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Abstract. Osteosarcoma is an aggressive cancer of the skeletal 
system which remains a challenge for the current therapeutic 
strategies due to unclear etiology and molecular mechanisms of 
pathogenesis. The current study aimed to determine the expres-
sion levels, role and molecular mechanism of microRNA‑708‑5p 
(miR‑708‑5p) in the development of osteosarcoma. The 
expression level of miR‑708‑5p was detected using reverse tran-
scription‑quantitative polymerase chain reaction. miR‑708‑5p 
was overexpressed in SaOS‑2 cells using miR‑708‑5p mimics. 
Cell viability, apoptosis, migration and invasion were deter-
mined using Cell Counting kit‑8 assay, flow cytometry, wound 
healing and transwell assays, respectively. The results indicated 
that miR‑708‑5p was significantly downregulated in osteosar-
coma tissues and cells, and its overexpression significantly 
inhibited cell viability, invasion and migration and induced 
apoptosis of SaOS‑2 cells. Furthermore, the present results 
indicated that miR‑708‑5p directly targeted the 3'‑untranslated 
region of up‑regulator of cell proliferation (URGCP) and nega-
tively regulated its expression in SaOS‑2 cells. Taken together, 
the current study suggested that miR‑708‑5p may inhibit the 
growth and invasion of osteosarcoma cells via regulating the 
URGCP/NF‑κB signaling pathway. Further research on these 
molecules in osteosarcoma may provide novel insights into the 
target therapy for this disease.

Introduction

Osteosarcoma is the most common primary malignant 
bone tumor with the highest incidence among patients aged 

10‑20  years  (1,2). The annual incidence of osteosarcoma 
is five per million. Since, in 80% of patients with osteosar-
coma, metastasis or micrometastasis has occurred at the 
time of diagnosis, almost all patients receive multiple doses 
of chemotherapy in addition to surgery (3). Recent improve-
ments in surgical methods resulted in decreased numbers 
of amputations among patients with osteosarcoma (4). The 
understanding of molecular mechanisms of osteosarcoma 
may contribute to the development of targeted therapy for this 
disease (5). Development of novel treatment strategies and 
improvement of the currently available methods may increase 
the survival rate of patients with osteosarcoma.

In recent years, numerous studies have demonstrated that 
microRNAs (miRNAs) serve important regulatory roles in 
tumor formation and progression (6‑9). A number of oncogenes 
and tumor suppressor genes are regulated by miRNAs (10). 
miRNAs are single‑stranded, non‑coding RNAs that recog-
nize specific target mRNAs and regulate the expression of 
target genes at the post‑transcriptional level (11‑13). miRNAs 
promote the degradation of mRNA and/or inhibit the trans-
lation process, and regulate the translation of ~30% of the 
protein‑coding mRNA in the human genome (11‑13). Previous 
studies indicated that the expression of miRNAs is abnormal 
in numerous types of tumors (6‑9). miRNAs may serve carci-
nogenic or tumor suppressive roles by regulating downstream 
target genes and influencing the biological behavior of tumor 
cells, including proliferation, apoptosis, invasion, metastasis 
and angiogenesis  (14). The majority of tumor suppressor 
miRNAs are downregulated in malignant cells, while onco-
genic miRNAs are upregulated and affect tumor pathology 
through multiple mechanisms (15,16).

miR‑708‑5p is a miRNA expressed in a number of 
diseases  (17). miR‑708‑5p was first identified in normal 
tissues and tumor samples from patients with cervical cancer, 
and exhibits a high degree of sequence similarity with 
miR‑28 (18,19). The passenger strand of miR‑708 (miR‑708‑3p) 
shows potential biological function and is incorporated into 
the RNA‑induced silencing complex (20‑25). miR‑708‑5p is 
involved in numerous diseases, including cancer, neurodegen-
erative diseases and cardiovascular diseases (26‑30).

The current study aimed to determine the role of miR‑708‑5p 
in the occurrence and development of osteosarcoma. This 
miRNA may become a clinical marker for the diagnosis of this 
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type of cancer and the results of the current study may provide 
theoretical basis for diagnosis and treatment.

Materials and methods

Clinical specimens. Osteosarcoma tissue and adjacent 
normal tissue samples were obtained from 60 patients (age, 
14‑65 years; 32 males and 28 females; 9 cases without tumor 
metastasis; 23 cases with lymph node metastasis without 
distant metastasis; 28 cases with distant metastasis) diagnosed 
with osteosarcoma by pathological examination between 
May 2011 and May 2016 at the First Affiliated Hospital of 
Anhui Medical University and The First Affiliated Hospital 
of University of Science and Technology of China (Hefei, 
China). Patients were included in the present study if they 
did not receive radiotherapy or chemotherapy, and exhibited 
normal cardiopulmonary, liver and kidney function. Patients 
with chronic conditions including high blood pressure, chronic 
heart disease and kidney failure were excluded. All experi-
ments involving human tissues were reviewed and approved by 
the Ethics Committee of the First Affiliated Hospital of Anhui 
Medical University and by the Ethics Committee of the First 
Affiliated Hospital of University of Science and Technology of 
China. All patients provided written informed consent for the 
use of their tissues.

Cell culture and treatment. Human osteosarcoma cell line 
SaOS‑2 and normal osteoblast cell line hFOB1.19 were 
purchased from American Type Culture Collection (Manassas, 
VA, USA) and cultured in the First Affiliated Hospital of 
Anhui Medical University. Cells were grown in RPMI 1640 
medium containing 10% fetal bovine serum (FBS; both 
Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) 
and 1% penicillin‑streptomycin solution (Sigma‑Aldrich; 
Merck KGaA, Darmstadt, Germany), and incubated at 37˚C 
with 5% CO2. Cells were passaged every 2‑3 days.

SaOS‑2 cells (3xl04 cells/well) were transiently transfected 
with 100 nM miRNA‑708‑5p mimics (AAG​GAG​CUU​ACA​
AUC​UAG​CUG​GG and CAG​CUA​GAU​UGU​AAG​CUC​CUU​
UU), negative control mimics (UUC​UCC​GAA​CGU​GUC​ACG​
UTT and ACG​UGA​CAC​GUU​CGG​AGA​ATT), miR‑708‑5p 
inhibitors (CCC​AGC​UAG​AUU​GUA​AGC​UCC​UU) or nega-
tive control inhibitors (CAG​UAC​UUU​UGU​GUA​GUA​CAA) 
using Lipofectamine® 2000 (Invitrogen; Thermo Fisher 
Scientific, Inc.) according to the manufacturer's protocol. 
The miR‑708‑5p mimics, miR‑708‑5p inhibitor and negative 
controls were purchased from Shanghai GenePharma Co., 
Ltd. (Shanghai, China). After 48 h, reverse transcription‑quan-
titative polymerase chain reaction (RT‑qPCR) was used to 
determine transfection efficiency, as described below. Cells 
without any treatment were used as the control group.

Western blot analysis. Following treatment, total 
cellular proteins from SaOS‑2 cells were extracted using 
radioimmunoprecipitation assay buffer (Hunan Auragene 
Biotech Co., Ltd, Changsha, China). Bicinchoninic acid protein 
quantification kit (Thermo Fisher Scientific, Inc.) was used to 
measure the protein concentration in samples. Equal amounts 
of protein (30 µg/lane) were resolved by SDS‑PAGE on a 12% 
gel and transferred onto polyvinylidene fluoride membranes. 

The membranes were blocked with 5% non‑fat milk at room 
temperature for 1 h, followed by incubation with primary 
antibodies, including anti‑up‑regulator of cell proliferation 
(URGCP; cat. no.  ab103323; 1:1,000; Abcam, Cambridge, 
MA, USA), anti‑nuclear factor (NF)‑κB (cat no. 8242) and 
anti‑GAPDH (cat. no.  8884; both 1:1,000; Cell Signaling 
Technology, Inc., Danvers, MA, USA) at 4˚C overnight. 
Subsequently, the membranes were incubated with an anti‑rabbit 
immunoglobulin G horseradish peroxidase‑conjugated 
secondary antibody (cat. no. 7074; 1:2,000; Cell Signaling 
Technology, Inc.) at room temperature for 2 h. To visualize 
the protein blots, the enhanced chemiluminescence Western 
Blotting Detection kit (Applygen Technologies, Inc., Beijing, 
China) was used according the manufacturer's protocol.

RT‑qPCR. TRIzol reagent (Invitrogen; Thermo Fisher 
Scientific, Inc.) was used to extract total RNA from cells 
and tissues. GAPDH or U6 were used as internal controls 
for mRNA or miRNA expression, respectively. cDNA was 
synthesized using PrimeScript™ RT reagent kit (Takara Bio, 
Inc., Otsu, Japan) according to the manufacturer's protocol. 
SYBR® Premix Ex Taq™ (Takara Bio, Inc.) was used for 
qPCR according to the manufacturer's protocol. The following 
primer sequences were used for the qPCR: miR‑708‑5p, 
forward 5'‑GGC​GCG​CAA​GGA​GCT​TAC​AATC‑3' and 
reverse 5'‑GTG​CAG​GGT​CCG​AGG​TAT‑3'; URGCP, forward: 
5'‑CTT​CAT​CCT​GAG​TCC​CTA​CCG‑3' and reverse: 5'‑GCC​
GTT​CTG​CTG​CAT​TCG‑3'; NF‑κB, forward: 5'‑AAC​ACT​
GCC​GAC​CTC​AAG​AT‑3' and reverse: 5'‑CAT​CGG​CTT​GAG​
AAA​AGG​AG‑3'; U6, forward 5'‑GCT​TCG​GCA​GCA​CAT​
ATA​CTA​AAA​T‑3' and reverse 5'‑CGC​TTC​ACG​AAT​TTG​
CGT​GTC​AT‑3'; and GAPDH, forward 5'‑CTT​TGG​TAT​CGT​
GGA​AGG​ACT​C‑3' and reverse 5'‑GTA​GAG​GCA​GGG​ATG​
ATG​TTC​T‑3'. Relative expression of each gene was calculated 
using the 2‑ΔΔCq method (31).

Cell migration and invasion assays. An in vitro invasion assay 
was performed using transwell plates (BD Biosciences, Franklin 
Lakes, NJ, USA) with 8 µm pores. Chamber inserts were coated 
with 200 mg/ml BD Matrigel™ matrix (BD Biosciences) at 
room temperature overnight. The SaOS‑2 cells (1x104 cells) in 
RPMI 1640 medium were added to the upper chamber of the 
transwell plates. RPMI 1640 medium containing 20% FBS as a 
chemoattractant was added to the lower chamber. After a 48‑h 
incubation, cells were removed from the upper surface using 
cotton swabs and the invasive cells were fixed with methanol 
and stained with 0.5% crystal violet at room temperature for 
30 min. Images were captured and the cells were counted using 
a light photomicroscope (Olympus Corporation, Tokyo, Japan) 
at a magnification of x200.

For the wound healing assay, confluent monolayers of 
SaOS‑2 cells cultured in 24‑well plates were scratched 
using a 10‑µl pipette tip. The wells were washed to remove 
cellular debris and the cells were allowed to migrate for 48 h. 
Representative images were captured under an light inverted 
microscope (Olympus Corporation; magnification, x100). The 
experiments were repeated at least three times.

Cell Counting Kit‑8 (CCK‑8) assay. SaOS‑2 cells were 
seeded into a 96‑well plate (2x105 cells/well) and cultured in 
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RPMI‑1640 medium at 37˚C for 24, 48 and 72 h respectively. 
Cell viability was detected using the CCK‑8 kit according to 
the manufacturer's protocol. The absorbance was measured at a 
wavelength of 450 nm using an iMark® microplate absorbance 
reader (Bio‑Rad Laboratories, Inc., Hercules, CA, USA). The 
experiments were repeated at least 3 times.

Cell apoptosis detection. Following transfection, SaOS‑2 
cells in the logarithmic growth phase were collected and 
washed at least three times with cold PBS. Annexin V‑FITC 
Early Apoptosis Detection kit (cat. no. 6592; Cell Signaling 
Technology, Inc.) was used for cell apoptosis analysis. In brief, 
SaOS‑2 cells (1x106) from different groups were re‑suspended 
in binding buffer, labeled with 1 µl Annexin V‑fluorescein 
isothiocyanate (FITC) and 12.5 µl propidium iodide (PI) and 
then incubated for 10 min on ice in the dark. A flow cytometer 
(FACSCalibur™; BD Biosciences, Franklin Lakes, NJ, USA) 
was used to analyze cell apoptosis. Data were analyzed using 
WinMDI software (version 2.5; Purdue University Cytometry 
Laboratories, West Lafayette, IN, USA). The experiments were 
repeated at least 3 times.

Bioinformatics prediction and dual‑luciferase reporter 
assay. Targetscan (version 7.1; www.targetscan.org/vert_71) 

was used to predict the putative target genes of miR‑708‑5p. 
To confirm whether miR‑708‑5p directly targets URGCP, a 
luciferase reporter assay was performed using a pEZX‑MT01 
target reporter plasmid containing the URGCP 3'‑untranslated 
region (UTR; GeneCopoeia, Inc., Rockville, MD, USA). 
Additionally, a mutant (MUT) URGCP 3'‑UTR reporter 
construct was generated by site‑directed mutagenesis in the 
putative target site of miR‑708‑5p in the wild‑type (WT) 
URGCP 3'‑UTR using the QuikChange XL site‑directed 
mutagenesis kit (Agilent Technologies, Inc., Santa Clara, CA, 
USA). The reporter plasmids were co‑transfected into SaOS‑2 
cells with miR‑708‑5p mimics or the NC using Lipofectamine 
3000® (Invitrogen; Thermo Fisher Scientific, Inc.) in 24‑well 
plates. A total of 48 h following transfection, dual‑luciferase 
reporter assay system (Promega Corporation, Madison, WI, 
USA) was used to measure luciferase activity according to 
the manufacturer's protocol. Relative luciferase activity was 
normalized to the Renilla luciferase activity. The results were 
obtained from three independent experiments.

Statistical analysis. All data are presented as the 
mean ± standard deviation. SPSS software (version 17.0; SPSS, 
Inc., Chicago, IL, USA) was used for statistical analyses. 
Comparisons between groups were performed using Student's 

Figure 1. miR‑708‑5p expression in osteosarcoma. (A) The expression level of miR‑708‑5p was detected in osteosarcoma tissues and the adjacent normal 
tissues. **P<0.01 vs. control. (B) miR‑708‑5p expression was determined in osteosarcoma cell line SaOS‑2 and normal osteoblast cell line hFOB1.19. Data are 
presented as the mean ± standard deviation. **P<0.01 vs. hFOB1.19. Tumor, osteosarcoma tissues; control, adjacent normal tissues; miR, microRNA.

Figure 2. miR‑708‑5p inhibits SaOS‑2 cell viability. (A) Expression level of miR‑708‑5p in SaOS‑2 cells from different groups was detected using reverse 
transcription‑quantitative polymerase chain reaction. **P<0.01 vs. the control group. (B) Cell viability was measured using the Cell Counting Kit‑8 assay. 
*P<0.05 and **P<0.01 vs. mimics. Data are presented as the mean ± standard deviation. NC, negative control; miR, microRNA; OD, optical density. 
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t‑test or one‑way analysis of variance followed by Tukey's test. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Expression of miR‑708‑5p in osteosarcoma. The expression 

Figure 3. MicroRNA‑708‑5p induces SaOS‑2 cell apoptosis. Following transfection, cell apoptosis was determined using flow cytometry. Data are presented 
as the mean ± standard deviation. **P<0.01 vs. the control group. NC, negative control; FITC, fluorescein isothiocyanate.

Figure 4. microRNA‑708‑5p inhibits SaOS‑2 cell migration and invasion. Following transfection, SaOS‑2 cell (A) migration was detected using wound healing 
assays and (B) invasion ability was detected using transwell assays, and the data were quantitatively analyzed. Magnification, x200. Data are presented as the 
mean ± standard deviation. **P<0.01 vs. the control group. NC, negative control.
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levels of miR‑708‑5p were detected in osteosarcoma tissues, 
adjacent normal tissues, human osteosarcoma cell line SaOS‑2 
and normal osteoblast cell line hFOB1.19 using RT‑qPCR. 
The results indicated that compared with the adjacent normal 
tissues, the level of miR‑708‑5p in osteosarcoma tissues 
significantly decreased (Fig. 1A). Furthermore, the level of 
miR‑708‑5p in SaOS‑2 cells was significantly lower compared 
with the hFOB1.19 cells (Fig. 1B).

miR‑708‑5p suppresses SaOS‑2 cell viability and induces 
cell apoptosis in vitro. The role of miR‑708‑5p overexpression 
was determined in SaOS‑2 cells in the present study. Cells 
were transiently transfected with miR‑708‑5p mimics or NC. 
RT‑qPCR results confirmed that compared with the control 
group, the level of miR‑708‑5p was significantly increased in 
the miR‑708‑5p mimics group (Fig. 2A). Cell viability was 
subsequently detected using the CCK‑8 assay and the results 
indicated that, compared with the control group, miR‑708‑5p 
mimics significantly suppressed SaOS‑2 cell viability 
(Fig. 2B). Furthermore, SaOS‑2 cell apoptosis was detected 

48 h following transfection with miR‑708‑5p mimics or NC. 
Flow cytometry analysis indicated that cell apoptosis signifi-
cantly increased in SaOS‑2 cells transfected with miR‑708‑5p 
mimics compared with the cells from the control group (Fig. 3).

miR‑708‑5p suppresses SaOS‑2 cell migration and invasion. 
Cell migration and invasion were measured in the present 
study. A total of 48 h after cell transfection, wound healing and 
transwell assays were used to detect cell migration and inva-
sion respectively. The results demonstrated that both migration 
and invasion of SaOS‑2 cells in the miR‑708‑5p mimics group 
were significantly inhibited compared with the control group 
(Fig. 4).

miR‑708‑5p directly targets URGCP. Subsequent experiments 
were performed to determine the underlying mechanism of the 
effect of miR‑708‑5p on SaOS‑2 cells. The potential targets 
of miR‑708‑5p were predicted using TargetScan. URGCP was 
identified as a potential target gene of miR‑708‑5p. To verify the 
binding site, the 3'‑UTR of URGCP containing a WT or MUT 

Figure 5. miR‑708‑5p directly targets URGCP. (A) TargetScan was used to predict the interactions between miR‑708‑5p and the WT 3'‑UTR of URGCP. 
(B) Relative luciferase activity was detected by a dual‑luciferase assay. **P<0.01 vs. NC. After a 48 h transfection with NC and miR‑708‑5p mimics, (C) the 
protein level of URGCP and NK‑κB were detected using a western blot assay, and the mRNA levels of (D) URGCP and (E) NK‑κB were detected using 
RT‑qPCR. (F) miR‑708‑5p levels were detected after a 48 h transfection with NC and a miR‑708‑5p inhibitor using RT‑qPCR. After a 48 h transfection with 
NC and a miR‑708‑5p inhibitor, (G) the protein level of URGCP and NK‑κB were detected using a western blot assay, and the mRNA levels of (H) URGCP 
and (I) NK‑κB were detected using RT‑qPCR. Data are presented as the mean ± standard deviation. **P<0.01 vs. the control group. miR, microRNA; URGCP, 
up‑regulator of cell proliferation; UTR, untranslated region; WT, wild type; NC, negative control; NK‑κB, nuclear factor‑κB.
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sequence was cloned into SaOS‑2 cells for a subsequent firefly 
luciferase reporter assay. The results indicated that URGCP 
was a direct target gene of miR‑708‑5p (Fig. 5A and B). To 
determine the effect of miR‑708‑5p on the URGCP signaling 
pathway, cells were transfected with miR‑708‑5p mimics 
and miR‑708‑5p inhibitors, and expression levels of URGCP 
and NK‑κB were analyzed at the mRNA and protein levels. 
The results indicated that compared with the control group, 
miR‑708‑5p mimics and miR‑708‑5p inhibitors significantly 
decreased and increased the mRNA and protein levels of 
URGCP and NK‑κB in SaOS‑2 cells, respectively (Fig. 5C‑I).

Discussion

Osteosarcoma is the most common primary malignant bone 
tumor with the highest incidence among individuals aged 
10‑20 years (2). However, the therapeutic effect of osteosarcoma 
is still unsatisfactory (32,33). Therefore, identification of novel 
effective treatment methods for patients with osteosarcoma is 
required. miRNAs serve important roles in the occurrence and 
development of a number of diseases (34‑36). Furthermore, 
previous studies indicated that miRNAs participate in the 
occurrence and development of osteosarcoma (37,38). The 
role of miR‑708‑5p was previously studied in several types of 
cancer including cervical (18,19), lung (39) and prostate (40) 
cancer. However, to the best of our knowledge, the role of 
miR‑708‑5p in osteosarcoma has not been previously studied.

The present study aimed to investigate the potential 
role of miR‑708‑5p in the development and progression of 
osteosarcoma in vitro, and that miR‑708‑5p may be a poten-
tial marker for the diagnosis of osteosarcoma. The present 
study detected the level of miR‑708‑5p in osteosarcoma 
tissues, adjacent normal tissues, human osteosarcoma cell 
line SaOS‑2 and normal osteoblast hFOB1.19 cell line. 
miR‑708‑5p was significantly downregulated in osteosar-
coma tissues and cells, indicating that miR‑708‑5p may be 
involved in the occurrence and development of this disease. 
The effects of miR‑708‑5p overexpression on SaOS‑2 cells 
were studied using miR‑708‑5p mimics. Transfection with 
miR‑708‑5p mimics significantly inhibited cell growth, 
induced cell apoptosis, and inhibited cell invasion and 
migration in vitro. The present study also demonstrated that 
URGCP was a direct target of miR‑708‑5p.

URGCP is an oncogene that contributes to carcinogen-
esis, cell cycle regulation and cell proliferation in cells (41). 
URGCP is involved in the development of various types 
of cancer  (42‑44), and promotes the malignant behavior 
of cancer cells by regulating the NF‑κB signaling 
pathway (45‑47). In the present study, miR‑708‑5p overex-
pression inhibited the expression of URGCP and NF‑κB in 
SaOS‑2 cells, while miR‑708‑5p downregulation enhanced 
the expression of URGCP and NF‑κB. The data indicated 
that miR‑708‑5p may inhibit osteosarcoma cell viability 
and invasion by regulating the URGCP/NF‑κB signaling 
pathway.

In conclusion, to the best of our knowledge, the present 
study is the first to indicate that miR‑708‑5p was significantly 
downregulated in osteosarcoma tissues and cells. miR‑708‑5p 
overexpression inhibited osteosarcoma cell viability, migra-
tion and invasion, and induced cell apoptosis. Furthermore, 

the results of the present study indicated that URGCP was a 
direct target gene of miR‑708‑5p. The current study provides 
novel insights into osteosarcoma research and targeted thera-
pies. According to the present preliminary study, miR‑708‑5p 
may be a novel and promising therapeutic target for the treat-
ment of osteosarcoma. However, the tumor suppressor role of 
miR‑708‑5p in osteosarcoma requires further investigation. 
Future studies should determine whether the overexpression 
of URGCP or NF‑kB could reverse the effects of miR‑708‑5p 
on SaOS‑2 cells. Furthermore, potential association between 
patient prognosis and miR‑708‑5p expression may be studied 
in the future.
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