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ABSTRACT

Motivation: Recent improvement in homology-based structure
modeling emphasizes the importance of sensitive evaluation
measures that help identify and correct modest distortions in models
compared with the target structures. Global Distance Test Total Score
(GDT_TS), otherwise a very powerful and effective measure for model
evaluation, is still insensitive to and can even reward such distortions,
as observed for remote homology modeling in the latest CASP8
(Comparative Assessment of Structure Prediction).

Results: We develop a new measure that balances GDT_TS reward
for the closeness of equivalent model and target residues (‘attraction’
term) with the penalty for the closeness of non-equivalent residues
(‘repulsion’ term). Compared with GDT_TS, the resulting score, TR
(total score with repulsion), is much more sensitive to structure
compression both in real remote homologs and in CASP models.
TR is correlated yet different from other measures of structure
similarity. The largest difference from GDT_TS is observed in models
of mid-range quality based on remote homology modeling.
Availability: The script for TR calculation is included in
Supplementary Material. TR scores for all server models in
CASP8 are available at http://prodata.swmed.edu/CASPS.
Contact: grishin@chop.swmed.edu

Supplementary information: All scripts and numerical data are
available for download at ftp://iole.swmed.edu/pub/tr_score/

1 INTRODUCTION

The current improvement of methods for sequence-based structure
prediction (Kopp et al., 2007; Shi et al., 2009) leads to the increasing
importance of accurate and biologically relevant measures of
structural model quality. These measures are essential not only
as criteria for benchmarking of method performance, but also as
standards for the development of new, more powerful approaches to
protein structure modeling. Any measure rewards certain aspects
of model quality. Using the measure to guide method’s design
inevitably emphasizes these aspects in the produced models.
Among various measures of model quality, Global Distance
Test Total Score (GDT_TS) is widely considered one of the most
informative and robust. Proposed in a seminal paper (Zemla ef al.,
2001) as a benchmarking criterion at early stages of Comparative
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Assessment of Structure Prediction (CASP), this measure has been
successfully used by many independent assessor groups (Kinch
etal.,2003; Kopp et al., 2007; Wang et al., 2005; Zemla et al., 2001).
In brief, GDT_TS is based on several target-model superpositions,
each maximizing the number of equivalent target and model residues
separated by a distance shorter than a given distance cutoff. These
maximized numbers are normalized by the chain length and then
averaged over the superpositions, producing the final score. Thus,
GDT_TS is areward for placing as many model residues as possible
in a vicinity of their target counterparts.

This approach, although extremely effective in most cases, may
still be insensitive to more modest deviations of models from native-
like structure. As an example, in the models based on remote
sequence homologs GDT_TS does not penalize and may even
reward unrealistic placement of several model residues in a close
vicinity of a single target residue (Aloy ez al., 2003). When target and
its closest homolog of known structure share only remote similarity,
it is hard to predict the correct position of model residues based on
the homolog as a template. In this situation, placing model residues
closer to each other may improve the chances of some of them being
rewarded for closeness to the target. Noted in previous CASPs (Aloy
et al., 2003), this effect has become more pronounced among recent
models (Shi et al., 2009; Fig. 1).

The last years have brought a significant improvement in the
accuracy of remote homology modeling. As demonstrated by recent
CASPs (Kopp et al., 2007; Shi et al., 2009), the current methods
produce much more accurate models whose quality often differs only
by a small GDT_TS margin; thus optimizing a method for higher
GDT_TS might improve the apparent method’s standing, even at the
cost of less realistic models. As a consequence, more fine-grained
evaluation is often needed to distinguish between alternative models
of reasonable quality.

Most of the existing approaches to structure comparison
reward similar regions but do not explicitly penalize dissimilar
regions. Taking an analogy with physical forces, these approaches
concentrate on ‘attraction’ but not on ‘repulsion’. It might have been
reasonable a few years ago, when the quality of structure predictions
was much poorer, and rewarding for the spatial closeness of structure
regions to the target would suffice to discriminate between models.
It was important to detect any positive feature of a model, since
there were more negatives about a model than positives. Today,
many models reflect structures well. When the positives start to
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Fig. 1. Examples of non-native structure geometries in CASP8 models. In
(A) and (B), left is a helix from a target structure and right is the same
region modeled by one of the servers. (A) Unrealistic compression of a helix
along the axis. (Model helix is rotated for clarity.) In the model, the helix is
positioned at a different angle; its compression improves GDT_TS.B. ‘Smart’
compression: C, distance restrictions are not violated, but helix distortion
concentrates residues around the same point.

outweigh the negatives, it becomes important to pay attention to
the negatives. Here, we introduce an explicit ‘repulsion’ component
into the GDT_TS score, which penalizes for incorrect pairing of
non-equivalent residues in the compared structures. We show that
unlike GDT_TS, the new measure is sensitive to mild structure
compression and thus may be a valuable tool in discriminating
biologically unrealistic structure predictions.

2 METHODS

2.1 Compression of real homologous domains

We choose pairs of structural classification of proteins (SCOP) domain
representatives that are confident homologs but do not have a strong structure
similarity. From the total of ~100000 ASTRAL40 domain pairs that share
the same superfamily, we select two subsets based on different definitions
of marginal structure similarity. First set includes ~27 000 pairs with lower
range but still significant DALI Z-scores, DALI Z between 2.0 and 5.0.
Second set includes the lower third of all domain pairs ranked by DALI
Z-score (~30000 pairs, DALI Z between 2.0 and 5.8). In each pair,
the set of equivalent residues is chosen according to the blocks (capital
letters) of confidently aligned positions in DALI alignment. In separate
experiments, each of the domains was compressed (compression ratio of 0.9—
1.0), followed by the calculation of GDT_TS and total score with repulsion
(TR) on the set of equivalent residues.

2.2 Compression of the CASP-fold recognition models

CASP targets and server models are downloaded from http://predictioncenter.
org/casp8. We further processed target and model structures, split them into
domains and assigned them to standard categories by prediction difficulty
as described at http://prodata.swmed.edu/CASPS. We use target—-model pairs
for 25 target domains in the fold recognition category, subject each model
to varying degrees of compression and calculate corresponding GDT_TS
and TR scores. As an example in Figure 3B, we show the plot for models
by Robetta server, which does not introduce significant distortions of local
geometry.

2.3 Perturbation of the torsion angles

We perturb torsion angles ¢, v in fold recognition models with no chain
breaks. We chose Robetta models as they have very few chain breaks: among

125 FR models by Robetta, only five models for the same target have a break.
To every original ¢ /¢ value, we add a randomly distributed Gaussian term
with a mean of 0 and a certain SD. The original structure is modified by
consequent rotation of backbone segments according to the new angle values,
keeping all other geometric parameters intact.

2.4 Correlation between TR and the existing scores

For each CASPS target, we perform GDT_TS-based ranking of first models
submitted by servers and select top 10 models. We average target—model
similarity scores for those models and plot TR against other measures, with
each target represented by a single point. To make the scale of DALI Z-scores
compatible to TR, we normalize them by DALI Z-scores for the comparison
of target domain to itself.

3 RESULTS

Analyzing structure predictions produced by automated servers
in the recent CASP, CASP8 (Shi et al., 2009), we observe a
number of models that are assigned high GDT_TS scores but
include unrealistically distorted regions (Fig. 1). These regions often
show violations of secondary structure geometry, shorter distances
between C, atoms, sidechain clashes and distortion of hydrogen
bond patterns.

In fold recognition modeling, when the closest homolog with
3D structure is relatively distant from the target, it is often
difficult to predict the correct location of target residues, even
if the general positioning of secondary structure elements can
be inferred from the sequence-based alignment. Such situations
typically involve ambiguity of angles between secondary structure
elements, register shifts in alpha-helices and beta-strands and
unknown loop conformations. By definition, GDT_TS rewards
relatively close positioning of equivalent C, atoms in model and
target, but does not penalize situations where two or more model
residues are close to the same target residue. Therefore, a GDT_TS-
trained automatic predictor may in some cases choose to concentrate
Cyatoms in a smaller volume, which increases the probability
for the target residue to have the correct model residue in the
vicinity, even if the correct residue is unknown. A schematic
example of such a conformation is shown in Figure 2A, where both
correct and incorrect model C, atoms are located closely to the
target Cy.

Such deviations from native protein geometry may be loosely
viewed as an implementation of the minimax principle from game
theory: select the conformation that minimizes the maximal possible
loss in the case of failure. For example, for an ambiguous helix
register, putting residues closer to each other may produce a
positive contribution to GDT_TS even if the register is wrong
(Fig. 1). In the case of unknown loop conformation, predicting an
unrealistic collapsed loop bears less risk of large GDT_TS loss
than predicting an extended (and locally correct) conformation
that may deviate further from the target if overall orientation is
wrong.

More surprisingly, even a simplistic uniform contraction of
the model can in many cases produce higher GDT_TS (Fig. 2;
Section 3.3).

3.1 Score for model quality with explicit repulsion term

To develop a measure sensitive to the observed structure
compression, we complement GDT_TS with an explicit ‘repulsion’
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Fig. 2. Calculation of penalty for close positioning of non-equivalent residues in target and model. (A) Schema of superposition for a pair of equivalent target
and model residues (a; and b;, black circles). To calculate the penalty, we count model residues located close to the target residue a;, excluding its counterpart
b; and adjacent residues b;_1, b;11. In this example, there is one residue located within a given distance d =4 A from the target residue (marked with an
arrow). (B) We average the numbers of such ‘incorrect’ residues for three different distance cutoffs d =1, 2 and 4 A, and combine these averages for both
target and model residues. The resulting penalty is subtracted from the pair’s GDT_TS score. If the penalty is higher than the GDT_TS, the pair’s contribution

is set to zero.

term that penalizes for close spatial placement of incorrect residue
pairs (Fig. 2A). We call this score TR. The score is calculated as
follows (Fig. 2B).

(1) Superimpose model with target using local-global alignment
method (LGA) (Zemla, 2003) in the sequence-dependent
mode, maximizing the number of aligned residue pairs within
distance cutoffs of d=1, 2, 4 and 8 A.

(2) For each pair of target and model residues (a;, b;), calculate a
GDT_TS-like score: s, = 1/4 (8] + 85 + 84 +8g), where 85 =1
if Co —Cqy distance <d A and 84 =0 otherwise.

(3) In LGA superposition for d =4 A, consider individual aligned
residues in both structures. For each residue R, choose
residues in the other structure that are spatially close to R,
excluding the residue aligned with R and its immediate
neighbors in the chain. Count numbers of such residues
with Co—Cqy distance to R within cutoffs of 1, 2 and 4 A.
(As opposed to GDT_TS, we do not use the cutoff of 8 A as
too inclusive: in native proteins, this distance is not prohibited
for different residues of the same chain.)

(4) The average of these counts defines the penalty assigned to a
given residue R: p(R)=1/3 (n] +ny +ny).

(5) Finally, for each aligned residue pair (a;, b;), the average of
penalties for each residue A =1/2 [p(a;)+ p(b;)] is weighted
and subtracted from the GDT_TS score for this pair. The
final score is prohibited from being negative, in order to
avoid rewarding shorter models limited to only the confident
structure core:

s=max(s0—wA,O).

Among tested values of weight w, we find that w = 1.0 produces
the scores that are most consistent with the evaluation of model
abnormalities by human experts.

The score for the two compared structures is calculated as the sum
of scores for individual residue pairs, normalized by target chain
length L: TR=(1/L) Y _s;.

The cutoff of 4 A for the used LGA superposition was set after
testing multiple values around typical GDT_TS distance cutoffs.
This value produced the scoring of CASP8 models that was most
consistent with the manual expert assessment of the model quality.

3.2 The new score has improved sensitivity to model
distortions

As an example of effects of mild structure distortion on GDT_TS
and TR, we observe behavior of these scores in two simplistic
experiments. In each experiment, we calculate the scores on a pair of
structures and then perturb one of the structures. We vary the degree
of the perturbation and observe corresponding changes in GDT_TS
and TR scores. In the first experiment, we uniformly contract one
of the structures towards its center of mass, so that its radius of
gyration decreases and its residues become slightly closer to each
other (Fig. 3A, B). In the second experiment, we perturb torsion
angles ¢, ¢ by adding a random Gaussian term to each angle in the
structure (Fig. 3C).

By design, TR score is expected to bring improvement in
sensitivity at medium levels of modeling difficulty, where sequence
alignment to a homolog template is possible yet non-trivial. TR
should not be better than GDT_TS either for models based on
close homology where model-target misalignments are rare, or for
template-free models where even a general fold prediction is a
challenge. Therefore in our experiments, we concentrate on cases
of clear yet distant template—target homology.
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Fig. 3. Effects of structure distortion on GDT_TS and TR scores. (A and B) One of the two compared proteins is uniformly compressed, and dependency of
the scores on the degree of compression is shown relative to the score for intact structures. (A) Pairs of remotely homologous protein domains. Average relative
scores are based on the set of domain pairs that share the same SCOP superfamily and have DALI Z-score between 2 and 5. Inset: the same dependency for
a different definition of remote homologs: lower third (by DALI Z-score) of all domain pairs that share the same SCOP superfamily and have DALI Z > 2.0.
(B) Targets and models in the fold recognition category of the recent CASP, CASPS8. As an example, average relative scores are based on models by Robetta
server. The dependency is shown for the whole set of FR domain models by Robetta (125 models). Inset: dependency for the subset of FR domain models
whose GDT_TS grows with compression (48 models). (C) Random perturbation of torsion angles (¢, ) in Robetta models of FR domains. Dependency of

relative score values on the SD of added random Gaussian perturbations.
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Fig. 4. Correlation of the new score with existing scores for structure similarity. For each CASP8 target, average scores for the top 10 first server models are
plotted. (A) TR versus GDT_TS. (B) TR versus DALI Z-score (scaled by self Z-score). (C) TR versus TM score.

In the first experiment (Fig. 3A), we use real pairs of remotely
homologous protein domains. Among all pairs of ASTRAL40
(Chandonia et al., 2004) representatives that share the same
superfamily in SCOP classification (Andreeva et al., 2008), we
choose ~27000 pairs with marginal structure similarity according
to DALI Z-scores (Holm and Sander, 1993) and compress one of
the domains in each pair. On average, GDT_TS does not decrease
until compression reaches ~5% (Fig. 3A). Moreover, in 40% cases
GDT_TS actually increases at mild compression levels. In contrast,
TR is consistently reduced on compressed structures, with the rate
of reduction much higher than for GDT_TS.

We perform the same experiment (Fig. 3B) on pairs of target and
model domains from automatic CASPS server predictions in the fold
recognition category, as defined by our analysis (Shi et al., 2009).
Similar to the first dataset, mild compression leads to GDT_TS
increase in 40% cases. Figure 3B shows the average degree of
GDT_TS gain for these models, as well as for the whole model
set. At the same time, TR penalizes the compression much more
effectively. Full sets of GDT_TS and TR scores for all server models
of CASP8 are available at http://prodata.swmed.edu/CASPS.

When we perturb torsion angles in the same set of models, TR
decreases with the variance of the perturbation significantly faster

than GDT_TS, although the difference is somewhat less pronounced
(Fig. 30).

3.3 Correlation with existing measures for structure
similarity

We compared the new score with other similarity scores based on the
set of first server models produced for all CASPS targets. Figure 4
shows correlation plots for TR versus GDT_TS, DALI Z-scores,
and TM scores (Zhang and Skolnick, 2005). The table of correlation
coefficients of TR with these and other measures is included in the
supplement.

It is clear that GDT_TS and TR scores are well correlated
(Fig.4A), with Pearson correlation coefficient of 0.99. By design, TR
is always equal or lower than GDT_TS. Notably, the trend curve of
the correlation is concave, so that the difference is more pronounced
around the mid-range GDT_TS. This range roughly corresponds
to the targets from the categories of harder comparative modeling
and fold recognition, where models become less similar to targets
and modeled residues are frequently placed nearby non-equivalent
residues, which results in higher penalty by TR. For very low model
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quality (GDT_TS below 30%) the reward is much lower, and penalty
drops as well (Fig. 4A).

TR also shows general correlation with other similarity measures,
although to a lesser degree. Correlation coefficient with conceptually
different contact-based DALI Z-scores (normalized to have a
compatible scale) is relatively high (0.95). Interestingly, TM score
(Zhang and Skolnick, 2005) based on a concept similar to GDT_TS
is less correlated with TR than DALI Z-scores (Fig. 4C, correlation
coefficient of 0.88), but the trend curve’s concave shape is similar
to the plot of TR against GDT_TS.

In conclusion, we develop a new measure for protein structure
similarity with explicit repulsion term that penalizes for spatially
close positioning of non-equivalent residues. This measure improves
sensitivity of GDT_TS to moderate structure distortion and has
a potential value for the assessment of structure similarity and
homology-based structure modeling.
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