introducing the new variables for the model (2.8) with the off-rate function (1.3),
we reduce the parameters as

u = Pm/K
1/2

, v = Pm/K 1/2,

ξ1 = |�′|
|�|

ξ

K
1/2 , ξ2 = |�′|

|�|
η

K 1/2 , t ′ = t/K 1,

and let us set

d1 = Dm K 1, d2 = Dm K1, k = K1K 1, τ = K1/K 1

α1 = αK 1, α2 = αK1, γ1 = γ K 1
|�|
|�′| , γ2 = γ K1,

|�|
|�′| ,

˜M1 = m̃1/K
1/2

, ˜M2 = m̃2/K 1/2.

(2.10)

Dropping ′ of t ′ in the equations for u and v leads to

∂t u = d1��u −
(

α1 + kv2

1 + v2

)

u + γ1ξ1, (2.11)
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τ∂tv = d2��v −
(

α2 + ku2

1 + u2

)

v + γ2ξ2, (2.12)

with

˜M1 = ξ1 + 1

|�|
∫

�

udx�
˜M2 = ξ2 + 1

|�|
∫

�

vdx�. (2.13)

In a similar manner to the above derivation, we can also derive the shadow system
of the cell membrane periphery model (2.3)–(2.6) in a bounded domain � ⊂ R

N as

∂t u = d1�u −
(

α1 + kv2
)

u + γ1ξ1 in �, (2.14)

τ∂tv = d2�v −
(

α2 + ku2
)

v + γ2ξ2 in �, (2.15)

with

M1 : = ξ1 + 1

|�|
∫

�

udx, M2 : = ξ2 + 1

|�|
∫

�

vdx . (2.16)

In the sequel, we are concerned with the shadow system of (2.3)–(2.6) in �,

∂t u = d1�u −
(

α1 + kv2
)

u + γ1(M1 − 〈u〉) in �, (2.17)

τ∂tv = d2�v −
(

α2 + ku2
)

v + γ2(M2 − 〈v〉) in �, (2.18)

with

∂u

∂n
= ∂v

∂n
= 0 on ∂�, (2.19)

where

〈·〉 := 1

|�|
∫

�

· dx .

Note that the approximation of shadow system induces a model defined on a surface
domain which does not include the thickness of cell membrane. However, we can
deal with the shadow system mathematically similarly to a cell membrane periphery
model assumed sufficiently small D as shown in Fig. 1b. As the simplest case, we can
handle the above system in � = (0, L) with periodic boundary condition. Although
(2.17)–(2.18) with (2.19) are simplified model equations, it is very useful to perform
numerical simulations with low numerical costs in higher-dimensional domains. We
will numerically show that the solution of this shadow system exhibits similar behav-
iors as the other models in the following section.
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a b

c

d

Fig. 2 Numerical simulations and polarity solutions. a Numerical results for bulk-surface model (1.2) are
shown. The color maps indicate the concentrations of aPAR and pPAR on the cytosol and membrane in
each region. The detailed parameter values are as follows: Dm = 7.2×10−7, Dm = 1.652×10−6, Dc =
Dc = 3.6 × 10−4, γ = γ = 0.3, α = α = 0.06, K1 = K 1 = 0.4, K = K = 0.05 for model (1.2) with
(1.3), and γ1 = γ2 = 0.3, α1 = α2 = 0.06, κ = 0.4 for model (1.2) with (1.4). b The concentrations of
aPAR and pPAR on the cell circumference calculated in (a) are plotted. c Stable nonconstant equilibrium
solutions of the cell membrane periphery model (2.3)–(2.6) on � = L × D, where L = (0, 2) and
D = [0, 0.2]. The detailed parameter values are given as d1 = 7.2 × 10−6, d2 = 1.652 × 10−5, D1 =
D2 = 3.6 × 10−3, γ1 = 2.6, γ2 = 2.0, α1 = α2 = 0.06, κ = 0.4, τ = 1.0, m1 = 0.737115, and
m2 = 1.0293325. (D) Stable nonconstant equilibrium solutions of the shadow system (2.17)–(2.18) on
� = [0, 2] under the Neumann boundary conditions and the periodic boundary conditions. The detailed
parameters are given to d1 = 7.2×10−6, d2 = 1.652×10−5, τ = 1.0,α1 = α2 = 0.6, γ1 = 2.6, γ2 = 2.0,
M1 = 0.737115, and M2 = 1.0293325 (color figure online)
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2.2 Numerical simulation results

In this study, we consider the long time behavior of segregation pattern of Pm and
Am in the system, namely, a stable steady-state polarity patterns of pPAR and aPAR.
Thus, we first compare the quantitative dynamics of the two bulk-surface models (1.2)
with (1.3) and (1.4) for the long time behavior (see Appendix A for the numerical
method and scheme for solving bulk-surface model). Figure 2a shows that both of
models successfully generate exclusive polarity patterns and that there are no notable
differences between the two models. Furthermore, as shown in Fig. 2b of the profile
of the membrane PAR proteins, the two polarity domains are overlapped with a small
interface region. This may allow us to assume that the off-rate effect of Pm by Am is
negligible in the region where the concentration of Pm is low (i.e. aPAR dominated
region) while the off-rate effect is likely to be dominated in the region where the
concentration of Pm is high (i.e. pPAR dominated region). Similarly, the off-rate effect
of Am by Pm is likely to be dominated in the region where the concentration of Am is
high (i.e. aPAR dominated region). The approximation by a Taylor expansion in (2.1)
may imply this phenomenon.

Figure 2c shows stable polarity solutions of the cell membrane periphery model
(2.3)–(2.6) on �(⊂ R

2) under the Neumann boundary conditions. Fig. 2d shows
nonconstant equilibrium solutions of shadow system (2.17)–(2.18) on �(⊂ R

1) for
both Neumann and periodic boundary conditions. The simulation results show, at
least apparently, that there are no differences in the qualitative dynamics of polarity
solutions between the bulk-surface model, the cell membrane periphery model, and
the shadow system.

Note that the kinetic parameter values used in the representative simulations were
chosen as arbitrary values which basically satisfy the condition that two stable equi-
libria exist in kinetic equations. The diffusion coefficients were chosen as the values
of biologically feasible scale based on the data of C. elegans embryo (Goehring et al.
2011a; Kuhn et al. 2011; Seirin-Lee 2021). Although we showed the polarity solutions
with representative parameter values, our rigorous analysis and mathematical results
of this paper support that the existence of polarity pattern is less sensitive to parameter
choice and holds over a wide range of the parameter space.

3 Long time behavior of polarity solutions

3.1 Basic properties of solutions to the system

Let � be a bounded domain in R
N with smooth boundary ∂�. In this section, we

consider the system (2.3)–(2.6) in � with the Neumann boundary conditions

∂u1

∂n
= ∂u2

∂n
= ∂v1

∂n
= ∂v2

∂n
= 0 (x ∈ ∂�). (3.1)
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Assume nonnegative continuous initial data

{

u1(x, 0) = u1,0(x) ≥ 0, u2(x, 0) = u2,0(x) ≥ 0,

v1(x, 0) = v1,0(x) ≥ 0, v2(x, 0) = v2,0(x) ≥ 0
(x ∈ �), (3.2)

where ui,0, vi,0 (i = 1, 2) are not identically zero. We aim to show the fundamental
mathematical results on the positivity and global boundedness of the solution to the cell
periphery model (2.3)–(2.6) with (3.1) and (3.2). The results here is easily interpreted
to the case of periodic boundary condition.

The first lemma assures the positivity of the solution.

Lemma 3.1 The system (2.3)–(2.6) in � with (3.1) and (3.2) has a unique classical
solution (u1(x, t), u2(x, t), v1(x, t), v2(x, t)) satisfying

u1(x, t), u2(x, t), v1(x, t), v2(x, t) > 0 (x ∈ �)

for t > 0 in the maximal interval.

Next, in order to prove that the solution can be extended globally in time, we
introduce the new variables z1 = (d1/D1)u1 + v1 and z2 = (d2/D2)u2 + v2 and
convert the system (2.3)–(2.6) to

∂t u1 = d1�u1 − (α1 + ku2
2)u1 − (γ1d1/D1)u1 + γ1z1, (3.3)

(1 − d1/D1)∂t u1 + ∂t z1 = D1�z1, (3.4)

τ∂t u2 = d2�u2 − (α2 + ku2
1)u2 − (γ2d2/D2)u2 + γ2z2, (3.5)

τ(1 − d2/D2)∂t u2 + τ∂t z2 = D2�z2. (3.6)

Define

E(u, z) :=
∫

�

[

d1
2

|∇u1|2 + d2
2

|∇u2|2 + α1 + γ1d1/D1

2
u2
1

+α2 + γ2d2/D2

2
u2
2 + k

2
u2
1u2

2 + θ1

2
z21 + θ2

2
z22

]

dx, (3.7)

where u = (u1, u2), z = (z1, z2), and θ : (i = 1, 2) are given in (3.9). Then, we can
prove that E plays as a Lyapunov function of (3.3)–(3.6) and obtain the next result.

Lemma 3.2 Given positive parameters di , Di , αi , γi (i = 1, 2) and τ with di <

Di (i = 1, 2), there exists a constant C1, depending on the initial data, such that

‖u1(·, t)‖2H1 + ‖u2(·, t)‖2H1 + ‖z1(·, t)‖2L2 + ‖z2(·, t)‖2L2

+
∫ t

0
{‖∂t u1(·, t ′)‖2L2 + τ‖∂t u2(·, t ′)‖2

+ θ1D1‖∇(z1(·, t ′)‖2L2 + (θ2/τ)D2‖∇z2(·, t ′)‖2L2}dt ′ ≤ C1 (3.8)
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where

θ1 := γ1/(1 − d1/D1), θ2 := γ2/(1 − d2/D2). (3.9)

Using this lemma, we get to the global boundedness of the solution;

Lemma 3.3 Let � ⊂ R
N , 1 ≤ N ≤ 3. Then the solution (u1(·, t), v1(·, t), u2(·, t),

v2(·, t)) is uniformly bounded in t, that is, there is a constant Cm > 0 such that

‖u1(·, t)‖L∞ , ‖v1(·, t)‖L∞ , ‖u2(·, t)‖L∞ , ‖v2(·, t)‖L∞ ≤ Cm (t ≥ 0).

The proofs of the above three lemmas are given in Appendix B.1.

Remark 3.1 In the work of Latos et al. (2018), a similar argument for the proof of the
uniform boundedness can be found. They study a two-component system having the
nonlinear terms with linear growth at infinity by which the uniform boundedness can
be shown without the restriction of space dimensions. Another approach is also found
in Jimbo and Morita (2013) for the similar system to Latos et al. (2018).

3.2 Stability of equilibrium solutions

From the system (2.3)–(2.6) with (3.1), we see

d

dt

∫

�

(u1(x, t) + v1(x, t))dx = 0,
d

dt

∫

�

(u2(x, t) + v2(x, t))dx = 0,

so that the system allows mass conservations

∫

�

(u1(x, t) + v1(x, t))dx = constant,
∫

�

(u2(x, t) + v2(x, t))dx = constant.

We set

m1 := 〈u1〉 + 〈v1〉, m2 := 〈u2〉 + 〈v2〉,

where 〈·〉 := (1/|�|) ∫

�
· dx . This mass conservation is expressed in the system

(3.3)–(3.6) as

m1 = (1 − d1/D1)〈u1〉 + 〈z1〉, m2 = (1 − d2/D2)〈u2〉 + 〈z2〉.

In this subsection, we investigate the stationary problem of the system (2.3)–(2.6),
that is, of the system (3.3)–(3.6),

d1�u1 − (α1 + ku2
2)u1 − (γ1d1/D1)u1 + γ1z1 = 0, �z1 = 0,

d2�u2 − (α2 + ku2
1)u2 − (γ2d2/D2)u2 + γ2z2 = 0, �z2 = 0,
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with

mi = (1 − di/Di )〈ui 〉 + 〈zi 〉 (i = 1, 2).

These equations turn out to be

d1�u1 − (α1 + ku2
2)u1 − (γ1d1/D1)u1 + γ1{m1 − (1 − d1/D1)〈u1〉} = 0,

d2�u2 − (α2 + ku2
1)u2 − (γ2d2/D2)u2 + γ2{m2 − (1 − d2/D2)〈u2〉} = 0.

(3.10)

We put

βi := αi + γi di/Di , Mi := mi

1 − di/Di
(i = 1, 2), (3.11)

and let θi (i = 1, 2) be same as in Lemma 3.2.
The system (3.10) has a variational structure. As a matter of fact, consider the

following functional of u = (u1, u2).

Es(u) :=
∫

�

{

d1
2

|∇u1|2 + d2
2

|∇u2|2 + β1

2
u2
1 + β2

2
u2
2 + k

2
u2
1u2

2

}

dx

+ γ1(1 − d1/D1)

2
|�| (M1 − 〈u1〉)2 + γ2(1 − d2/D2)

2
|�| (M2 − 〈u2〉)2 .

(3.12)

Then, it is easy to see that (3.10) with the Neumann boundary conditions is the Euler-
Lagrange equation of Es . Moreover, the following time evolution system

∂t u1 = d1�u1 − (α1 + ku2
2)u1 − (γ1d1/D1)u1 + γ1{m1 − (1 − d1/D1)〈u1〉},

∂t u2 = d2�u2 − (α2 + ku2
1)u2 − (γ2d2/D2)u2 + γ2{m2 − (1 − d2/D2)〈u2〉}

(3.13)

serves as the gradient flow of the energy functional Es .
We note that corresponding to a solution (u∗

1, u∗
2) of (3.10),

(u∗
1, z∗

1, u∗
2, z∗

2) = (u∗
1, m1 − (1 − d1/D1)〈u∗

1〉, u∗
2, m2 − (1 − d2/D2)〈u∗

2〉)

provides an equilibrium solution to (3.3)–(3.6). In the rest of this subsection, we show
that the stability of (u∗

1, z∗
1, u∗

2, z∗
2) is closely related to that of (u∗

1, u∗
2) in (3.10).

We first observe some property of a local minimizer of Es .

Lemma 3.4 Let u∗ = (u∗
1, u∗

2) be a local minimizer of Es(u) (u ∈ H1(�)2). Then,
there exists an ε1 > 0 such that for any ε ∈ (0, ε1/4], we can take δ1 = δ1(ε) > 0 so
that ‖u − u∗‖H1 < ε holds if Es(u) − Es(u∗) < δ1 with ‖u − u∗‖H1 < ε1.
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Proof By a slight modification of the proof of Lemma 7 of Latos and Suzuki (2014),
we can get to the assertion of the lemma. Thus, we omit the details. ��

We decompose

zi = 〈zi 〉 + zQ
i , zQ

i := zi − 〈zi 〉 (i = 1, 2).

Then

‖zi‖2L2 = 〈zi 〉2 + ‖zQ‖2L2 = (mi − (1 − di/Di )〈ui 〉)2 + ‖zQ‖2L2

= (1 − di/Di )
2(Mi − 〈ui 〉)2 + ‖zQ‖2L2

yields

E(u, z) = Es(u) + θ1

2
‖zQ

1 ‖2L2 + θ2

2
‖zQ

2 ‖2L2 , (3.14)

where θi (i = 1, 2) are as in (3.9). From the next lemma, we see that the stability of a
solution (u∗, z∗) is inherited from that of u∗.

Lemma 3.5 Let u∗ of (3.12) be a local minimizer and let z∗ = (z∗
1, z∗

2) be defined as
z∗

i := mi − (1 − di/Di )〈u∗
i 〉 (i = 1, 2). Then, given ε > 0, there exists δ > 0 such

that

‖(u(·, 0), z(·, 0)) − (u∗, z∗)‖H1 < δ (3.15)

implies

‖(u(·, t), z(·, t)) − (u∗, z∗)‖H1 < ˜Cε (t ≥ 0),

for a constant ˜C > 0.

The proof of this lemma is given in Appendix B.2.

3.3 Existence of stable nonconstant solutions

In Sect. 2.2, we confirmed numerically that there exist stable polarity solutions in
the cell periphery model (2.3)–(2.6) in Fig. 2c. One can also find that the stable
equilibrium solutions in the system (2.3)–(2.6) and the transformed system (3.13) are
very consistent, as shown in Fig. 3a. As seen below, the system (3.13) of two variables
gives a good mathematical simplification for rigorous analysis, while it is very useful
to understand the dynamics of polarity patterns to a stationary state with reducing a
numerical cost.

In this subsection, we prove the existence of stable nonconstant equilibrium solu-
tions of (2.3)–(2.6) with (3.1) in a parameter regime. To this end, in view of Lemma
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3.4, it suffices to show the existence of a nonconstant minimizer of the energy func-
tional Es of (3.12). As the first step, we ensures the existence of a positive minimizer
of Es .

Lemma 3.6 There is a minimizer u∗ = (u∗
1, u∗

2) of Es satisfying u∗
i (x) > 0 (x ∈

�), i = 1, 2.

Proof By the direct method of calculus of variations, we have a minimizer u∗ =
(u∗

1, u∗
2) of Es . We easily exclude the case u∗

1 ≤ 0, u∗
1 �≡ 0 or u∗

2 ≤ 0, u∗
2 �≡ 0.

Indeed, if u∗
1 ≤ 0 u∗

1 �≡ 0, then Es(−u∗
1, u∗

2) < Es(u∗
1, u∗

2), a contradiction. Similarly,
u∗
2 ≤ 0, u∗

2 �≡ 0 cannot happen. This implies that each u∗
i has a positive maximum

or ui ≡ 0. Since (u∗
1, u∗

2) satisfies (3.10), ui ≡ 0 (i = 1, 2) is excluded. By the Hopf
lemma, we see that the maximum point of u∗

i exsits in the interior of the domain unless
u∗

i is constant. Moreover,

(1 − di/Di )〈u∗
i 〉 < mi , i = 1, 2

hold by applying the maximum principle to the first and second equations of (3.10)
(use a contradiction argument for the proof). We exclude the case that u∗

i takes the
non-positive minimum. If it happens, the minimum is achieved in the interior of � by
the Hopf lemma. Let xm ∈ � be such a point. Then

di�ui − αi ui − ku2
j ui + γi (mi − (1 − di/Di )〈u∗

i 〉) > 0

at x = xm , which is a contradiction. In conclusion, u∗
i > 0 (i = 1, 2). ��

We next consider a positive constant equilibrium solution, which is obtained by a
solution of

(α1 + γ1d1/D1)ξ + kξη2 − γ1(m1 − (1 − d1/D1)ξ) = 0,

(α2 + γ2d2/D2)η + kξ2η − γ2(m2 − (1 − d2/D2)η) = 0.
(3.16)

Given solution (ξ, η) to the system (3.16), we have

Es(ξ, η) = |�|
{

β1

2
ξ2 + β2

2
η2 + k

2
ξ2η2

+θ1

2
(m1 − (1 − d1/D1)ξ)2 + θ2

2
(m2 − (1 − d2/D2)η)2

}

, (3.17)

where βi and θi (i = 1, 2) are defined in (3.11) and (3.9), respectively. We easily see
that for fixed mi (i = 1, 2) and k, it is impossible to realize the three conditions

ξ2η2 = 0, m1 − (1 − d1/D1)ξ = 0, and m2 − (1 − d2/D2)η = 0,

simultaneously. Hence, if we found a family of nonnegative functions parametrized
by, say ε > 0, as {(uε

1, uε
2)}ε>0 satisfying

Es(u
ε
1, uε

2) → 0 (ε ↓ 0),
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a

b

c

Fig. 3 Stable nonconstant equilibrium solutions and minimal energy at the boundary of polarity domains.
a The solutions to the full system (2.3)–(2.6) shown in Fig. 2c are plotted at x ′ = 0.1. With the same
parameter values, the stationary solutions of the transformed system (3.13) in a one-dimensional space are
plotted. The solutions for both systemsmostly overlapped. bEnergy function (3.24). The red point indicates
the location of minimal energy and is at (0.750762, 0.083651). In addition, �b is the location where the
energy function (3.24) is at minimum, i.e. �b = 0.750762. cApproximate solution given in (3.21) is plotted
using � = �b . The detailed parameter values are the same for a–c and are given as d1 = 7.2× 10−6, d2 =
1.652 × 10−5, D1 = D2 = 3.6 × 10−3, γ1 = 2.6, γ2 = 2.0, α1 = α2 = 0.06, κ = 0.4, τ = 1.0,
m1 = 0.737115, and m2 = 1.0293325 (color figure online)

Es allows a nonconstantminimizer for sufficiently small ε.Moreover, applyingLemma
3.5, we can assert the existence of a stable nonconstant positive equilibrium of the 4-
component system of (2.3)–(2.6).

However, we are interested in the profile of the nonconstant minimizer. As a matter
of fact, in numerical simulations, the spatial segregation pattern of u1 and u2 can be
observed. Considering those simulations, we expect that the interface separating two
regions of u1 and u2 emerges in the singular limit by varying appropriate parameters.
Here we aim to construct an approximate solution with less energy than any constant
solution and identify the location of the interface by minimizing the energy of the
approximate solution. Our goal is to provide a reasonable approximation matching
with the results of numerics.

Let us set

ωi := √

di/βi , i = 1, 2, (3.18)

and

μ1(�) := m1
1−d1/D1

L {� − ω1 tanh(�/ω1)} + β1/γ1
,

μ2(�) := m2
1−d2/D2

L {L − � − ω2 tanh((L − �)/ω2)} + β2/γ2
,

(3.19)
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where � serves as a location of an interface in the approximate solution. We consider
the parameter regime

di � Di , βi � 1 (i = 1, 2), � > ω1, L − � > ω2. (3.20)

Define

U1(x1; �) := μ1(�)

(

1 − cosh(x1/ω1)

cosh(�/ω1)

)

,

U2(x1; �) := μ2(�)

(

1 − cosh((L − x1)/ω2)

cosh((L − �)/ω2)

)

,

(3.21)

and use the following test functions:

φ(x1) :=
{

U1(x1; �) + δU1 (0 ≤ x1 ≤ �),

δU1 (� ≤ x1 ≤ L),
(3.22)

ψ(x1) :=
{

δU2 (0 ≤ x1 ≤ �),

U2(x1; �) + δU2 (� ≤ x1 ≤ L).
(3.23)

We compute the energy Es(φ,ψ). By a lengthy but straightforward computation (for
the details, see Appendix C), we obtain

Es(φ,ψ) = |D|β1

2
μ1(�)

2{�(1 + ρ1)
2 + (L − �)ρ2

1 − (1 + 2ρ1)ω1 tanh(�/ω1)}

+ |D|β2

2
μ2(�)

2{(L − �)(1 + ρ2)
2 + �ρ2

2 − (1 + 2ρ2)ω2 tanh((L − �)/ω2)}

+ |D|k
2

(μ1(�)μ2(�))
2
{

ρ2
2

(

�(1 + ρ1)
2 − (

3

2
+ 2ρ1)ω1 tanh(�/ω1)

+ �

2 cosh2(�/ω1)

)

+ ρ2
1

(

(L − �)(1 + ρ2)
2 − (

3

2
+ 2ρ2)ω2 tanh((L − �)/ω2)

+ L − �

2 cosh2((L − �)/ω2)

)}

+ O(β4
1 ) + O(β4

2 )

(3.24)

Note that by (C.2),

ρi = βi/γi + O(β2
i ).
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Put ˜Es(�) := Es(φ,ψ). In view of (3.18) and (3.20), we clarify the terms with up to
O(|(β1, β2)|2) in ˜Es(�) as

˜Es(�) = |D|β1

2
μ1(�)

2{�(1 + 2ρ1) − (1 + 2ρ1)ω1 tanh(�/ω1)}

+ |D|β2

2
μ2(�)

2{(L − �)(1 + 2ρ2) − (1 + 2ρ2)ω2 tanh((L − �)/ω2)}

+ |D|k
2

(μ1(�)μ2(�))
2
{

ρ2
2

(

� − 3

2
ω1 tanh(�/ω1) + �

2 cosh2(�/ω1)

)

+ρ2
1

(

(L − �) − 3

2
ω2 tanh((L − �)/ω2) + L − �

2 cosh2((L − �)/ω2)

)}

+ O(|(β1, β2)|3) + O(β4
1 ) + O(β4

2 ).

(3.25)

With an appropriate choice of the parameters, the profile of ˜Es(�) is convex in an
open interval of [0, L]. Thus, it is minimized by an � in (0, L). Note that by (3.20),
the approximation does not work near the boundaries � = (0, L). It is clear that
Es(φ,ψ) = O(|(β1, β2)|) as |(β1, β2)| → 0 under the restriction of (3.20). Since
βi → αi (di → 0), in view of (3.25), we have less energy nonconstant solution than
any constant solution.

Proposition 3.7 Let � ⊂ R
N (1 ≤ N ≤ 3) be a cylindrical domain as � = {x =

(x1, x ′) ∈ (0, L)× D}, where D is a bounded domain of RN−1 with smooth boundary.
For the diffusion coefficients assume di < Di (i = 1, 2). Then there are positive
numbers α, d and r such that for

αi ≤ α, di ≤ d, di/αi ≤ r (i = 1, 2),

the system of (2.3)–(2.6) in � with (3.1) possesses a stable nonconstant equilibrium
solution.

The energy (3.25) looks complicated. Here we consider the limiting behavior of
(3.25) for the scaling as

αi = εα̃i , di = ε1+δ
˜di , δ > 0 (i = 1, 2), (3.26)

Then

ẽ(�) := lim
ε→0

Es(φ,ψ)/ε = |D|
2

{

α̃1�

(

Lm1

�

)2

+ α̃2(L − �)

(

Lm2

L − �

)2
}

. (3.27)

A simple calculation shows that ẽ(�) of (3.27) is minimized by

�∗ := m1
√

α̃1

m1
√

α̃1 + m2
√

α̃2
L, (3.28)
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at which

ẽ(�∗) = |D|L
2

(m1

√

α̃1 + m2

√

α̃2)
2.

Consequently, we obtain

Corollary 3.8 Let u∗
ε = (u∗

1ε
, u∗

2ε
) be the minimizer of Es with (3.26). Then

lim sup
ε↓0

1

ε
Eε(u∗

ε) ≤ |�|
2

(m1

√

α̃1 + m2

√

α̃2)
2.

This estimate might be useful for a mathematically rigorous study of the limiting
behavior in the future work. Note that for the minimizer u∗

ε of Eε

Eε(u∗
ε) ≥ εα̃1

2
‖u∗

1ε‖2L2 + εα̃2

2
‖u∗

2ε‖2L2 ≥ ε|�|
2

(̃α1|〈u∗
1ε〉2 + α̃2|〈u∗

2ε〉|2).

We also expect that (φ,ψ) with � = �b gives a reasonable approximation of the
minimizer of Es in the parameter regime stated in Proposition 3.7, though (φ,ψ) is not
smooth at � = �b. As amatter of fact, the numerical test confirms that Es has aminimal
energy at �b = 0.750762 (Fig. 3b). Note that �b is corresponding to the location of
the interface edge of pPAR domain boundary. When we define the edge of pPAR
interface by the region where pPAR concentration is included in (0.1%, 0.5%) of the
minimal value of pPAR concentration in the full system (2.3)–(2.6) (Figs. 2c, 3a), the
range of edge region of pPAR domain is approximated as a value in (0.745, 0.765),
indicating that �b = 0.750762 gives a good approximation with respect to the location
of polarity boundary. Fig. 3c also confirms that the approximate solution (3.21) for
� = �b well captures the characteristic of the shape of polarity solution of the full
system (2.3)–(2.6) shown in Fig. 3a. We will leave a mathematically rigorous proof
of the minimizer of Es in a future work because it is beyond the scope of this paper.

3.4 Bulk-surfacemodel and its shadow system

In this subsection, we show the existence of nonconstant equilibrium solutions for the
shadow system (2.17)–(2.18).

As in §3.2, we define the following energy functional:

E1(u, v) :=
∫

�

{

d1
2

|∇u|2 + d2
2

|∇v|2 + α1

2
u2 + α2

2
v2 + k

2
u2v2

}

dx

+ γ1(1 − d1/D1)

2
|�| (M1 − 〈u〉)2 + γ2(1 − d2/D2)

2
|�| (M2 − 〈v〉)2 .

(3.29)

Then we can directly prove the existence of nonconstant equilibrium solution for
(2.17)–(2.18) with (2.19), provided that the system has the scaled parameters (2.10)
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with the condition in Proposition 3.7. Numerical simulations also confirm that noncon-
stant equilibrium solutions exist for both Neumann and periodic boundary conditions
(Fig. 2d).

As seen in the derivation of the shadow system from the bulk-surface model, it is
reasonable to consider the shadow system in a 2-dimensional closed surface of the
cell membrane. It is also interesting to study how the geometry of the surface affects
the spatial pattern. Those issues are beyond the present scope and will be good as a
future work. However, we expect that the above observation in a general domain will
be useful for a further study in various domains.

Remark 3.2 InGoehring et al. (2011b), the followingmodel equations for plolarization
of PAR proteins are proposed:

∂t A + ∂x (ν A) = DA∂2x A − koff,A A − kAPPα A + kon,A Acyto, (3.30)

∂t P + ∂x (ν P) = DP∂
2
x P − koff,PP − kAP Aβ P + kon,PPcyto, (3.31)

where A and P stand for the local membrane concentrations of aPARs and pPARs,
respectively. On the other hand, Acyto and Pcyto stand for the uniform cytoplasmic
concentrations of aPARs and pPARs, respectively, that is, those are assumed to be
constants. In this model, they set a bistable character of the system, that is, the sys-
tem allows two stable spatially uniform steady states by tuning parameters suitably.
Goehring et al. (2011b) shows that the cortical flow velocity, ν = ν(x, t), plays a role
in serving as a mechanical trigger for the pattern formation in the initial stage and the
bistable character plays to create a segregation pattern of A and P after the flow effect
ceases. However, when ν = 0, there is no stable equilibrium state because the system
with ν = 0 belongs to a class of competition-diffusion systems. In fact, Kishimoto
(1981) and Kishimoto and Weinberger (1985) show the instability of nonconstant
equilibrium solutions of two component reaction–diffusion equations of competition
type in an interval or a convex domain with the Neumann boundary condition or peri-
odic boundary condition. On the other hand, by virtue of the nonlocal constraint of
(2.16), the system (2.17)–(2.18) allows a stable nonconstant equilibrium in a parame-
ter regime as seen in §3.3. Although the mathematical theorem ensures non-existence
of stable segregation patterns in the system (3.30)–(3.31) with ν = 0, a very slow
motion of the transition layer might happen in Goehring et al. (2011b), as seen in the
scalar reaction–diffusion equation by Car and Pego (1989) and Fusco andHale (1989).

3.5 Energy functional and biological implication

The length of the PAR polarity domain in asymmetric cell division is considered an
important factor in regulating the location of the cell cleavage plane during asymmetric
cell division (Coffmana et al. 2016; Morton et al. 2002; Rose and Kemphues 1998).
However, the mechanism by which the polarity length is determined remains elusive,
although this issue has been partially noted in both experimental and theoretical studies
(Dawes and Iron 2013; Goehring et al. 2011b; Seirin-Lee and Shibata 2015; Seirin-Lee
2020). Herein, we explore how the size of polarity domains (namely, the position of
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a

d e

b

c

Fig. 4 The size of polarity domain and the effect of cell shape. a The effect of the cell membrane length on
the size of the pPAR domain is plotted by the energy functionals Es , ˜Es , and ẽ ((3.24), (3.25), and (3.27)).
Here, L D = L/|D| where |D| is fixed. In addition, �b is the length of the pPAR domain corresponding to
the value of � where the energy functionals (3.24), (3.25), and (3.27) have minimal energy, respectively.
b–c Schematic figures for the effect of the cell shape to the length scale (boundary position) of the polarity
domain. From a, the ratio of the pPAR (aPAR) domain to the cell membrane length becomes constant. VS
and V are the cell volumes and V s � V . Lname

D is the length of cell circumference. d The effect of the
total mass on the size of the pPAR domain is plotted by the energy functionals. E The effects of both the
cell membrane length and the total mass. The same parameter values as in Fig. 2 are chosen for a, d, and e

the polarity boundary) is affected by the size of the cell membrane (L) and the total
mass of the polarity proteins by using the energy functionals obtained in Sect. 3.3.

We first explore how the boundary location of the pPAR polarity (namely, �b) is
determined, which also defines the relative size of a polarity domain with respect
to the size of the cell membrane. The boundary location of the aPAR polarity is be
given to L − �b. In the model systems (2.3)–(2.6) for � = (0, L) × D, L can be
regarded as the cell circumference of the cell membrane and |D| is the membrane
thickness. We thus fix the size of |D| and vary L . We calculated �b with respect to
L D = L/|D| by using the energy functionals, (3.24), (3.25), and (3.27), the results of
which are shown in Fig. 4a. We first found that when the size of the cell membrane
is relatively small (i.e. in a small cell), the size of the pPAR domain decreases as the
length of the cell membrane increases. This suggests that the length of the polarity can
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be critically affected by the shape of the cell (Fig. 4a, b). Because the circumference of
the cell membrane in an elliptic cell is larger than that in a circular cell under the same
volume, a circular cell has a longer domain of pPAR than the elliptic cell. That is, we

have
�circle

b

Lcircle
D

>
�

elli pse
b

Lelli pse
D

because Lcircle
D < Lelli pse

D and �circle
b > �

elli pse
b (Fig. 4b). By

contrast, when the volume of the cell is large, namely the length of the cell membrane
is large, the relative domain size of pPAR becomes constant without a dependence on
L D (Fig. 4a, c). This suggests that the boundary position of the polarity is determined
very robustly without the sensitivity of the cell shape. This fact is likely to be held for
any cell shape, such as in the case of wrinkled cells (Fig. 4b, c).

Next, we investigate the effect of the total mass. We fix the total mass of aPAR (m2)
and vary the total mass of pPAR (m1), which consequently leads to a variation of the
total masses of pPAR and aPAR (mtot = m1 +m2) because m1/m2 = (mtot/m2 −1).
As m1 (or mtot ) increases, the length of the polarity domain is increased (Fig. 4d).
Unexpectedly, however, we found that once the total mass becomes larger than a
certain amount, the length of the polarity domain is constant despite the increase in
the total mass. This implies that if the total mass is sufficiently large, it may not be a
dominant factor in determining the polarity length, while the other kinetic parameters
or elements are likely to play an important role.

Finally, we explored both the effects of the length of the cell membrane (L D) and
the total mass of the polarity proteins on the length of the polarity domain (Fig. 4e).
We found that a proper relation between the total mass and the cell membrane length
is required to obtain a proper size of the polarity domain (a proper position of the
polarity boundary) (Zone A). Specifically, if the length of the cell membrane is too
small or the total mass is insufficient, the polarity domain either spreads out to a wide
region of the cell membrane or remains in an area with a small polarity (Zone C). We
also found that a wide parameter region exists where the sensitivity of L D and the
ratio of the total mass to the size of the polarity domain becomes negligible (Zone
B). Note that, although the reduced energy functional ẽ in (3.27) does not show a
good approximation quantitatively compared to the other two energy functionals Es in
(3.24) and ˜Es in (3.25) (Fig. 4a, d), it still captures well a qualitative characteristic of
the nonconstant stationary solution. Thus, we can directly obtain similar conclusions
with the Eq. (3.28).

4 Discussion

The pattern formation system characterised by bi-stability and mass conservation has
been highlighted using a cell polaritymodel and explored based on several kinetic types
of models (Goehring et al. 2011b; Mori et al. 2008; Otsuji et al. 2007; Seirin-Lee and
Shibata 2015; Seirin-Lee 2021; Trong et al. 2014). In this study, we have explored the
long time behavior of stable patterns for high-dimensional polarity models describing
the PAR polarity occurring in asymmetric cell division, which are based on the models
suggested by Goehring et al. (2011b) and Seirin-Lee and Shibata (2015). We showed
that the long time behavior around the stationary solution in the bulk-surface model
can be understood by reduced models; a cell membrane periphery model and shadow
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system have a mathematically simpler form but are able to capture the dynamics
of the stationary polarity solutions in a high-dimensional space, and we rigorously
established the existence and stability of the polarity solutions.

In this study, we also succeeded in constructing a reasonable approximate solution
that provides a direct calculation of the energy functionals. Using these energy func-
tionals, we have found the detailed effect of the cell membrane length and total mass
on determining the size of polarity domain (the position of the polarity boundary).
From this analysis, we also found that the size of the polarity domain can be sensi-
tively altered depending on the cell shape when the cell size is small. By contrast, the
relative location of the boundary is not changed by the cell shape when the cell size
is large, which implies that a bigger cell may need to have fewer factors to maintain a
robust length of the polarity domain than a smaller cell.

A previous study by Seirin-Lee and Shibata (2015) has found that the pPAR polar-
ity length is linearly dependent on the total mass. However, their observations were
restricted to a specific parameter range because the total mass was not an independent
parameter but was determined based on the choice of kinetic parameters. A numeri-
cal analysis carried out on full partial-differential equations with respect to multiple
parameter values often limits the computations in terms of the cost of the numerical
calculation, though the recent study on the numerical method and scheme shows the
development (Hao and Xue 2020; Uecker et al. 2014). By contrast, we can deal with
the total mass as an independent parameter in our analysis using the energy function-
als. This provides a highly effective numerical cost when we investigate the effects of
the parameters on the dynamics of the solutions with a polarity profile.

In this study, our main approach to the model reductions has been based on the
assumption of homogeneous state of cytosol protein which is basically resulted from
a fast diffusion in the cytosol space. The approximation of shadow system requires
a mathematical condition of diffusion infinity in the cytosol (Dc → ∞), but it is
not a biologically feasible condition. On the other hand, the cell membrane periphery
model does not require such a limit condition and we can obtain mathematically
rigorous results under the biologically reasonable condition that the diffusion in the
cytosol is faster than that on the membrane (Dc > Dm). This is generally observed
in a cell (Kuhn et al. 2011). Thus, our analytical approach to the shadow system via
a cell membrane periphery model supports that the mathematical assumption of fast
diffusion in the cytosol is reasonable to understand the essential structure of polarity
formation.

Although our mathematical analysis captures well the dynamics of the polarity in
qualitative terms, it would be interesting to confirm the effect of the cell geometry
on the length of the polarity domain in real biological systems. We are currently
considering this, and leave it as a subject of future study.
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Appendix

A Modelingmethod and numerical information

A.1 Bulk-surfacemodeling using phase-field method

To describe the bulk-cytosol space and the membrane surface, we used a method of
combining a phase-field function with the reaction–diffusion system. We apply the
method proposed by Seirin-Lee (2016a, 2017) with respect to the case of a single cell.
We solved the following equation in order to generate a cell shape:

μ−1 ∂φ

∂t
= ε2∇2φ + φ(1 − φ)

{

φ − 1

2
− 60αφ(1 − φ)

(

V (t) − V
)

}

, (A.1)

where α(> 0) is the intensity constant of the energy for the volume V (t), and V is the
target volume of the cell. With a phase-field function satisfying (A.1) for some time
t∗, φ(x, t∗), we define a fixed cell domain as follows :

Cytosol ≡ {x|φ(x, t∗) = 1}, Membrane ≡ {x|0 < φ(x, t∗) < 1},
Extracellular region ≡ {x|φ(x, t∗) = 0},

where x ∈ R
N .

In next, we combine the bulk-surface model (1.2) with the cell phase-field function
φ(x, t∗) (Kockelkoren et al. 2003; Levine and Rappel 2005; Wang et al. 2017). The
model system combinedwith the phase-field functionwhichwe used for the numerical
simulations of bulk-surface model (1.2) is given to

∂ B(φ)Pm

∂t
= DP

m ∇ · (B(φ)∇ Pm) + B(φ){−Foff(Am)Pm + γ Pc},
∂φPc

∂t
= DP

c ∇ · (φ∇ Pc) + |∇φ|{Foff(Am)Pm − γ Pc},
∂ B(φ)Am

∂t
= D A

m∇ · (B(φ)∇ Am) + B(φ){−Foff(Pm)Am + γ Ac},
∂φ Ac

∂t
= D A

c ∇ · (φ∇ Ac) + |∇φ|{Foff(Pm)Am − γ Ac},

(A.2)

where B(φ) = νφ2(1 − φ)2 (ν > 0), a function defining the membrane region.
Because the cell shape can be easily generated by the Eq. (A.1) by adjusting

the target volume V and initial condition, the phase-field-combinded modeling is very
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Fig. 5 Conservation of total mass in phase-field-combindedmodel. The concentration of total mass of aPAR
and pPAR is plotted for the model (1.2) with (1.4) calculated in Fig. 2a. The average of numerical data of
the total mass is 0.90319596, and the standard derivation is 0.00474245

convenient to simulate various cell shapes without lengthy numerical implementation.
To make a cell, we used the parameter values: α = 120, V = 0.2828, μ = 1.0, ε =
2.0 × 10−3, ν = 16.0, and

φ(x, 0) =
{

1 in {(x, y)| (x−0.5)2

0.2252
+ (y−0.5)2

0.4002
≤ 1},

0 otherwise,

on x ∈ [0, 1] × [0, 1].

A.2 Numerical scheme and stability

We solved the form of the bulk-surface system (A.2) using C language by a standard
explicit numerical scheme on square grids. The systemdomain is given to [0, 1]×[0, 1]
and has been spaced by 400 × 400 grids which defines �x = 0.0025. �t = 1/300 is
chosen so that the stability condition of explicit scheme

(Maximal diffusion coefficient) × �t

(�x)2
= 0.00036 × 1/300

0.0025
= 0.00048 <

1

2

is sufficiently satisfied (Morton and Mayers 1994). We also have confirmed that
the simulation results are not changed with smaller spatial and temporal grid size.
Figure S5 confirms that the system (A.2) combined with phase-field functions is well-
conserved numerically with respect to the total mass.

On the other hand, we solved one and two dimensional reaction–diffusion sys-
tems with Neumann and periodic boundary conditions by implicit method using LU
decomposition and ADI method (Morton and Mayers 1994).

A.3 Initial conditions

The initial condition for simulating the bulk-surface model (1.2) was given to locally
concentrated initial conditions (Seirin-Lee and Shibata 2015) by

Am(X, 0) = A0
m(1 + δψ(X)) on X ∈ ∂�,
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Ac(X, 0) = A0
c(1 + δψ(X)) on X ∈ �,

Pm(X, 0) = σ on X ∈ ω ⊂ ∂�,

Pm(X, 0) = 0 on X ∈ ∂� \ ω,

Pc(X, 0) = P0
c (1 + δψ(X)) on X ∈ �,

where σ is the strength of the signal, and ω is the sufficiently small region in which
the signal is imposed. δ is a positive constant and has a very small value. Typically,
we set σ = 40 with |ω| = B(φ)(0.05)2 and δ = 0.001. ψ(X) is a random function
of uniform distribution, which takes values in the range of [−0.5, 0.5]. The detailed
values used in the representative simulations are A0

m = P0
m = 1.02,

A0
c = 1

γ̄

(

ᾱ + K 1(P0
m)2

1 + K (P0
m)2

)

A0
m, and P0

c = 1

γ

(

α + K1(A0
m)2

1 + K (A0
m)2

)

P0
m .

B Proof of Lemmas in Section 3

B.1 Proof of Lemmas 3.1, 3.2 and 3.3

Proof of Lemma 3.1 We first consider

∂t ũ1 = d1�ũ1 − (α1 + kũ2
2)̃u1 + γ1ṽ1,

∂t ṽ1 = D1�ṽ1 + (α1 + kũ2
2)(̃u1)+ − γ1ṽ1,

τ∂t ũ2 = d2�ũ2 − (α2 + kũ2
1)̃u2 + γ2ṽ2,

τ∂t ṽ2 = D2�ṽ2 + (α2 + kũ2
1)(̃u2)+ − γ2ṽ2,

in�with the same initial condition, where (̃u(x, ·))+ := max{̃u(x, ·), 0}. This system
has a unique classical solution in�×[0, T ) for some T > 0 [see Rothe (1984)]. Since

∂t ṽ1 ≥ D1�ṽ1 − γ1ṽ1, τ∂t ṽ2 ≥ D2�ṽ2 − γ2ṽ2,

we use the maximum principle to assert ṽ1(x, t), ṽ2(x, t) ≥ 0 (0 ≤ t < T ). This
leads us ũ1(x, t), ũ2(x, t) ≥ 0 (0 ≤ t < T ) by applying the maximum principle to the
ũ1 and ũ2 equations. The strong maximum principle shows the strict positivity of the
solutions for t > 0. In the sequence the solutions, (u1, u2, v1, v2) and (̃u1, ũ2, ṽ1, ṽ2)

coinside in � × [0, T ) because of the uniqueness of the solution. ��

Proof of Lemma 3.2 We let E(u, z) be the function defined in (3.7). For a solution
(u1(·, t), v1(·, t), u2(·, t), v2(·, t)) to the system (2.3)–(2.6) and

z1(·, t) = (d1/D1)u1(·, t) + v1(·, t), z2(·, t) = (d2/D2)u2(·, t) + v2(·t),
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we compute

d

dt
E(u(·, t), z(·, t))

=
∫

�

[d1∇u1 · ∇(∂t u1) + d2∇u2 · ∇(∂t u2) + (α1 + γ1d1/D1)u1∂t u1

+ (α2 + γ2d2/D2)u2∂t u2 + ku2
2u1∂t u1 + ku2

1u2∂t u2

+ θ1z1∂t z1 + θ2z2∂t z2]dx

=
∫

�

[{−d1�u1 + α1u1 + (γ1d1/D1)u1 + ku2
2u1}∂t u1

+ {−d2�u2 + α2u2 + (γ2d2/D2)u2 + ku2
1u2}∂t u2

+ θ1z1(−(1 − d1/D1)∂t u1 + D1�z1)

+ θ2(−(1 − d2/D2)∂t u2 + (1/τ)D2�z2)]dx

=
∫

�

[(−∂t u1 + γ1z1)∂t u1 + (−τ∂t u2 + γ2z2)∂t u2

− γ1z1∂t u1 − θ1D1|∇z1|2 − γ2z2∂t u2 − (θ2/τ)D2|∇z2|2]dx

= −
∫

�

[(∂t u1)
2 + τ(∂t u2)

2 + θ1D1|∇z1|2 + (θ2/τ)D2|∇z2|2]dx .

This implies

E(u(·, t), z(·, t)) +
∫ t

0

{∫

�

[(∂t u1)
2 + τ(∂t u2)

2 + θ1D1|∇z1|2

+(θ2/τ)D2|∇z2|2]dx
}

dt ′

≤ E(u(·, 0), z(·, 0)).

Put

βi := αi + γi di/Di (i = 1, 2).

Since

1

2
min{d1, d2, β1, β2, θ1, θ2}(‖u1‖2H1 + ‖u2‖2H1 + ‖z1‖2L2 + ‖z2‖2L2) ≤ E(u, z),

the assertion of the lemma immediately follows. ��

Before going to the proof of Lemma 3.3, we prepare some estimate for the heat
equation. Let u(·, t; u0) be a unique solution of

∂t u = d�u in �, ∂u/∂n = 0 on ∂�, u(·, 0) = u0 (∈ C(�;R)),
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and define the the semigroup {etd�}t≥0 by etd�u0 := u(·, t; u0). We will use the
following inequality ( Rothe (1984)):

‖etd�φ‖Lr ≤ C0(d, q, r)max{1, t−
N
2 ( 1q − 1

r )}‖φ‖Lq , 1 ≤ q ≤ r ≤ ∞. (B.1)

Proof of Lemma 3.3 In view of 〈ui (·, t)〉 + 〈vi (·, t)〉 = mi and the positivity of the
solution, we see 〈ui (·, t)〉, 〈vi (·, t)〉 ≤ mi (t ≥ 0) for i = 1, 2. Thus, 〈zi (·, t)〉 ≤
(1+ di/Di )mi (t ≥ 0) for i = 1, 2. Then, there is a positive C2 such that for i = 1, 2

‖zi (·, t)‖2L2 = ‖〈zi (·, t)〉‖2L2 + ‖zi (·, t) − 〈zi (·, t)〉‖2L2 ≤ C2(1 + ‖∇zi (·, t)‖2L2)

(B.2)

holds.
In the rest of the proof, we omit to state the boundary condition of the equations

since it is fixed. We prove the assertion of the lemma for only τ = 1 below since the
same argument can be easily applied to the case τ �= 1 with a slight modification.

When N = 1, since H1(�) ⊂ C1/2(�), we obtain the uniform boundedness for
ui (x, t). The solution vi (·, t) of

∂tvi = Di�vi − γivi + (αi + kC2)C, (B.3)

with vi (·, 0) = vi,0(·), bounds vi (·, t) by the maximum principle. Hence, we easily
see the uniform boundedness for vi (·, t) for i = 1, 2.

For N ≥ 2, taking q = 2 and r with 1 ≤ r < 2N/(N − 2)+, we have

N

2
(
1

2
− 1

r
) <

1

2
,

and by (B.1)

‖etd�φ‖Lr ≤ C0 max{1, t
− N

2

(

1
2− 1

r

)

}‖φ‖L2

(precisely, C0 = C0(d, 2, r), but we omit the dependence on d and r ). The equations
of (3.4) and (3.6) allow the integral form as

zi (·, t) = et(Di �−1)zi (·, 0) +
∫ t

0
e(t−t ′)(Di �−1){zi (·, t ′) − (1 − di/Di )∂ui (·, t ′)}dt ′,

for i = 1, 2. In view of (B.2), (3.8) and the uniform boundedness of the initial data,
there is a positive constant C3 such that

‖zi (·, t)‖Lr ≤ C3‖zi (·, 0)‖L2

+ C3

∫ t

0
{(t − t ′)−

N
2 ( 12− 1

r )e−(t−t ′)(‖zi (·, t ′)‖L2 + ‖∂t ui (·, t ′)‖L2}dt ′
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≤ C3‖zi (·, 0)‖L2 + C3

√

C2

∫ t

0
(t − t ′)−

N
2 ( 12− 1

r )e−(t−t ′)dt ′

+ C3

(∫ t

0
(t − t ′)−N ( 12− 1

r )e−2(t−t ′)dt ′
)1/2

×
(

2
∫ t

0
(C2‖∇zi (·, t ′)‖2L2 + ‖∂t ui (·, t ′)‖2L2)dt ′

)1/2

.

Consequently, for 1 ≤ r < 2N/(N − 2)+, there is C4 > 0 such that

‖zi (·, t)‖Lr ≤ C4. (B.4)

Since the solution ui is bounded by a solution ui to

∂t ui = di�ui − αi ui + γi zi (x, t), (B.5)

with the same initial condition, we estimate the solution to (B.5). We write (B.5) in
the integral form as

ui (·, t) = et(di �−αi )ui (·, 0) + γi

∫ t

0
e(t−t ′)(di �−αi )zi (·, t ′) dt ′. (B.6)

We notice that the inequality

N

2

1

r
<

1

2

leads to N < r < 2N/(N −2)+, so (N −2)+ < 2. Thus, for N = 3, by taking q = 5
and r = ∞ in (B.1), we have

‖etd�φ‖L∞ ≤ C0 max{1, t−
3
10 }‖φ‖L5 .

Applying this to (B.6) yields that there is C5 > 0 such that

‖ui (·, t)‖L∞ ≤ C5‖ui,0‖L∞ + C5

∫ t

0
(t − t ′)−

3
10 e−αi (t−t ′)‖zi (·, t ′)‖L5dt ′ (∀t > 0).

In terms of (B.4), the uniform boundedness of ‖ui (·, t)‖L∞ follows.
In order to obtain the uniform boundedness of vi , we consider (B.3) and make use

of the maximum principle again.
As for N = 2, we can take any q greater than 2 and r = ∞ in (B.1). A similar

argument leads to the desired assertion. ��
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B.2 Proof of Lemma 3.5

Proof of Lemma 3.5 In view of E(u∗, z∗) = Es(u∗) and (3.14), we have

Es(u(·, t)) − Es(u∗) ≤ E(u(·, t), z(·, t)) − E(u∗, z∗)
≤ E(u(·, 0), z(·, 0)) − E(u∗, z∗) (t ≥ 0). (B.7)

Let ε1 be as in Lemma 3.4. Given ε ∈ (0, ε1/4], we let δ1 = δ1(ε) be same as in
Lemma 3.4. Take δ > 0 so that

‖u(·, 0) − u∗‖H1 < ε1/2 and E(u(·, 0), z(·, 0)) − E(u∗, z∗) < min{δ1, ε2},
if ‖(u(·, 0), z(·, 0)) − (u∗, z∗)‖H1 < δ. (B.8)

In view of (B.7), we have

Es(u(·, t)) − Es(u∗) < δ1 (t ≥ 0). (B.9)

In addition we have

‖u(·, t) − u∗‖H1 < ε1/2 (t ≥ 0). (B.10)

Indeed, if there is t1 > 0 such that

‖u(·, t1) − u∗‖H1 = ε1/2,

then a contradiction follows from

‖u(·, t1) − u∗‖H1 < ε ≤ ε1/4,

by the assertion of Lemma 3.4.
Consequently, by (B.9) and (B.10), Lemma 3.4 gives

‖u(·, t) − u∗‖H1 < ε (t ≥ 0). (B.11)

On the other hand, by (B.7) and (B.8)

ε2 ≥ E(u(·, 0), z(·, 0)) − E(u∗, z∗) ≥ E(u(·, t), z(·, t)) − E(u∗, z∗)

= Es(u(·, t)) − Es(u∗) + θ1

2
‖∇z1(t)‖2L2 + θ2

2
‖∇z2(t)‖2L2 ,

which yields

‖∇ z(·, t)‖2L2 ≤ 2ε2

min{θ1, θ2} .
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We estimate

|〈zi (·, t)〉 − 〈z∗
i 〉|2 ≤ |〈ui (·, t)〉 − 〈u∗

i 〉|2 ≤ 1

|�| ‖ui (·, t) − u∗
i ‖2L2 ,

and

‖z(·, t) − 〈z(·, t)〉‖2L2 ≤ C1‖∇ z(·, t)‖2L2 .

In the sequence, we obtain

‖z(·, t) − z∗‖2H1 ≤ ‖〈z(·, t)〉 − 〈z∗〉‖2L2 + (1 + C1)‖∇ z∗(·, t)‖2L2

≤ 1

|�| ‖u(·, t) − u∗‖2L2 + (1 + C1)‖∇ z∗(·, t)‖2L2

≤ ε2

|�| + 2(1 + C1)ε
2

min{θ1, θ2} .

Combining this inequality with (B.11), we obtain the desired assertion. ��

C Computation of the energy

In order to verify (3.24), we first plug φ and ψ of (3.22) and (3.23) into (3.10). In
view of (3.19) and (3.21), we have

m1 − 1 − d1/D1

L

∫ �

0
U1 dx1

= m1 − 1 − d1/D1

L
μ1(�)(� − ω1 tanh(�/ω1)) = β1μ1(�)/γ1,

m2 − 1 − d2/D2

L

∫ L

�

U2 dx1

= m2 − μ2(�)
1 − d2/D2

L
(L − � − ω2 tanh((L − �)/ω2)) = β2μ2(�)/γ2,

(C.1)

in the sequel,

d1�U1 − β1U1 + γ1

(

m1 − 1 − d1/D1

L

∫ �

0
U1 dx1

)

= 0

((x1, x ′) ∈ (0, �) × D),

d2�U2 − β2U2 + γ2

(

m2 − 1 − d2/D2

L

∫ L

�

U2 dx1

)

= 0

((x1, x ′) ∈ (�, L − �) × D).
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We set

δUi := ρiμi (�), ρi := βi

γi (1 − di/Di ) + βi
(i = 1, 2). (C.2)

Then, making use of (C.1), we compute

m1 − (1 − d1/D1)〈φ〉 = m1 − (1 − d1/D1)

(

1

L

∫ �

0
U1 dx1 + δU1

)

= β1μ1(�)/γ1 − (1 − d1/D1)μ1(�)ρ1

= (β1/γ1)μ1(�)

(

1 − γ1(1 − d1/D1)

γ1(1 − d1/D1) + β1

)

= (β1/γ1)μ1(�)ρ1,

(C.3)

and

m2 − (1 − d2/D2)〈ψ〉 = m2 − (1 − d2/D2)

(

1

L

∫ L

�

U2 dx1 + δU2

)

= (β2/γ2)μ2(�)ρ2,

(C.4)

therefore,

d1�φ − β1φ − kψ2φ + γ1{m1 − (1 − d1/D1)〈φ〉}

=
{

−β1μ1(�) − k(ρ2μ2(�))
2(U1 + ρ1μ1(�)) ((x1, x ′) ∈ (0, �) × D),

−k(U2 + δU2)
2ρ1μ1(�) ((x1, x ′) ∈ (�, L − �) × D).

Similarly,

d2�ψ − β2ψ − kφ2ψ + γ2{m2 − (1 − d2/D2)〈ψ〉}

=
{

−k(U1 + δU1)
2ρ2μ2(�) ((x1, x ′) ∈ (0, �) × D),

−β2μ2(�) − k(ρ1μ1(�))
2(U2 + ρ2μ2(�)) ((x1, x ′) ∈ (�, L) × D).

Hence, it is expected that (φ,ψ) serves as an approximate solution if βi (i = 1, 2)
are sufficiently small.

We derive Es(φ,ψ) of (3.24). In view of the formulae

∫

(sinh(x1/ωi ))
2 dx1 = ωi

2
cosh(x1/ωi ) sinh(x1/ωi ) − x1

2
,

∫

(cosh(x1/ωi ))
2 dx1 = ωi

2
cosh(x1/ωi ) sinh(x1/ωi ) + x1

2
,
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we have

d1
2

∫

�

|∇φ|2 dx = |D|d1
2

(μ1(�))
2

ω2
1

∫ �

0

sinh2(x1/ω1)

cosh2(�/ω1)
dx1

= |D|β1

2
(μ1(�))

2
(

1

2
ω1 tanh(�/ω1) − �

2 cosh2(�/ω1)

)

,

d2
2

∫

�

|∇ψ |2 dx = |D|d2
2

(μ2(�))
2

ω2
2

∫ L

�

sinh2((L − x1)/ω2)

cosh2((L − �)/ω2)
dx1

= |D|β2

2
(μ2(�))

2
(

1

2
ω2 tanh((L − �)/ω2)

− L − �

2 cosh2((L − �)/ω2)

)

.

Next we compute

β1

2

∫

�

φ2 dx = |D|β1

2

{∫ �

0
(U 2

1 + 2(δU1)U1)dx1 + L(δU1)
2
}

,

β2

2

∫

�

ψ2 dx = |D|β2

2

{∫ L

�

(U 2
2 + 2(δU2)U2)dx1 + L(δU2)

2
}

.

We verify

∫ �

0
U 2
1 dx1 = (μ1(�))

2
∫ �

0

(

1 − 2
cosh(x1/ω1)

cosh(�/ω1)
+ cosh2(x1/ω1)

cosh2(�/ω1)

)

dx1

= (μ1(�))
2
{

� − 2ω1 tanh(�/ω1) + ω1

2
tanh(�/ω1) + �

2 cosh2(�/ω1)

}

= (μ1(�))
2
{

� − 3

2
ω1 tanh(�/ω1) + �

2 cosh2(�/ω1)

}

,

and

∫ �

0
(U 2

1 + 2(δU1)U1)dx1 + L(δU1)
2

= (μ1(�))
2
{

� − 3

2
ω1 tanh(�/ω1) + �

2 cosh2(�/ω1)

+2ρ1(� − ω1 tanh(�/ω1)) + Lρ2
1

}

.

In the sequel we have

d1
2

∫

�

|∇φ|2 dx + β1

2

∫

�

φ2 dx

= |D|β1

2
μ1(�)

2{�(1 + ρ1)
2 + (L − �)ρ2

1 − (1 + 2ρ1)ω1 tanh(�/ω1)}.
(C.5)
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By the similar computation we obtain

∫ L

�

U 2
2 dx1 = (μ2(�))

2
∫ L

�

(

1 − 2
cosh((L − x1)/ω2)

cosh((L − �)/ω2)
+ cosh2((L − x1)/ω2)

cosh2((L − �)/ω2)

)

dx1

= (μ2(�))
2
{

L − � − 3

2
ω2 tanh((L − �)/ω2) + L − �

2 cosh2((L − �)/ω2)

}

,

∫ L

�

(U 2
2 + 2(δU2)U2)dx1 + L(δU2)

2

= (μ2(�))
2
{

L − � − 3

2
ω2 tanh((L − �)/ω2) + L − �

2 cosh2((L − �)/ω2)

+2ρ2(L − � − ω2 tanh((L − �)/ω2)) + Lρ2
2

}

,

in the sequel,

d2
2

∫

�

|∇ψ |2 dx + β2

2

∫

�

ψ2 dx

= |D|β2

2
μ2(�)

2{(L − �)(1 + ρ2)
2 + �ρ2

2 − (1 + 2ρ2)ω2 tanh((L − �)/ω2)}.
(C.6)

On the other hand, making use of (C.3) and (C.4), we obtain

γ1|�|
2(1 − d1/D1)

(m1 − (1 − d1/D1)〈φ〉)2 = |�|
2(1 − d1/D1)

β2
1

γ1
(μ1(�))

2ρ2
1 ,

γ2|�|
2(1 − d1/D1)

(m2 − (1 − d2/D2)〈ψ〉)2 = |�|
2(1 − d2/D2)

β2
2

γ2
(μ2(�))

2ρ2
2 .

(C.7)

In addition,

∫ L

0
φ2ψ2 dx = |D|

(∫ �

0
(U1 + δU1)

2(δU2)
2 dx1 +

∫ L

�

(δU1)
2(U2 + δU2)

2 dx1

)

= |D|
(

(μ2(�)ρ2)
2
∫ �

0
(U1 + δU1)

2dx1 + (μ1(�)ρ1)
2
∫ L

�

(U2 + δU2)
2dx1

)

= |D|(μ1(�)μ2(�))
2
{

ρ2
2

(

�(1 + ρ1)
2

−(
3

2
+ 2ρ1)ω1 tanh(�/ω1) + �

2 cosh2(�/ω1)

)

+ ρ2
1

(

(L − �)(1 + ρ2)
2 − (

3

2
+ 2ρ2)ω2 tanh((L − �)/ω2)

+ L − �

2 cosh2((L − �)/ω2)

)}

(C.8)

Combining (C.5), (C.6), (C.7) and (C.8), we obtain (3.24).
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