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Abstract. Many intracellular parasites are capable of 
penetrating host epithelial barriers. To study this pro- 
cess in more detail we examined the interactions be- 
tween the pathogenic bacteria Salmonella choleraesuis 
and polarized epithelial monolayers of Madin-Darby 
canine kidney (MDCK) cells grown on membrane 
filters. Association of bacteria with the MDCK cell 
apical surface was an active event, requiring bacterial 
RNA and protein synthesis, and was blocked by low 
temperatures. Salmonella were internalized within a 
membrane-bound vacuole and exhibited penetration 

through, but not between MDCK cells. A maximum 
of 14 Salmonella per MDCK cell crossed the 
monolayer per hour to the basolateral surface yet the 
monolayer remained viable and impermeable to Esche- 
richia coli. Apical S. choleraesuis infection resulted in 
an increase in paracellular permeability but the 
MDCK intercellular contacts were not significantly 
disrupted. Basolateral S. choleraesuis infection was 
inefficient, and only small numbers of S. choleraesuis 
penetrated to the apical medium. 

I 
NTRACELLULAR parasites use a variety of routes to gain 
entry into susceptible hosts (Moulder, 1985). One such 
route is passage through the host's epithelial barrier, al- 

lowing the pathogen access to underlying tissue, blood, and 
the reticuloendothelial system. Pathogenic bacteria which 
are facultative intracellular parasites commonly use this 
method of entry and these include species of Yersinia, Sal- 
monella, Chlamydia, Shigella, Neisseria, and Brucellae. 
The underlying mechanisms used by these microorganisms 
to penetrate host epithelia are not well understood. Part of 
the difficulty has been the lack of suitable in vitro methods 
to study epithelial cell penetration. Rather, most of our cur- 
rent knowledge has accumulated from animal studies. 

A comprehensive descriptive study of Salmonella tissue 
penetration was published by Takeuchi (1967). Transmission 
electron microscopy was used to examine the intestinal epi- 
thelium of guinea pigs orally infected with Salmonella typhi- 
murium. Takeuchi observed that as these bacteria came into 
close proximity to the brush border, the epithelial microvilli 
began to degenerate. Most of the bacteria entered directly 
into the epithelial cells and resided within membrane bound 
cavities. A few bacteria also appeared to enter at intercellular 
junctions and remained surrounded by a vacuole composed 
of neighboring epithelial cells. Neither bacterial exit from 
the epithelial cells nor entry into the underlying lamina 
propria was observed. Using murine ileal loops infected with 
Salmonella typhi, Kohbata et al. reported that ileal M cells, 
a type of intestinal epithelial cell, may be the target ofS. typhi 
(1986). These authors found that M cells lost their micro- 
villi, and suffered serious cytopathic effects. In vitro tissue 

culture models have also been used to examine initial interac- 
tions and internalization of S. typhimurium and S. typhi into 
HeLa and HEp-2 cells (Giannella et al., 1973; Kihlstrom 
and Nilsson, 1977; Yabuuchi et al., 1986; Yokoyama et al., 
1987). Internalization of Salmonellae into these cells ap- 
peared to proceed by a similar mechanism to that observed 
with the guinea pig model. We have demonstrated that Sal- 
monella replicates inside vacuoles within epithelial cells, 
and bacterial entry and intracellular replication does not re- 
quire endosome acidification (Finlay and Falkow, 1988). 

In this study we have focused our attention on Salmonella 
choleraesuis, a common pathogen of swine which is also a 
highly invasive and serious human pathogen. Unlike most 
other nontyphoid Salmonellae, S. choleraesuis rarely causes 
gastrointestinal symptoms; instead it is considered the proto- 
type of Salmonella which cause invasive diseases (Rubin and 
Weinstein, 1977). S. choleraesuis infections often lead to se- 
rious bacteremia, with a fatality rate 2-3-fold greater than 
typhoid fever and other clinical manifestations include os- 
teomyelitis, meningitis and metastatic lesions. 

To investigate the events that lead to Salmonella invasion, 
we examined the interaction of this pathogen with Madin- 
Darby canine kidney (MDCK) cells, a polarized epithelial 
cell line isolated from the kidney of a cocker spaniel (ATCC, 
1981). When grown on permeable supports, these cells will 
form a polarized epithelial monolayer which is impermeable 
to ions, has a measurable transepithelial electrical resistance, 
and has several defined apical and basolateral surface mark- 
ers (reviewed by Simons and Fuller, 1985). Physiologists 
have long used this system for studying epithelial transport 
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while cell biologists have used it to study cell polarity devel- 
opment and maintenance, and transcytosis (Simons and 
Fuller, 1985). Several workers have infected polarized mono- 
layers with viruses and demonstrated that viral infections and 
maturation can be a polar event (Fuller et al., 1984). Bac- 
terial infection of polarized cells has not been reported, how- 
ever. In the present study we characterized the interactions 
which occur between S. choleraesuis and polarized MDCK 
cell monolayers. This experimental system permitted us to 
measure the initial interactions which occur between bacte- 
ria and host ceils such as adherence and invasion, and led 
to the remarkable observation that this bacterium penetrated 
through viable MDCK monolayers. 

Materials and Methods 

Bacteria 
Salmonella choleraesuis vat. Kunzendorff strain 38~ was kindly provided 
by N. Nnalue and B. Stocker of the Department of Medical Microbiology 
(Stanford University, Stanford, CA). This particular strain, designated 
SL2824 (Nnalue and Stocker, 1986), is mouse and pig virulent, has the so- 
matic antigen composition O 6_,, 7 and is resistant to streptomycin. Esche- 
richia coil strain DH5ct (F-, end AI, hsd R17 (r~-, mk+), supE44, thi-l, 
~.-, rec A1, gyr A96, rel A1, tp8OdlacZAMl5) was purchased from Bethes- 
da Research Laboratories (Gaithersburg, MD). The vector pACYCI84 
(Cm R, TcR; Chang and Cohen, 1978), was transformed into DH5tt to pro- 
vide selective antibiotic markers. 

Bacteria were heat inactivated by incubating at 100°C, 30 min. Formalin 
inactivation was performed by resuspending bacterial cultures in 0.5% for- 
malized saline, incubating for 18 h, 37°C, washing twice in PBS, and 
resuspending in L-broth. Polymixin B periplasmic extracts were made by 
resuspending cultures in PBS containing polymyxin B (1 mg/ml), shaking 
at 37°C, 1 h, and then filtering with a 0.2-p.m filter, Crude bacterial cell 
membranes were obtained by sonication of bacterial cultures and pelleting 
in an Eppendorf centrifuge. 

MDCK Cells 
Strain 1 MDCK cells were used between passage 18 and 50. Cells were 
grown in MEM, 10 mM Hepes, pH 7.3, and 5% FCS without antibiotics 
as described (Balcarova-Stander et al., 1984). Cells were passed twice 
weekly with a split ratio of 1:5. Transwell filter units (model No. 3415, 
Costar, Cambridge, MA) contained a 0.33-cm 2 porous filter membrane 
(3.0-gm pores) that had been treated for tissue culture. Filter units were in- 
cubated in 24 well microtitre plates (Costar). These units were placed in 
MEM containing 10% FCS, penicillin (100 U/ml) and streptomycin (100 
p.g/ml) for 30 min before seeding. Preincubation medium was removed and 
150 I.tl ofa  trypsinized MDCK cell suspension (1.5 x 105 cells) was added 
to each Transwell unit and placed in 1 ml fresh medium. Monolayers were 
used after 4 d incubation (37°C, 5% CO2). After this time there were ,'03.5 
x 105 MDCK cells/filter. Before bacterial addition monolayers were in- 
cubated in MEM containing 10% FCS without antibiotics for 1 h. 

Monolayers were infected with bacteria by removing the medium in the 
Transwell unit and adding 5 ~tl (3.5 x 106) freshly grown bacteria to the 
monolayer. Fresh medium was added to both surfaces and the units incubated. 

Monolayer Association Assay 
Bacteria in mid-log phase growth were washed once and resuspended in me- 
thionine assay medium (Difco; Detroit, MI). After a 30-min incubation 
(37°C), bacteria were centrifuged and resuspended in assay medium con- 
taining 50 gCi/ml [35S]methionine (New England Nuclear, Boston, MA) 
and incubated for another 30 min. Bacteria were washed thrice in L-broth 
and 5 ~tl was added to either surface of a polarized monolayer as described 
above. After appropriate incubation times monolayers were washed several 
times in cold PBS and the filter removed by excision and placed in 5 ml 
aqueous counting scintillant (ACS II; Amersham, Arlington Heights, IL). 
To examine the effects of bacterial protein synthesis inhibitors, bacteria were 
preincubated in chloramphenicol (30 p.g/ml) or gentamicin (100 gg/ml) for 
30 rain before adding to the monolayer. These concentrations of antibiotics 
were maintained in the filter medium. 

Quantitation of Bacterial Transcytosis 

S. choleraesuis and E. coli DH5ct (3.5 x 106 bacteria each) were added 
together to either surface of polarized monolayers. These bacteria continued 
to divide approximately once every hour in this medium, until reaching a 
maximum density of 1 x 109 cells after 8 h. The medium opposite the side 
of bacterial addition was removed every hour and replaced with fresh 37°C 
medium. The number of bacteria in this medium was titered by plating ap- 
propriate dilutions on selective antibiotic plates, incubated, and viable 
counts determined. 

Ca ÷2 Removal from Monolayers 

Polarized monolayers were washed several times in PBS (no Ca +2 or Mg +2) 
and incubated in Ca +2 free minimal essential amino acids with spinner 
salts (SMEM, Gibeo) and 10 mM Hepes, pH 7.4. Electrical resistance mea- 
surements were used to monitor disruption of cell junctions. 

Electrical Resistance Measurements 

Transmonolayer electrical resistance measurements of MDCK monolayers 
grown in Transwell units were performed with an apparatus similar to that 
described by Perkins and Handler (1981). Resistance was calculated from 
the change in voltage across the monolayer induced by short 4 BA pulses 
of current. The area/resistance (~ cm 2) was calculated by multiplying the 
measured resistance by the area of the filter. 

Transmission Electron Microscopy 
MDCK monolayers grown in Transwell units were washed seven times with 
PBS and fixed in cold (4°C) 2% gluteraldehyde, 0.1 M sodium phosphate 
buffer (pH 7.4) overnight. After washing with phosphate buffer, samples 
were postfixed in cold 1% OsO4 in 0.1 M phosphate buffer for 90 min, and 
then stained with cold 0.25% uranyl acetate overnight. Samples were de- 
hydrated in a series of alcohols and embedded in a finn Spurr's plastic. Sam- 
pies were sectioned and stained with uranyl acetate and lead citrate before 
examination in a Phillips 201c electron microscope. 

Scanning Electron Microscopy 
Monolayers were fixed in gluteraldehyde as described above. Samples were 
dehydrated in a critical point apparatus (Polaron) and, after a gold evapora- 
tion step, were examined with a Cambridge S 4 Stereoscan scanning elec- 
tron microscope. 

FsS]Methionine-Uptake Measurements 
This assay was performed similar to that described by Balcarova-Stander et 
al. (1984). Monolayers grown in Transwell units were infected with bacteria 
as described above. After appropriate incubation times monolayers were 
washed and then incubated for 30 min, 37°C in prewarmed low methionine 
medium (Eagle's minimal essential medium containing Hank's salts, 25 mM 
Hepes buffer, chloramphenicol [100 gg/ml], tetracycline [25 Ixg/ml], and 
gentamicin [100 gg/ml]). These antibiotics inhibited bacterial methionine 
uptake by 98%. After preincubation, medium from either the basolateral 
or apical side was replaced with fresh medium containing [35S]methionine 
and incubated for 5 min. Filter units were washed twice in cold medium, 
the filters were excised with a scalpel, and washed several more times. 
Filters were placed in 250 I.tl 2% SDS in 10 mM Tris-HCl, pH 7.6, heated 
for 5 min, 100°C, and vortexed vigorously. 100-I.tl aliquots were spotted 
in duplicate on Whatman 3-MM paper, TCA precipitated as described 
(Balcarova-Stander et al., 1984), and incorporated radioactivity counted by 
scintillation. 

Immunofluorescence 
Indirect immunofluorescence was performed on MDCK cell monolayers 
grown in Transwell units. Monolayers grown in these units were infected 
with bacteria and incubated for 4 h. After measuring electrical resistance 
monolayers were washed three times in PBS, fixed in -20°C methanol for 
4 min, and rinsed in acetone (-20°C).  Monolayers were then dried and re- 
hydrated in PBS containing 0.2 % gelatin (15 min). rrl monoclonal antibod- 
ies were used to stain uvomorulin (Gumbiner and Simons, 1986). Texas-red 
conjugated anti-mouse antibodies (Accurate Chemicals, Westbury, NY) 
were used to stain rrl. Phalloidin (Molecular Probes, Eugene, OR), diluted 
1 to 10 in PBS, was used to stain cellular actin. Hoechst stain was added 
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to visualize cell nuclei (Fuller et al., 1984). Filter units were placed on a 
20-g1 drop of antibody, 30/xl antibody solution was added to the apical sur- 
face, and the filter units were incubated 30 min, 23°C. Filter units were 
rinsed with PBS gelatin five times, 5 min per wash afler each antibody stain- 
ing. The filter was excised and embedded in moviol underneath a coverslip 
on a glass slide. Filters were viewed by fluorescence microscopy. 

Invasion Assay 

This assay was performed as described elsewhere (Finlay and Falkow, 
1988). 5 p.I of standing overnight bacterial cultures were added to MDCK 
cell monolayers, and incubated for 2 h at 37°C in a 5% CO2 atmosphere. 
Monolayers were washed three times with PBS and then incubated another 
2 h in fresh medium containing 100 I.tg/ml gentamicin. This treatment kills 
extracellular bacteria but does not affect viability ofintracellular organisms. 
Monolayers were washed thrice with PBS and then lysed with a 1% Triton 
X-100 solution. Appropriate dilutions were spread onto L-agar plates and 
colony forming units were counted. 

Results 

Salmonella Association with Polarized MDCK Cell 
Monolayers Requires Bacterial Protein Synthesis and 
Causes Loss of  Host MicroviUi 

The kinetics of bacterial association with monolayers were 
determined by adding 35S-labeled Bacteria to either the api- 
cal or basolateral surface of a polarized MDCK monolayer. 
After appropriate incubation times, filters containing mono- 
layers were extensively washed with PBS, excised from their 
plastic support, and counted in a liquid scintillation counter 
(see Materials and Methods). This method does not distin- 
guish between bacteria which are strongly attached to the 
monolayer and those which have actually entered the MDCK 
cells. Nonadherent, noninvasive E. coli DH5a did not as- 
sociate with the monolayer when added to either the apical 
or basolateral surface (Fig. 1, Table I). 0.5 % of the radiola- 
beled S. choleraesuis which were added to the basolateral 
(bottom) surface remained associated with the monolayer af- 
ter 6 h. In contrast, 12% ofS. choleraesuis added to the api- 
cal (top) surface adhered to or invaded the monolayer after 
6 h (Fig. 1), indicating that S. choleraesuis may have a predi- 
lection for the apical surface of MDCK cell monolayers. 
S. choleraesuis began to associate with the apical surface af- 
ter 2 h, and then the numbers of attached and invading bacte- 
ria steadily increased for the next 4 h. 

We then attempted to dissociate bacterial adherence from 
bacterial internalization. It has been shown that another inva- 
sive Enterobacteriaceae, Yersinia pseudotuberculosis, ad- 
heres to HEp-2 monolayers at 4°C, but is not internalized un- 
til the temperature is raised (Isberg et al., 1987). Binding but 
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Figure I. Association of bac- 
teria with a polarized epithe- 
lial monolayer. 35S-labeled 
bacteria were added to filter 
grown MDCK cells, incubat- 
ed, washed, and monolayers 
counted as described in Mate- 
rials and Methods. (% bacte- 
ria bound) Percent of the 

radiolabeled inoculum which remained associated with the mono- 
layer after extensive washing. (12) Apically added E. coli DH5ct; 
(*) basolateraily added S. choleraesuis; (m) apically added S. 
choleraesuis. 

Table L Effect of Temperature and Protein Synthesis 
Inhibitors on Salmonetla-Monotayer Association 

Bacteria added Treatment Associated* 

S. choleraesuis, apical 

S. choleraesuis, basolateral 

E. coli DH5a ,  apical 

% 

37°C 4.9 
4°C 0:08 

37°C, Cm 0.14 
37°C, Gent 0.16 

37°C 0.47 
4°C 0.05 

37°C 0.05 
4°C 0.03 

* Represents the percentage of counts of radiolabeled bacteria which remained 
associated with the monolayer after 4 h incubation. Cm, chloramphenicol; 
Gent, gentamicin, 

not internalization at 4°C is also characteristic of molecules 
which are internalized by receptor mediated endocytosis 
(Willingham and Pastan, 1984). Unlike Yersinia pseu- 
dotuberculosis, S. choleraesuis does not associate with MDCK 
cell monolayers incubated on ice (Table I). Further evidence 
that the association between S. choleraesuis and MDCK 
monolayers was not a simple "receptor-ligand" association 
but instead an active process was obtained by using inhibitors 
of bacterial protein synthesis. Addition of chloramphenicol 
or gentamicin inhibited S. choleraesuis-monolayer associa- 
tion (Table I). Chloramphenicol is a bacteriostatic antibiotic 
and, in the presence of this drug, the bacteria retained viabil- 
ity (data not shown). Bacteria treated with gentamicin, a bac- 
tericidal drug, were not viable. Bacterial association with the 
monolayer was also completely inhibited when rifampin, a 
bacteriostatic drug which inhibits RNA synthesis, was pres- 
ent (data not shown). 

Scanning electron microscopy revealed several features of 
bacterial infection of MDCK cells. As shown in Fig. 2 a, the 
apical surface of polarized MDCK cells contains many 
evenly distributed microvilli. Addition of S. choleraesuis to 
the apical surface caused individual MDCK cells to appear 
denuded within 1 h, yet neighboring cells appeared unaf- 
fected (Fig. 2 b). MDCK cells devoid of microvilli always 
had at least one bacterium associated with their surface. 
However, several bacteria could be observed close to normal 
appearing MDCK cells (Fig. 2 b). Micrographs of mono- 
layers 4 h after adding bacteria revealed several S. choler- 
aesuis in the process of entering MDCK cells (Fig. 2 c). 
Each bacterium was associated with an indentation in the 
MDCK cell surface. These "craters" varied in depth, with 
some nearly enclosing the bacteria. At later time points most 
MDCK cells were infected, and no microvilli were visible 
(data not shown). 

Salmonella Penetration Through Polarized Monolayers 

We grew MDCK cell monolayers on filters with 3-~m pores 
to examine bacterial passage through this barrier. This sys- 
tem allowed us to quantitate the rate at which bacteria passed 
through a polarized monolayer. Noninvasive E. coil DH5ct 
were not capable of passing through these monolayers in ei- 
ther direction, even after 48 h incubation (data not shown). 
However, if epithelial cell tight junctions were disrupted by 
the addition of Ca +2 free medium (SMEM, Materials and 
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Figure 2. Scanning electron micrographs of the apical surface of polarized monolayers. (A) Uninfected monolayers exhibiting uniform cell 
microvilli. (B) Monolayer 2 h after addition of S. choleraesuis to the apical surface. Microvilli loss was observed on isolated MDCK cells. 
Central to the frame is an isolated bacterium with a visible flagellum. (C) MDCK cell surface 4 h after addition of S. choleraesuis to 
the apical surface. Indentations in the membrane are visible underlying bacteria. In the lower left comer is a neighboring MDCK cell 
which has retained its microvilli. Bars, 1 pro. 

Methods), these bacteria penetrated the filter immediately 
(data not shown). We therefore used E. coli DH5a as a sen- 
sitive internal measure of monolayer integrity, as they al- 
low detection of a small number of exposed pores in the 
monolayer. 

Fig. 3 shows the quantitative measurement of S. choler- 
aesuis passage through a polarized MDCK monolayer. The 
number of bacteria detected includes those which passed 
through the monolayer in 1 h as well as those which divided 
after reaching the opposite side. The generation time of S. 
choleraesuis in MEM media is "~50 min, while that of E. 
coli DH5a is slower (data not shown). Therefore the num- 
bers presented in Fig. 3 could, at most, be twice the number 
of bacteria actually passing through the filter. (We could not 
use bacteriostatic antibiotics to inhibit bacterial RNA and 
protein synthesis as these drugs inhibited bacterial invasion, 
as discussed previously. Attempts to use bacteriostatic drugs 
which inhibit bacterial DNA replication were also unsuc- 
cessful, but for different reasons. These agents did not inhibit 
initial interactions, but decreased the viability of the bacteria 
over time, producing deflated numbers of bacteria in the 
penetration assay.) 

Neither the invading Salmonella nor the marker E. coli 
passed through the monolayers during the first 3 h, indicating 
that these monolayers were intact. After 4 h small numbers 
of S. choleraesuis could be found in the basolateral medium 
of monolayers infected from the apical surface (Fig. 3 a). 
The numbers of S. choleraesuis in the basolateral medium 
continued to increase until 9 h post infection, at which point 
"~5 × 106 bacteria had penetrated 3.5 × 105 MDCK cells 
per hour, a rate of 14 bacteria/MDCK cell per hour. After 10 h 
E. coli DH5tt were present in the basolaterai medium indi- 
cating loss of monolayer integrity. (The difference in num- 
bers between these two species at the 15 h time point is possi- 
bly due to the slower generation time and also slower motility 
of E. coli DH5~t.) 

Addition of bacteria to the basolateral surface revealed 
different penetration kinetics (Fig. 3 b). Although equal 
numbers of bacteria were used to infect both surfaces, far 
fewer bacteria penetrated the monolayer from the basolateral 
surface. No S. choleraesuis were observed in the apical 
medium until 8 h after bacterial addition. Basolaterally 
added S. choleraesuis continued to penetrate until reaching 
a constant rate of "~5 × 104 bacteria per hour at 13 h post 
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3. Quantitation of bacterial penetration. Equal amounts (3.5 
)< l0 6 bacteria) of S. choleraesuis (solid bars) and E. coli DH5~t 
(hatched bars) were added together to either the apical (A) or 
basolateral (B) surface and the numbers of bacteria/hour present 
after crossing the monolayer were quantitated (Materials and 
Methods). 

infection (0.14 bacteria/MDCK cell per hour). Non-invasive 
E. coli DH5a first appeared in the apical medium after 15 h. 

Trypan blue is a dye which is excluded from viable eu- 
caryotic cells, but stains dead cells and is used for determin- 
ing cell viability (Wilson, 1986). As illustrated in Fig. 4, 
MDCK cell viability does not decrease until at least 8 h after 
addition of  S. choleraesuis to the apical surface as deter- 
mined by trypan blue exclusion. No decrease in viability was 
observed with basolaterally infected monolayers (Fig. 4), 
E. coli DH5et, or uninfected monolayers (data not shown). 
Loss of viability 8 h after apical addition correlates with 
leakage of E. coli DH5a to the basolateral surface between 
9 and 10 h post infection (Fig. 3 a). Further evidence indicat- 
ing that MDCK cells are viable while S. choleraesuis pene- 
trates and passes through the monolayer was obtained from 
[35S]methionine uptake studies (see below). Taken collec- 
tively these results indicate that greater than 106 apically 
added S. choleraesuis can pass through a viable MDCK 
monolayer per hour. 

We undertook a comprehensive study of S. choleraesuis 
penetration of MDCK cell monolayers by using transmission 
electron microscopy. 30 min after bacterial addition to the 
apical side very few S. choleraesuis were in contact with the 
monolayer surface, although small numbers of bacteria were 
present within membrane bound vacuoles inside MDCK 
cells. Fig. 5, a-c is representative of the typical sequence of 
events involved in S. choleraesuis internalization into a 
MDCK cell. Initially the bacterium makes contact with the 
host cell surface, often involving microvilli (Fig. 5 a). These 
microvilli soon disappear, as previously mentioned. A cavity 
or indentation of the host cell membrane forms under the 
bacterium, and the bacterium is internalized (Fig. 5 b). 
Coated pits were often, but not always observed in the host 
cell membrane in close proximity to the bacterium. Invagina- 
tions containing bacteria then closed, usually leaving a single 
organism surrounded by a host membrane (Fig. 5 c). Bacte- 
ria remained inside membrane bound vacuoles, often divid- 
ing intracellularly in these enclosures (Finlay and Falkow, 
1988). Between 2 and 4 h after addition of bacteria increas- 
ing numbers of S. choleraesuis interacted with the surface of 
host cells (Fig. 5, d and e) in agreement with the monolayer 
association data. At later time points several vacuoles con- 
taining bacteria were visible inside most MDCK cells (Fig. 
5, d and e), with one or two bacteria within each vacuole (4-8 
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Figure 4. Trypan viability 
of S. choleraesuis infected 
monolayers. Monolayers were 
infected and incubated as de- 
scribed (Materials and Meth- 
ods). After washing in PBS, 
monolayers were incubated in 
30 pl 0.05% trypsin, 0.02% 
EDTA in PBS, 37°C, 10 min. 
150 pl of trypan blue dye 

(0.16% in PBS) was added and viable and nonviable cells were 
counted by light microscopy. >500 cells were examined for each 
point. (A) S. choleraesuis added to the basolateral surface; (m) S. 
choleraesuis added to the apical surface. 

h). No bacteria were ever observed in the intercellular 
regions between MDCK cells. We were unable to observe 
any bacteria in the process of exiting the host cell. 

Penetration but  not  Invasion o f  S. choleraesuis is 
Inhibited by Incubation at Temperatures Less Than 37°C 

We tested the rates of penetration of S. choleraesuis across 
MDCK cell monolayers at various temperatures to determine 
if bacterial penetration was affected. As illustrated in Table 
II, incubation at either 23 ° or 28°C completely abolished 
passage of S. choleraesuis across polarized monolayers. 
However, invasion of monolayers grown on plasic supports 
was lowered only slightly at these temperatures, as were bac- 
terial growth rates. This is in contrast to the lack of inhibition 
of transcytosis of the vesicular stomatitis virus G protein seen 
at 20°C in polarized MDCK cells (Pesonen et al., 1984). 

S. choleraesuis Causes Loss o f  M D C K  Monolayer 
Resistance and Methionine Uptake Polarity but  does 
not Significantly Al ter  Intercellular Junctions 

Development of a MDCK monolayer into sealed epithelial 
barriers is reflected by measurement of electrical resistance 
across the monolayer. Fully confluent strain I MDCK cells 
often exhibit resistances greater than 3,000 ~ cm 2 on 0.45- 
gm pore filters; this resistance is slightly lower when grown 
on 3-pm pores (Balcarova-Stander et al., 1984; Fuller et al., 
1984). Resistance is largely a measure of the integrity of tight 

junctions between the monolayer's cells (Gumbiner and Si- 
mons, 1986). We conducted electrical resistance measure- 
ments over the course of Salmonella infection of MDCK cell 
monolayers. These measurements also allowed us to deter- 
mine if S. choleraesuis affects tight junctions between epi- 
thelial cells. Initial electrical measurements of uninfected 
MDCK cell monolayers indicated that almost every mono- 
layer had an electrical resistance of 'M,100 + 100 ~ cm 2 
(Fig. 6). This resistance was 600 _+ 75 if2 cm 2 after 2 h, and 
remained at this level for at least 12 h (Fig. 6). We attributed 
this initial resistance drop to handling procedures during this 
time, as this drop was observed in all samples tested. This 
resistance is lower than that achieved by using 0.45 gm 
pores, but still indicates the presence of a highly imperme- 
able monolayer. 

The addition of E. coli DH5a to either the apical or 
basolateral monolayer surface had no effect on electrical 
resistance even after 12 h incubation (data not shown). 
Basolateral infection with S. choleraesuis also had no effect 
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Figure 5. Transmission electron micrographs of MDCK cell monolayers infected from the apical surface with S. cholemesuis. Samples 
were prepared as described in Materials and Methods. (A) S. choleraesuis interacting with host microviili, 2 h post infection. (B) S. choler- 
aesuis being internalized into an MDCK cell 4 h post infection. (C) S. choleraesuis internalized within a vacuole, 4 h post infection. (D) 
Polarized monolayers grown on filters with 3-tttm pores, 2 h after bacterial addition. Microvilli are still present on some cells. (E) Polarized 
monolayers 6 h after bacterial infection. Microvilli are not apparent and bacterial invasion is uniform throughout the monolayer. Bars, 1 Ima. 

on resistance, exhibiting a resistance curve nearly identical 
to uninfected monolayers (Fig. 6). However, addition of  S. 
choleraesuis to the apical surface caused a partial loss of re- 
sistance by 2 h and a complete loss after 4 h (Fig. 6), yet the 
MDCK cells were viable for at least another 4 h after loss 
of electrical resistance (Fig. 4). This resistance loss was de- 
pendent on the number of S. choleraesuis present, as addi- 
tion of 100-fold fewer bacteria resulted in complete resis- 
tance loss after 6 h, while 10,000-fold fewer bacteria took 
~10 h before electrical resistance was eliminated (data not 
shown). Another common pathogenic Salmonella species, 
S. enteritidis, also caused a complete drop in resistance 
within 4 h when added to the apical surface and was transcy- 
tosed at rates similar to S. choleraesuis (data not shown). 

Table II. Effect o f  Temperature on S. choleraesuis 
Penetration and lnvasion 

Temperature Bacteria invaded* No. bacteria penetrated* 

°C % 

23 ° 1.7 0 

28  ° 1.4 0 
3 7  ° 3 .5  3 . 0  × l 0  s 

* Values represent the percent o f  the initial bacterial inoculum which was via- 
ble after 2 h incubation with a monolayer (2 x 10 -s MDCK cells) followed by 
2 h gentamicin treatment (100 Ixg/ml). This assay is described in Materials and 
Methods and elsewhere (Finlay and Falkow, 1988). Values represent the aver- 
age for two samples. 
¢ Values are the number of  bacteria which penetrated across a polarized 
monolayer per hour, after 7 h incubation at the appropriate temperature. Dupli- 
cate monolayers were infected as described in Materials and Methods. 
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Figure 6. Electrical resistance 1 2 o o -  

,o00' ~ measurements across infected 
~! ~ epithelial monolayers. Resis- 

. tances were measured on mono- 
~ ~o~ layers as described (Materials 

,0o. and Methods). (A) S. choler- 
~®. aesuis added to the basolateral 

surface; ( i)  S. choleraesuis 
. . . . . . . .  ~ , ~ ~" 1o; 1~;-,,' added to the apical surface. 

Hours Post4noculatlon Measurements are an average 
of five filters 5: SD. Resis- 

tance measurements of monolayers infected with E. coli DH5ct 
were the same as uninfected monolayers (data not shown). 

2 o  

1 5  ¸ 

l o  ¸ 

! 
o . , , . . . , . . . . , 

H o u r i  Post-Inoculation 

Figure 7. [35S]Methionine up- 
take polarity of infected mono- 
layers. Methionine uptake was 
measured for both apical and 
basolateral surface (Materials 
and Methods) and the baso- 
lateral :apical ratio calculated. 
(m) S. choleraesuis added to 
the apical surface; (A) S. chol- 

eraesuis added to the basolateral surface. Uninfected monolayers 
and monolayers infected with E. coli DH5ct showed similar results 
to S. choleraesuis added to the basolateral surface (data not shown). 

The factor(s) which produce this resistance drop was 
dependent upon the presence of viable bacteria. 0.2-I.tm 
filtrates of broth in which S. choleraesuis had been grown 
had no effect on resistance. S. choleraesuis membrane frac- 
tions, polymixin B elicited periplasmic extracts, or cytoplas- 
mic extracts did not cause a drop in resistance; nor did for- 
malin or heat killed bacteria (data not shown), indicating that 
it is an active bacterial process which produces monolayer 
resistance loss. 

It has been reported that removal of Ca +2 from the medi- 
um abolishes electrical resistance by disrupting tight junc- 
tions (Gumbiner and Simons, 1986). We used Ca +2 free 
medium (SMEM) to compare loss of electrical resistance 
caused by Ca +: removal and addition of S. choleraesuis to 
the apical surface. Incubation of polarized monolayers in 
SMEM for 1.5 h completely eliminated monolayer resistance 
(data not shown). E. coli DH5ct added to either surface of 
these monolayers were present in the opposite medium with- 
in 30 min of Ca +2 removal. This contrasts the results ob- 
served when S. choleraesuis is added to the apical surface, 
where electrical resistance is completely eliminated by 4 h, 
yet E. coli DH5ct do not penetrate for an additional 6 h after 
resistance loss. 

Balcarova-Stander et al. (1984) have demonstrated that 
methionine uptake by polarized MDCK cell monolayers is 
localized to the basolateral surface. The extent of develop- 
ment of cell surface polarity can be measured by examin- 
ing apical and basolateral uptake of [35S]methionine. These 
workers reported that a basolateral to apical ratio of methio- 
nine uptake as high as 30 was routinely obtained with fully 
polarized cells. We decided to use this assay as a method for 
measuring the effect of S. choleraesuis on MDCK cell 
polarity. 

Uninfected MDCK cell monolayers had a basolateral to 
apical methionine uptake ratio of ~16 (Fig. 7), indicating 
that MDCK monolayers grown in this manner are highly 
polarized. To successfully use this [35S]methionine uptake 
assay with infected monolayers, bacterial protein synthesis 
needed to be inhibited. Preincubation in methionine- 
depleted medium which contained chloramphenicol, tetracy- 
cline, and gentamicin for 30 min before radionucleotide 
addition, but after appropriate bacterial infection times, in- 
hibited bacterial incorporation of [35S]methionine by 98% 
(Materials and Methods). Using this method we found that 
the basolateral to apical ratio of methionine uptake remained 
unaltered in the presence of E. coli DH5cc Furthermore, 

basolateral addition of S. choleraesuis did not alter this ratio 
(Fig. 7). However, by 4 h after addition of S. choleraesuis 
to the apical surface, polarity of methionine uptake was elim- 
inated (Fig. 7), after which time this ratio remained at ~1.0. 
This loss completely parallels the loss of electrical resis- 
tance. 

[35S]methionine uptake is also a measure of cell viability 
and is commonly used to measure the effects of toxins on eu- 
caryotic cells (Cawley et al., 1980). We found that the total 
amount of [35S]methionine uptake was relatively constant 
over 8 h in monolayers apically infected with S. choler- 
aesuis, and this uptake decreased slightly after 12 h (data not 
shown). These measurements correlate well with the trypan 
blue viability data indicating that MDCK cells are still viable 
up to 8 h post infection. 

Several reagents exist which can be used to visualize cell 
junctions by immunofluorescence. Loss of intercellular con- 
tacts caused by decreasing calcium concentrations can often 
be detected by the redistribution of molecules involved in the 
formation of cell junctions from the normal sites of cell- 
cell contact. We used a monoclonal antibody (rrl) directed 
against an uvomorulin-like molecule that is associated with 
cell adhesion sites to examine the morphology of MDCK cell 
boundaries after addition of bacteria (Gumbiner and Simons, 
1986). Monolayers which exhibited high resistance had dis- 
tinct perimeters around individual MDCK cells (Fig. 8 a). 
These included monolayers infected with E. coli DH5a and 
S. choleraesuis from the basolateral surface. We could ob- 
serve no difference between these cells and monolayers which 
had been apically infected with S. choleraesuis and had lost 
their electrical resistance (Fig. 8 b). Fluorescence staining 
of monolayers treated with phalloidin, a stain for actin fila- 
ments, showed that the circumferential belt of actin filaments 
associated with cell junctions was not noticeably disrupted 
(data not shown). Examination of monolayers incubated in 
Ca +2 depleted medium exhibited obvious morphological 
differences with both stains (data not shown). These results 
again suggest that although apically added S. choleraesuis 
can eliminate transepithelial resistance, intercellular mor- 
phology is not grossly altered. 

Discussion 

We have shown that polarized MDCK cell monolayers can 
be used to study the interactions that occur between invasive 
Salmonella and epithelial cells. This in vitro system is simi- 
lar in many respects to animal infection models. Loss of in- 
testinal epithelial microvilli after Salmonella infection oc- 
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Figure 8. Indirect immunofluorescence of infected MDCK cells 4 h after addition of bacteria. Monolayers were permeabilized with metha- 
nol, and treated with the primary antibody rrl, a monoclonal which reacts with an uvomorulin-like polypeptide associated with cell junctions 
(Gumbiner and Sim0ns, 1986). (A) Addition of E. coli DH5ct to the apical surface. This monolayer had a high electrical resistance. (B) 
Addition of S. choleraesuis to the apical surface. This monolayer exhibited no electrical resistance. Bar, 10 gm. 

curs in mice ileal loops (S. typhi; Kohbata et al., 1986) and 
in the guinea pig ileum (S. typhimurium; Takeuchi, 1967). 
Takeuchi reported uniform penetration of the guinea pig in- 
testinal epithelium by S. typhimurium. These bacteria were 
internalized within membrane bound inclusions and re- 
mained within these vacuoles. After 24 h bacteria were ob- 
served within phagocytes in the underlying lamina propria 
indicating epithelial penetration. Apical S. choleraesuis in- 
fection of polarized MDCK monolayers demonstrated all of 
these qualities, makiog MDCK cells a very attractive in vitro 
model to study the precise mechanisms of Salmonella pene- 
tration of epithelial cells. 

In vivo, the first intestinal epithelial surface encountered 
by ingested Salmonella is the apical surface. Only later in in- 
fections are Salmonella observed near the basolateral surface 
of epithelial cells, often in the underlying lamina propria 
(Takeuchi, 1967). Perhaps Salmonella interact predomi- 
nantly with apical surfaces or a receptor located primarily 
on the apical surface, producing a directionality during in- 
fection in vivo. Vesicular stomatitis virus infects and buds 
from the basolateral surface of polarized MDCK cell mono- 
layers (Fuller et al., 1984). In contrast, avian influenza vi- 
ruses infect either surface and bud from the apical side (Ful- 
ler et al., 1984). We examined bacterial interactions with 
these monolayers and found that 10-fold more S. choler- 
aesuis associated with the apical surface than the basolateral 
surface after 4 h of infection (Table I). After 6 h this ratio 
increased to 23 (Fig. 1). Bacterial penetration was also 100- 
fold greater using apically infected cells (Fig. 3). Although 
it is tempting to conclude that S. choleraesuis interacts pre- 
dominantly with the apical surface of polarized monolayers, 
one should be cautious since the geometry of the filter is such 
that only a fraction of the basolateral surface may be accessi- 
ble to bacterial interactions. (,,o15% of the filter consists of 
pores.) This area differential may contribute to the differ- 
ences in surface association preference. Another possibility 
we considered was the effects of gravity on this system. How- 
ever, S. choleraesuis is extremely motile, and centrifugation 

at 15,000 g for 30 min did not pellet these bacteria, nor was 
there any difference in the rates of Salmonella passage in ei- 
ther direction through a filter with no MDCK cells, indicat- 
ing that the effects of gravity on S. choleraesuis are minimal. 

MDCK cell monolayers lost their transepithelial resis- 
tance by 4 h when S. choleraesuis was added to the apical 
surface. We examined whether S. choleraesuis may penetrate 
by disrupting the tight junctions and then passing between 
epithelial cells or by lysing the monolayer. Several lines of 
evidence rule this out. Electron microscopy indicated that 
MDCK cells were intimately associated, even after several 
hours of infection (Fig. 5) and bacteria were never observed 
between MDCK cells. Secondly, S. choleraesuis was able to 
pass from the basolateral to apical surface without necessar- 
ily altering cell surface polarity (Figs. 6 and 7). Motile E. 
coli DH5~ which penetrated filters in the absence of a 
monolayer very rapidly (<30 min), did not enter the opposite 
medium for 6 h after loss of electrical resistance and methio- 
nine uptake polarity (Fig. 3). Removal of Ca +2, which dis- 
rupts tight junctions, allowed E. coli DH5Q to cross mono- 
layers within 30 min. lmmunofluorescence also indicated 
that cell-cell contacts were not significantly altered (Fig. 8). 
Taken collectively, these results suggest that S. choleraesuis 
passes through MDCK cells, rather than between them or by 
lysing the monolayer. 

Transcytosis is a term used to describe transport of macro- 
molecules (and their receptors) from one surface of a cell 
through the cell to the opposite surface (Mostov and Simis- 
ter, 1985; Simons and Fuller, 1985). Transport of immuno- 
globulins (IgA and IgM) across epithelia are perhaps the best 
characterized examples oftranscytosis (Mostov and Simister, 
1985). Once these molecules interact with specific receptors 
on the cell surface, they are internalized by receptor medi- 
ated endoeytosis and transported across the cell (Mostov and 
Simister, 1985). We have demonstrated that S. choleraesuis 
added to the apical surface of MDCK ceils is capable of en- 
tering these cells, passing through these cells in a vacuole 
and escaping to the opposite medium. We consider this pro- 
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cess as a form of transcytosis since the bacteria pass through 
an impermeable epithelial monolayer to the opposite surface 
while the MDCK cells remain viable. 

Up to 5 × 106 S. choleraesuis penetrate per hour through 
•3.5 x 105 MDCK cells, a rate of 14 bacteria/MDCK 
cell per hour. This process required a minimum of four hours, 
and reaches a maximum rate after 8 h. As illustrated in Fig. 
1, ~5  % of the initial inoculum is either adherent to or inter- 
nalized within the MDCK cell monolayer 4 h after infection. 
Data from Table II indicates that 3.5 % of the inoculum is in- 
ternalized within MDCK cells at this time. These data sug- 
gest that at this time 70 % of the bacteria which associate with 
the monolayer are internalized, while 30% (or 1.5% of the 
initial inoculum) are susceptible to gentamicin treatment. 
The number of bacteria penetrating the monolayer after 4 h 
represents 0.003 % of the initial inoculum (Fig. 3) or 0.08 % 
of the internalized bacteria. However, 6 h after infection this 
number rises to 2.8 % of the initial inoculum while the per- 
centage of labeled bacteria associated with the monolayer af- 
ter 6 h is 12% (Fig. 1), indicating a significant increase in 
the number of bacteria penetrating the monolayer. 

Transcytosis of IgA has also been studied in MDCK cells 
(Mostov and Deitcher, 1986). These workers bound labeled 
IgA to the basolateral surface at 4°C, after which monolayers 
were rapidly warmed and transcytosis quantitated. This pro- 
cess had a t,/2 of 30 min, and was nearly complete after 2 h. 
Bacterial penetration appears slower than that of the IgA 
ligand, but, since S. choleraesuis did not associate signifi- 
cantly to 4°C monolayers, we were unable to uncouple bind- 
ing and penetration rates and cannot determine whether this 
lag is due to initial binding, or due to differences in the 
mechanisms used by bacteria and simple ligands to cross a 
monolayer. 

MDCK cells exhibit several morphological changes dur- 
ing Salmonella infection. These changes were observed only 
when S. choleraesuis was added to the apical surface. Salmo- 
nella-infected cells lost their microvilli, a phenomenon 
which has been reported in other infection models (Kohbata 
et al., 1986; Takeuchi, 1967). Perhaps Salmonella invasion 
causes depolymerization of microfilaments which support 
microvilli. Affecting microfilament polymerization could 
also contribute to the loss in electrical resistance and methio- 
nine uptake polarity, since actin filaments are involved in 
maintaining tight junctions (Meza et al., 1980). We used im- 
munofluorescence of phalloidin stained monolayers to at- 
tempt to visualize differences in actin localization at cell 
junctions but did not detect any noticeable differences using 
this technique. Loss of transepithelial electrical resistance in 
MDCK monolayers occurs after infection with vesicular sto- 
matitis and influenza viruses (Lopez-Vancell et al., 1984). 
5-6 h after VSV infection an increase in transepithelial con- 
ductance (or loss of resistance) was observed, and was coin- 
cident with accumulation of envelope protein in the MDCK 
cell surface and viral budding, a basolateral phenomenon. 
Influenza virus, an apically budding virus, did not cause a 
drop in resistance until late (12-14 h) in the infection. This 
change was due to an effect on occluding junctions rather 
than membrane permeability (Lopez-Vancell et al., 1984). It 
was suggested that the loss in electrical resistance caused by 
VSV infection may be due to an actin depolymerizing effect, 
similar to that discussed above. 

Both Salmonella and another invasive Enterobacteriaceae, 
Yersinia, infect hosts by penetrating the intestinal epithe- 
lium, and eventually enter the reticuloendothelial system. It 
was thought that similar invasive mechanisms may have been 
used by members of both families. Evidence presented here 
indicates that this is probably not true. In contrast to Sal- 
monella, invasive Yersinia adhere to the eucaryotic cell sur- 
face, even on ice (Isberg et al., 1987). Yersinia are "em- 
braced" by host microvilli which encircle the bacterium 
(Brunius and Bolin, 1983), and the organism is internalized 
within a membrane bound vacuole (Bovallius and Nilsson, 
1975). Internalization of S. choleraesuis was associated with 
an indentation in the host cell surface underlying the bacte- 
rium, and entrapment of Salmonella by microvilli were never 
observed. Formalin and UV treated Yersinia appear to enter 
eukaryotic cells (Pedersen et al., 1979), again in contrast 
to our findings with Salmonella. It appears that S. choler- 
aesuis plays a more active role in its internalization than Yer- 
sinia, and is not simply a passive "ligand" internalized by 
endocytosis. 

Infection of polarized epithelial cells permits the explora- 
tion of several new facets of microbial pathogenesis. Since 
S. choleraesuis is a close relative of E. coli DH5ct, genetic 
manipulation of this organism is relatively easy. This system 
should allow us to identify and characterize genes responsi- 
ble for the biological phenomena reported here. Besides ex- 
amining invasion, we are now able to study previously unad- 
dressed events involved in bacterial penetration from both 
the bacterial and eukaryotic perspective. This system may 
contribute to our limited understanding of the mechanisms 
involved in intracellular transport and transcytosis. Such 
model systems could be used to study other organisms which 
are known to cross epithelial barriers, a process fundamental 
to many human pathogens. 
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