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Abstract
Recently, many literatures have proved that prior information and structure in many
application fields can be formulated as constraints on regression coefficients. Fol-
lowing these work, we propose a L1 penalized LAD estimation with some linear
constraints in this paper. Different from constrained lasso, our estimation performs
well when heavy-tailed errors or outliers are found in the response. In theory, we show
that the proposed estimation enjoys the Oracle property with adjusted normal vari-
ance when the dimension of the estimated coefficients p is fixed. And when p is much
greater than the sample size n, the error bound of proposed estimation is sharper than√
k log(p)/n. It is worth noting the result is true for a wide range of noise distribution,

even for the Cauchy distribution. In algorithm, we not only consider an typical linear
programming to solve proposed estimation in fixed dimension , but also present an
nested alternating direction method of multipliers (ADMM) in high dimension. Simu-
lation and application to real data also confirm that proposed estimation is an effective
alternative when constrained lasso is unreliable.
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1 Introduction

Motivated by applications in areas as diverse as finance, image reconstruction, and
curve estimation, many literatures begin to focus on constrained lasso (hereinafter
referred to as classo), such as He (2011), James et al. (2013), Zhou and Lange (2013),
Hu et al. (2015b), Gaines et al. (2018), James et al. (2020), etc. Classo is defined as:

argmin
β

n∑

i=1

(yi − x ′
iβ)2 + n

p∑

j=1

λ j
∣∣β j

∣∣ subject to C1β = b1 and C2β ≤ b2, (1)

where yi is the i th element of y = (y1, y2, . . . , yn)′, xi is the i th row of design matrix
X = (x ′

1, x
′
2, . . . , x

′
n)

′. We assume that every column of X has been standardized
and the constrained matrixs C1, C2 have full row rank. λ j is the penalty level (tuning
parameter) which is always nonnegative.

Classo is a veryflexible framework for imposing additional knowledge and structure
onto the lasso coefficient estimates. This feature makes it have a very wide range
of applications. For instance, in economics when people predictor the car sale, one
important predictor is personal income.With the increase of income, the amount of sale
of cars also increases. The personal income cannot have negative impacts on car price.
Therefore non-negativity constraints need to imposed on the corresponding regression
efficients. This nonnegative effects are also applied to stock index tracking, because
the impact of each component stock on the stock index can not be negative. Another
famous example in which linear constraints need to be utilized is the case of isotonic
regression. The problemhas a unique property that if xi ≤ x j , then xiβ ≤ x jβ. Inmany
fields of genomic data analysis, much biological knowledge or pathway information
is available. This kind of information has been accumulated from years of biological
and medical research and is a precious resource supplementary to statistical gene data
analysis. More applicable situations using the classo can be referred to Gaines et al.
(2018) and James et al. (2020). However, from James et al. (2013) we know that the
near Oracle performance of classo relies heavily on the Gaussian assumptions and
a known variance σ 2. In practice, the Gaussian assumption may not hold and the
estimation of the standard deviation σ is not a trivial problem. Moreover, in some
cases where heavy-tailed errors or outliers are found in the response, the variance of
the errors may be unbounded. In this case, the classo method is no longer applicable.

To deal with these problems, we propose the following L1 penalized constrained
least absolute deviation estimation (hereinafter referred to as pcLAD),

argmin
β

n∑

i=1

∣∣yi − x ′
iβ

∣∣ + n
p∑

j=1

λ j
∣∣β j

∣∣ subject to C1β = b1 and C2β ≤ b2. (2)

The least absolute deviation (LAD) type of methods are effective alternative to the
least square methods since it doesn’t require the distribution of errors. When heavy-
tailed errors or outliers are present, these methods have desired robust properties in
linear regression models, see for example Bassett and Koenker (1978), Huber (1981),
Portnoy and Koenker (1997).
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Recently, the penalizedversionof theLADmethodwas studied in several papers and
the variable selection and estimation properties were discussed. When the dimension
of coefficients p is assumed to be fixed, the consistency of the penalizedLADestimator
has been proven, one can see Wang et al. (2007), Lambert-Lacroix and Zwald (2011),
Wu and Liu (2009). When p is high dimension, Gao and Huang (2010), Belloni and
Chernozhukov (2011), Wang (2013) has showed the properties of penalized LAD
method in different assumptions. It’s remarkable that, Wang (2013) proposed a clear
and practical rule for setting the penalty parameter and a sharp bound of estimation
error. That is,

λ j = c
√
2A(α) log(p)/n, (3)

∥∥∥β̂pL AD − β

∥∥∥
2

= O(
√
k log(p)/n), (4)

where c > 1 is a constant, α is a chosen small probability, and A(α) is a constant such
that 2p−(A(α)−1) ≤ α. k is the number of nonzero or significant true coefficients.

In this paper, when p is fixed, we use the λ j suggested by Wang et al. (2007)
and develop Oracle property of the equality constrained pcLAD similar to LADlasso.
Because of the existence of constraints, the asymptotically normalized variance of
pcLAD has an adjustment item compared to that of LADlasso. This adjustment will
make pcLAD estimation more effective than LADlasso. When p is large then n , we
adopt the form of λ j in (3), and obtain a L2 norm of equality constrained pcLAD
estimation error bound

∥∥∥β̂ − β

∥∥∥
2

= O(
√
max(m, k − m) log(p)/n), (5)

where m is the number of equality constraints and should be less than k. The pcLAD
estimation bound have a similar form as (4), but our bound clearly demonstrates the
potential improvements in accuracy that can be derived from adding constraints. We
can also point out this pcLAD will choose the significance coefficient with a high
probability close to 1. For inequality constrained pcLAD, we can get same result
if there are some constraints at the boundary. It is worth noting that all the above
theoretical results do not assume the error distribution, which makes pcLAD have a
good fitting effect in the presence of heavy-tailed errors and outliers.

Compared with least square method, LAD method is freer of error distribution.
However, it is more difficult to be solved due to its unsmooth loss function. In
the computation of fixed dimensional pcLAD model, a typical approach is to mod-
ify the computing method of Wang et al. (2007), which is also used in Gao and
Huang (2010) and Wang (2013) when p is larger than n. That is, Yn+ j = 0 and
xn+ j, j = λ j × I ( j = i) for i, j = 1, 2, . . . p. Here I ( j = i) is the indicator func-
tion such that I ( j = i) = 1 if j = i and I ( j = i) = 0 if not. Then our pcLAD
estimator can be considered as an ordinary LAD estimator satisfying some liner con-
straints with p unknown coefficients and p + n observations. Hence it can be solved
efficiently by R package quantreg. More details about this linear programing can
be found in Sect. 4.1. However, as Yang et al. (2013), Gu et al. (2017) and Yu and
Lin (2017) point out, LP scales well to data with moderate sizes, it still comes short
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when dealing with high dimensions. This observation motivates us to consider an
efficient method to fit the high dimensional constrained LAD regression. Fortunately,
alternating direction method of multipliers (ADMM) has been proved to be able to
deal with high-dimensional constrained optimization, such as Gaines et al. (2018),
Stellato et al. (2018) and so on. Inspired by these work, we propose a nested ADMM
to solve pcLAD. In nested ADMM algorithm, the first update is unconstrained LAD
regression with combined penalty term, which is solved effectively by ADMM, the
second update is a projection onto the affine constrained space and the third update is
the renewal of dual variables. Since the first update is a complete ADMM iteration,
we call it nested ADMM. Although nested ADMM contains an inner iteration and an
outer iteration, every step has an explicit solution. Thus, pcLAD can be calculated fast
by nested ADMM. A lot of numerical experiments in Sect. 5 can also confirm this.

Importantly, pcLAD can solve almost all problems that classo can be applied to,
such as monotone curve estimation, monotonic order regression estimation, sum to
zero or one estimation, and all problems that can be transformed into generalized
lasso, fused lasso, nonnegative lasso etc.. Furthermore, when the noise of the above
problems does not obey Gaussian distribution, pcLAD is more robust and reliable than
classo.

This paper is organized as follows. In Sect. 2, we provide a number of motivating
examples which illustrate the wide range of situations where the pcLAD is applicable.
Section 3 discusses pcLAD theoretical properties when p is fixed and high dimension.
LP and ADMM algorithms are described in detail in Sect. 4. Section 5 will compare
the performance of above two algorithms in different dimensions, and present three
data simulations which show the pcLAD will do a good job when classo is unreli-
able. In Sect. 6, some real data examples implie that the pcLAD method has a better
performance than classo in applications. We conclude with a discussion about future
extensions of this work in Sect. 7. Technical lemmas and proofs of theorems are given
in appendix.

2 Motivagting examples

In this section, we will briefly show some applied statistical problems solved by classo
that can also be solved by pcLAD.

2.1 Monotone curve fitting

Consider the problem of fitting a smooth function l(x), to a set of observations
{(x1, y1), . . .,(xn, yn)}, subject to the constraint that l must be monotone. James et al.
(2020) has shown that classo can be applied to monotone curve fitting. We can replace
the g(β) = ∑n

i=1 (yi − B(xi )′β)
2 as g(β) = ∑n

i=1

∣∣yi − B(xi )′β
∣∣, then we need to

minimize g(β) = ∑n
i=1

∣∣yi − B(xi )′β
∣∣ subject to Cβ ≤ 0, where the t th row of C

is the derivative B ′(vt ) of the basis functions evaluated at vt for a fine grid of points,
v1, . . . , vm , over the range of x . Enforcing this constraint ensures that the derivative
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of l is non-positive, so l will be monotone decreasing. Obviously, this model can be
addressed using the pcLAD methodology.

2.2 Monotonic order estimation

Isotonic regression is a monotonic order estimate studied by many literatures such as
Wu et al. (2001), Tibshirani et al. (2011), Gaines et al. (2018), etc.. The lasso with a
monotonic ordering of the coefficients was referred to by Tibshirani and Suo (2016)
as the ordered lasso. Gaines et al. (2018) has implied that both of the above estimates
can be solved by classo. Next, we will show the monotonic order estimation can be
also solved by pcLAD. Consider pcLAD without equality constraints as follows :

argmin
β

n∑

i=1

∣∣yi − x ′
iβ

∣∣ + n
p∑

j=1

λ j
∣∣β j

∣∣ subject to Cmβ ≤ 0. (6)

When x ′
i is the i row of identity matrix, λ j = 0 for any j , and the constraints matrix is

Cm =

⎛

⎜⎜⎜
⎝

1 −1
1 −1

. . .
. . .

1 −1

⎞

⎟⎟⎟
⎠

. (7)

The formula (6) will become the LAD isotonic regression. When the λ j > 0 for any
j and the constraints matrix is same the matrix as before, it will be a monotonic order
LADlasso. Indeed, there are many other options of the constraints for the monotonic
order estimation. For example, Cm can also defined as follows.

Cm =

⎛

⎜⎜⎜
⎝

−1 1
−1 1

. . .
. . .

−1 1

⎞

⎟⎟⎟
⎠

.

This Cm makes the estimation coefficient monotone decreasing. Other options can
also be limited to some certain coefficients, such as

β1 ≤ β3, β2 ≤ β4, β3 ≤ β6.

Furthermore, we can also obtain the LAD version of order lasso (Tibshirani and
Suo 2016) by rewriting β into β+ − β− and adding monotonoic order to β+ and β−.

2.3 Generalized LADlasso and LAD fused lasso

Gaines et al. (2018) and James et al. (2020) have proved that generalized lasso (Tibshi-
rani and Taylor 2011) can be transformed into classo. We also consider the following
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the generalized LADlasso problem:

argmin
β

‖y − Xβ‖1 + nλ ‖Dβ‖1 , (8)

where D ∈ Rr×p, rank(D) = r .
The following lemma will show the generalized LADlasso can also be transformed

into pcLAD.

Lemma 1 If r ≤ p, (8) can be converted to the classical LADlasso problem. If r > p
and rank(D) = p, then there exist matrix C, F, and X̃ such that, for all values of λ,
the solution to (8) is equal to β = Fθ , where θ is given by:

argmin
θ

∥∥∥y − X̃θ

∥∥∥
1
+ nλ ‖θ‖1 subject to Cβ = 0. (9)

The proof of Lemma 1 is provided in Appendix A. Hence, any problem that falls into
the generalized LADlasso can be solved by pcLAD.

LAD fused lasso is the LAD version of fused lasso (Tibshirani et al. 2005), it is
defined as the solution to

argmin
β

‖y − Xβ‖1 + n
p∑

j=1

λ j
∣∣β j

∣∣ + n
p∑

j=2

γ j
∣∣β j − β j−1

∣∣ . (10)

It’s very easy to know LAD fused lasso is a special case of the generalized LADlasso
(8) with the equality penalty matrix D as

(−Cm

Ip

)
∈ R(2p−1)×p,

where Ip is the p × p identity matrix.
The fused LADlasso encourages blocks of adjacent estimated coefficients to all

have the same value. This type of structure often makes sense in situations where
there is a natural ordering in the coefficients. Similar to James et al. (2013), if the data
have a two-dimensional ordering, such as for an image reconstruction, this idea can
be extended to the 2d fused LADlasso

argmin
β

‖y − Xβ‖1 + n

⎛

⎝
∑

j, j ′
λ j, j ′

∣∣β j, j ′
∣∣ +

∑

j �= j ′
γ j, j ′

∣∣β j, j ′ − β j, j ′−1
∣∣

+
∑

j �= j ′
η j, j ′

∣∣β j, j ′ − β j−1, j ′
∣∣

⎞

⎠
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2.4 Nonnegative sparse estimation

The most common non negative sparse estimation is nonnegative lasso. It appeared
in a lot of literatures. First mentioned in the seminal work of Efron et al. (2004), the
positive lasso requires the lasso coefficients to be nonnegative. This variant of the
lasso has seen applications in areas such as vaccine design (Hu et al. 2015a), nuclear
material detection (Kump et al. 2012), document classification (El-Arini et al. 2013),
and portfolio management (Wu et al. 2014).Many other nonnegative sparse estimators
have been proposed such as Yang and Wu (2016), Wu and Yang (2014), Mandal and
Ma (2016), Li et al. (2019), Xie and Yang (2019), Li and Yang (2019), etc.. However,
the LADversion of non negative lasso is not appeared in the literature. In the discussion
ofWang (2013), we know that LADmethod can process a wide range of non Gaussian
observations, so it is necessary to propose some non negative sparse LAD methods.

The first non negative sparse LAD method proposed in this section is non negative
LADlasso:

argmin
β≥0

‖y − Xβ‖1 + n
p∑

j=1

λ j
∣∣β j

∣∣. (11)

Obviously, non negative LADlasso is pcLAD (2) with C1 = −Ip and b1 = 0p.
The other is non negative fused LADlasso:

argmin
β≥0

‖y − Xβ‖1 + n
p∑

j=1

λ j
∣∣β j

∣∣ + n
p∑

j=2

γ j
∣∣β j − β j−1

∣∣ . (12)

As discussed in Sect. 2.3, non negative fused LADlasso can be transformed into
non negative generalized LADlasso, which is a special case of pcLAD.

Although four examples are listed, there are still many statistical problems that can
be solved by pcLAD, such as sum to zero regression , sum to one regression, relaxed
lasso, sign-constrained least square regression, etc.. One can find more details about
these methods by referring to Shi et al. (2016), Meinshausen (2007), Meinshausen
(2013).

3 Statistical properties

In this section, we firstly discuss the statistical properties of pcLAD with equality
constraints when the dimension of estimation p is fixed and much larger than sample
size n. As discussed in Sect. 1, we use adaptive L1 penalty (Wang et al. 2007; Zou
2006), which is more general penalty than L1 penalty (Tibshirani 1996). When the
p is high dimensional setting, the calculation of adaptive L1 penalty parameters are
complicated and time-consuming, therefore we adopt ordinary L1 penalty parameters
suggested by Wang (2013). We assume that y ∈ Rn is generated from:

yi = x ′
iβ + εi , i = 1, 2, . . . , n. (13)
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60 X. Wu et al.

Where xi = (xi1, xi2, . . . , xip)′, β ∈ Rp, and ε = (ε1, ε2, . . . , εn)
′ are i .i .d. median-

zero random variables. Let β̂ denote a solution of pcLAD defined by:

β̂ = argmin
β

Q(β) subject to Cβ = b, (14)

where Q(β) =
n∑

i=1

∣∣yi − x ′
iβ

∣∣+
p∑

j=1
λ j

∣∣β j
∣∣. If the solution (14) is not unique, we can

take β̂ to be any optimal solution, our statistical properties hold for all such solutions.

3.1 p is fixed

For convenience, we decompose the true regression coefficient as β0 = (β ′
0A, β ′

0B)′,
where β0A = (β01, β02, . . . , β0k) are k ture significant coefficients and β0B =
(β0(k+1), β0(k+2), . . . , β0p) are p−k ture insignificant coefficients. Moreover, assume
that β0 j �= 0 for 1 ≤ j ≤ k and β0 j = 0 for k < j ≤ p. Its corresponding pcLAD
estimator is denoted β̂ = (β̂ ′

A, β̂ ′
B)′. We also decompose the covariate xi = (x ′

i A, x ′
i B)

with xi A = (xi1, xi2, . . . , xik)′ and xi B = (xi(k+1), xi(k+2), . . . , xip)′. In addition,
constraint matrixC can be rewritten asC = (CA,CB). To study the theoretical proper-
ties of pcLAD in fixed dimension, the following technical assumptions are necessarily
needed:

Assumption 1 The error εi has continuous and positive density at the origin, that is
f (0) > 0.

Assumption 2 The design xi , i = 1, 2, . . . ., n, satisfies the limit of
n∑

i=1
xi x ′

i/n → Σ

as n → ∞. Denote the top-left k−by−k submatrix ofΣ byΣ11, and the right-bottom
(p − k) − by − (p − k) submatrix of Σ by Σ22.

Assumption 3 There is a nonsingular submatrix in CA, which is denoted as CA1 . The
size of index set A1 should be equal to be the row rank of C , that is m.

Note that Assumptions 1 and 2 are both very typical technical assumptions used
extensively in the sparse estimation in fixed dimension such as Fan and Li (2001),
Wang et al. (2007), Wu and Liu (2009). Assumptions 3 is required in classo (James
et al. 2013).

Furthermore, define an = max{λ j , 1 ≤ j ≤ k} and bn = min{λ j , k < j ≤ p},
where λ j is a function of n. Based on the foregoing notation, the consistency of pcLAD
estimator can be first established.

Lemma 2 (Consistency) Consider a sample {(xi , yi ), i = 1, 2, . . . , n} from model
(13) satisfying Assumption 1 and 2 with i .i .d. ε′

i s. If
√
nan → 0, as n → ∞, there

exists a pcLAD estimation β̂ such that
∥∥∥β̂ − β0

∥∥∥
2

= OP (n− 1
2 ).

√
n-consistency is a common property in constrained LAD estimation such as

Wang (1995), Geyer (1994), Silvapulle and Sen (2005), and Parker (2019). Lemma 2
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show that linear constrained LADlasso also enjoys this nice property. Under some
further conditions, the sparsity property of the pcLAD estimator can be obtained as in
Lemma 3.

Lemma 3 (Sparsity) Consider a sample {(xi , yi ), i = 1, 2, . . . , n} from model (13)
satisfying Assumption 1 and 2 with i .i .d. ε′

i s. If
√
nbn → ∞, as n → ∞, for any

given β, satisfying ‖βA − βA0‖2 = OP (n− 1
2 ),C(β −β0) = 0. Then, with probability

trending to 1, for any constant R > 0, Q((β ′
A, 0′)′) = min

|β2|≤Rn−1/2
Q((β ′

A, β ′
B)

′
).

The Lemmas 2 and 3 are common results of many sparse estimations in fixed
dimension. There is no doubt that they are very nice properties, but not reflect the
influence of constraints. Our next theorem will show influence of constraints and
illustrate the pcLAD estimator also enjoy the popular asymptotic Oracle property.

Theorem 1 (Oracle) For a sample {(xi , yi ), i = 1, 2, . . . , n} from model (13) satisfy-
ing Assumption 1, 2 and 3 with i .i .d. ε′

i s. if
√
nan → 0,

√
nbn → ∞, as n → ∞,

then with probability trending to one, the consistent pcLAD estimation β̂=(β̂ ′
A, β̂ ′

B)
′

in Lemma 2 must be satisfy:

〈a〉 Sparsity:β̂B=0.

〈b〉 Asymptotic normality:√n(β̂A−βA0)
L−→ N (0,

∑−1
11

4 f 2(0)
(I −V )′(I −V )), where

∑
11 is defined in Assumption 2, V = C ′

A1
(CA1

∑−1
11 C ′

A1
)
−1

CA1

∑−1
11 and

L−→
represents convergence in distribution.

The proof details of Lemma 2, 3 and Theorem 1 can be found in Appendix B.

Remark 1 Theorem 1 is a novel conclusion which reflects the influence of constraints
on the asymptotic distribution of significant coefficients estimation. It is easy to see
the variance of pcLAD estimation error is numerically smaller than LADlasso. This
result is not surprising because the prior information to the model has been used.

3.2 p is high dimensional

Due to using the ordinary L1 penalty, the high dimensional pcLAD can be rewritten
as:

β̂ = argmin
β

‖y − Xβ‖1 + nλ ‖β‖1 subject to Cβ = b, (15)

where C has full row rank and rank(C) = m.
We adopt the Assumption 1, 3 and the notation in Sect. 3.1. We can also decom-

pose the constrained matrix CA as
(
CA1 ,CA2

)
. In practical application, the equality

constraint parameters before the insignificant coefficients do not work and are usually
set to 0 that is CB = 0. This setting is not only in line with the actual situation, but
also necessary. If the corresponding penalty submatrix of the insignificant coefficients
CB �= 0, then itmust be found that an insignificant estimated coefficient can be linearly
expressed by the significant estimated coefficients, which will cause the estimation
value of this insignificant coefficient to become non-zero. In this way, the accuracy of
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variable selection of pcLAD model will be greatly reduced. A naive method to avoid
this is to increase the penalty parameter so that the insignificant coefficients (usually
the estimated value is not too large) are completely shrunk to 0, but this will also lead
to the bias of the significant estimated coefficients. Thus, if one wants to apply the λ

suggested by Wang (2013) to pcLAD, CB = 0 is indispensable.
It is worth noting that there is a special case that does notmeet the above setting, that

is relaxed lasso constraint (Meinshausen 2007). This constraint is defined as follows,

βM = 0, whereM ∈ B. (16)

Because in this setting, CA = 0, then insignificant estimated coefficients are not
linearly expressed by the significant estimated coefficients. In order to include this
special case in pcLAD, when the constraint of βM = 0 exists, the constraint ofCB = 0
can be transformed into the constraint of CB/M = 0.

Decompose β
′ = (β

′
A1

, β
′
A2

, β
′
M , β

′
B/M ), and consider βM = 0 and CB/M = 0,

then we get the equation:
CA1βA1 + CA2βA2 = b. (17)

In order to do prove the near oracle property of pcLAD estimator β̂, we need to present
a lemma related to the estimation error h = β0 − β̂. In what follows, let the vector
hA be defined as: if the index i is in the index set A, the i th element of hA is the
same as that of h; otherwise, the i th element of hA is 0. By (17) and Assumption 3,
we will get hA1 = −(

CA1

)−1
(CA2hA2), where CA1 is m × m matrix and CA2 is

m × (k − m) matrix. In high dimensional statistics, as described by Bhlmann and
van de Geer (2011), it is generally required to: k log(p) 
 n. As Gu and Zou (2020)
points out, in the lasso framework, the dimension of LAD estimation can reach the
order en

π
, where 0 < π < 1. So, we need to assume k < ∞, that is k = O(1) which

will always satisfy k log(p) 
 n. By synthesizing m < k, we can obtain that there
is always a constant Φ > 0, such that

∥∥hA1

∥∥
1 ≤ Φ

∥∥hA2

∥∥
1 and

∥∥hA1

∥∥
2 ≤ Φ

∥∥hA2

∥∥
2.

Then we can get a lemma about the cone constraint of h.

Lemma 4 Supposeλ=c
√
2A(α) log(p)/n, letΔc̄=

{
δ ∈ Rp : ∥∥δA2

∥∥
1 ≥ c̄

1+Φ
‖δB‖1

}
.

Then h ∈ Δc̄ , where c̄ = (c−1)
(c+1) .

The proof details of Lemma 4 can be found in the Appendix A. This cone constraint
is extremely important for high dimensional estimation error bounds, one can see it
in the classical lasso, square root lasso, LADlasso (quantile lasso) and constrained
lasso, for example, Bickel et al. (2009), Wang (2013), Belloni et al. (2011), James
et al. (2013), Gu and Zou (2020).

Now we introduce some restricted eigenvalue concepts on the design matrix X ,
based on L2 norm to prepare for the analysis of near Oracle property of the pcLAD
estimator. Let λuk be the smallest number such that for any k sparse vector d:

‖Xd‖22 ≤ nλuk ‖d‖22 ; (18)
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also let λuk be the largest number such that for any k sparse vector d:

‖Xd‖22 ≥ nλlk ‖d‖22 . (19)

Let θk1,k2 be the smallest number such that for any k1 and k2 sparse vector c1 and c2
with disjoint support,

|(Xc1, Xc2)| ≤ nθ
k2
k1

‖c1‖2‖c2‖2. (20)

The above concepts λuk and θ
k2
k1

are related to the sparse recovery conditions in the
compressed sensing (CS). See Wang (2013) for more details. For the pcLAD model,
we define a concept on restricted eigenvalues of design matrix X based on L1 norm
as:

klk(c̄) = min
h∈Δc̄

‖Xh‖1
n‖hA‖2 . (21)

To simplify the notations, we will simply write klk(c̄) as k
l
k .

In order to formulate our main result, we also need the following condition:

3

16

√
nklk > λ (1 + Φ)

√
k − m

n
+ c1

√
2max(m, k − m) log(p)

(
5

4
+ (c̄ + 1)(Φ + 1)

c̄

)
,

(22)
for some constant c1 such that c1 > 1+2

√
λuk . This condition is obviously true when

n → ∞. Then we have following theorem.

Theorem 2 Consider pcLADmodel, assume ε1, ε2, . . . , εn are i.i.d. random variables
satisfying Assumption 1 and 3, suppose λlk > θk,k(

1+Φ
c̄ ) and (22) holds, then the

pcLAD estimator β̂ satisfies with probability at least 1 − 2p−4min(k−m,m)(c22−1)+1

∥∥∥β̂ − β0

∥∥∥
2

≤
√
2max(m, k − m) log(p)

n

16
{√

2c(1 + Φ) + c1[ 54 + (c̄+1)(Φ+1)
c̄ ]

}

aηlk√

1 + 1

c̄
+ Φ,

where c1 = 1 + 2c2
√

λuk and c2 > 1 is a constant, ηlk = [λlk−θkk ( 1+Φ
c̄ )]2

λuk (1+Φ)
, λ =

2c
√
n log(p).

From the theorem we can easily see that asymptotically, with high probability,

∥∥∥β̂ − β0

∥∥∥
2

= O
(√

max(k − m,m) log(p)/n
)

. (23)

By k log(p) 
 n, we know the pcLAD estimator has near Oracle performance. More-
over, The bounds of pcLAD estimation error decay faster with the increase of n than
(4), that is, equality constraints can improve the accuracy of estimation. This is also
verified in section of simulation study in Sect. 5.
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Unlike the L2 bound of LADlasso in (4), which depends on
√
k, the L2 bound of

pcLAD depend on
√
m and

√
k − m. The rate

√
(k − m) log(p)/n follows from the

fact that (17) implies
βA1 = (CA1)

−1(b − CA2βA2). (24)

Hence, them coordinates of βA1 are completely determined by the remaining (p−m)

coordinates. The problem of estimating k significant coefficients can be regarded as
the problem of estimating (k − m) significant coefficients. Note that the bound in
Theorem 2 also depend on

√
m. In fact, this term reflects the error due to model

selection. To see this, when m = k, it follows from (24) that we can exactly recover

βA, but only if we know the locations of the non-zero entries. There are

(
p
m

)
∼ pm

possible locations of the non-zero entries. The number of possible locations of nonzero
coefficients is a number related to m, so the bounds of estimation error are related to
m.

Next, we will explain another reason that we need k = O(1), there are pk hypothe-
ses for the determination of nonzero entries, and information theoretic arguments
show that even if we have m = k constraints, we still at least need n to be of order

log

(
p
k

)
= k log(p) to identify the correct hypothesis. In fact, the number of equality

constraintsm equals to the number of significance coefficients k is not satisfied inmost
cases. So we relax the requirement of k log(p) 
 n, only require k = O(1) to make
sure correct hypothesis can be identified.

A simple consequence of Theorem 2 is that the pcLAD estimator will select most
of the significant variables with high probability. We have the following theorem.

Theorem 3 Suppose T̂ = supp(β̂) be the estimated support of coefficients, in other
words, T̂ is the set of significant coefficient estimates. Then under the same conditions
as in Theorem 2, with probability at least 1 − 2p−4min(k−m,m)(c22−1)+1

⎧
⎨

⎩
i : |βi | ≥

√
2max(m, k − m) log(p)

n

16
{√

2c(1 + Φ) + c1[ 54 + (c̄+1)(Φ+1)
c̄ ]

}

αηlk

⎫
⎬

⎭
∈ T̂

where c1 = 1 + 2c2
√

λuk and c2 > 1 is a constant, ηlk = [λlk−θkk ( 1+Φ
c̄ )]2

λuk (1+Φ)
, λ =

2c
√
n log(p).

This theorem shows that the pcLAD method will select a model that contains all
the variables with large coefficients. If in model (15), all the nonzero coefficients are
large enough in terms of absolute value, then the pcLADmethod can select all of them
into the model.

3.3 Discussion on inequality constraints

In the previous section we have concentrated on results for the equality constrained
pcLAD. Next, we will briefly discuss the theoretical results of inequality constrained
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pcLAD. When p is fixed dimension, results in the inequality setting are same to
equality constraints’. It is easy to see that if β0 lies inside the region, that is Cβ0 < b,
then the pcLAD and LADlasso should give same result because the constraints will
play little role in the regression. However, if β0 is on the constraint boundary, then
the pcLAD should offer same improvements as equality LADlasso. This method of
analyzing inequality constrained regression in fixed dimension has been used in many
literatures, such as Liew (1976), Wang (1995), Wang (1996) and so on. Specifically,
take nonnegative constraint β ≥ 0 as an example. Under the assumptions and settings
of this paper, the true significant coefficients and insignificant coefficients satisfy
β0A > 0, β0B = 0. In the theoretical analysis of asymptotic properties, we only
need to consider equality constraints CB = Ip−k . Thus the constrained matrix C is
composed of 0 and CB and the constrained vector b is 0, this constraint does not affect
the proof of Lemma 1 and 2. In this paper, the result of Lemma 2 is the same as βB = 0.
So, CB = Ip−k does not change the result of Theorem 1 and nonnegative constraint
LAD also enjoys the Oracle property as unconstrained LADlasso.

Other examples that are highlighted in this paper are monotonic order LAD esti-
mation, fused and general LADlasso. For monotonic order constraint in this paper, the
insignificant coefficients βB = 0 and the significant coefficients constrained matrix
CA is defined as (7). If there is no equality constraint in CA ≤ bA, monotonic order
constraint LADlasso will have the same result as unconstrained LADlasso. If there
are some equality constraints, monotonic order constraint LADlasso will enjoy the
asymptotic normality with equality constraints as (b) of Theorem 1. Nevertheless, for
fused and general LADlasso, we can’t assert this conclusion under the assumption of
this paper. The reason is that in the proof of Lemma 1, X̃ will have different augmented
forms under different dimensional settings. In fixed and high dimensions, X̃ may not
satisfy the assumptions in this paper. How to make fused and general LADlasso also
have Oracle property is a further research needing more technical assumptions and
proof methods.

When p is high dimension, the L2 bound of pcLAD in the inequality setting are
more complicated. To our knowledge, there are two methods to analyze it. One is
similar to the fixed dimension method, which has been used in He (2011). Following
his ideas, for the inequality constraints C1β ≤ b1, we partition C1 and b1 into block
matrices as

C1β0 =
(
C11 C12
C13 C14

)(
β0A
β0B

)
and b1 =

(
b11
b12

)
,

such that C11β0A = b11 and C13β0A < b12. Note that β0 satisfies the constraints
C1β ≤ b1 at the boundary (i.e., C11β0A = b11) while satisfying the constraints
C1β ≤ b1 in the interior ( C13β0A < b12). Moreover, if the equality constraint
C2β = b2 exists, partition it into block matrices as

C2β = (
C21 C22

) (βA

βB

)
and b2 = b2.
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Then, we can reconstruct equality constraints

G =
(
C11
C21

)
and g =

(
b11
b2

)
.

Thus, Gβ = g is new equality constraints which are brought into theoretical analysis.
Here, we still take nonnegative constraint β ≥ 0 as an example. The constraints
of coefficients in high dimension is the same as in the fixed dimension. And the
nonnegative constraints will be relax lasso like (16). Due to the βM = 0 is not affect
the proof process, the L2 bound is

√
(k) log(p)/n, which is the same as the result of

Wang (2013). For monotonic order LAD estimation in high dimension, the L2 bound
is

√
max(m, k − m) log(p)/n, wherem is the

∑

i �= j
I (β0i = β0 j ). The case of fused and

general LADlasso in high dimension has been discussed briefly before, and we omit
it here.

Another analysis method of inequality constrained regression is to add relaxed
variables. As discussed by James et al. (2013), we can change inequality constraints
into equality constraints by adding relaxed variables. However, when the added relaxed
variable is close to 0 but not exactly 0, the assumption of coefficient sparsity may not
be tenable. Although Negahban et al. (2010) have discussed lasso in this case, and they
proved that another sparse vector can be used to approximate the not exactly sparse
estimation, but extending it to pcLAD is far beyond the scope of our paper.

4 The implement of pcLAD

How to compute L1-penalized LAD regression is nontrivial task due to the nons-
moothness of LAD loss function and L1 penalty term. Fortunately, this nontrivial
task has obtained a lot of attentions and many methods have been presented to solve
penalized LAD regression such as the linear program using the interior point method
(Koenker and Ng 2005), a solution path algorithm (Li and Zhu 2008), a greedy coor-
dinate descent algorithm (Wu and Lange 2008; Peng and Wang 2015), pADMM and
scdADMM (Gu et al. 2017), QPADMM (Yu and Lin 2017), QPADMM-slack (Fan
et al. 2020) and so on.

However, linear constrained will makes all of the above methods can not be directly
applied to pcLAD and even several methods fail completely since the optimal solution
of pcLAD is limited to an affine set. In particular, a greedy coordinate descent algorithm
for LADlasso can’t work and all the ADMM algorithms mentioned above cannot be
used directly. Recently, Inspired by Li and Zhu (2008) and Liu et al. (2020) proposed a
solution path algorithm for solving generalized L1 penalized quantile regression with
linear constraints. This algorithm utilizes the piecewise linear of the L1 penalized
quantile regression solution path to get an entire solution path by solving a series of
linear programming problems. It is worth noting that compared with the approach as
in Li and Zhu (2008), it doesn’t require that X has full column rank and allows more
than one events occur at a transition point. These improvements make this algorithm
possible to be used in high dimensional setting. If one want to get the entire solution
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path, algorithm proposed by Liu et al. (2020) is a good choice. But this algorithm also
has some limitations. One is it must calculate an entire solution for a sequence lambda
in (0,+∞), then choose the best lambda by some criterions. For some optimization
problems which can determine the specific value of λ, it is not cost-effective to use it.
The other is that in solving the complete solution path, every λ in the sequence needs
twice linear optimization with some constraints. Different from the path algorithm of
classo (Gaines et al. 2018), it has no explicit solution only related to the active set.
When p and n is large, it requires an expensive computational cost.

In the discussion of the Sect. 3, following Wang et al. (2007) and Wang (2013), we
respectively determine the specific value λ of pcLAD in fixed and high dimension.
Although, the algorithm proposed by Liu et al. (2020) can resolve the pcLAD, the
computing is a large burden. In this section, we propose some efficient algorithms to
solve pcLAD under specific λ.

4.1 Linear programing

A typical approach to solving LAD regression is to cast it as a linear program and
then solve the linear program using the interior point method, so the first algorithm we
present to solve pcLAD is a linear programing. Further, this method is also applied to
penalized LAD in fixed and high dimensional regression such as Wang et al. (2007),
Wu and Liu (2009), Gao andHuang (2010),Wang (2013) ,etc.. The popularR package
quantreg is based on an interior point method which can solve the (penalized) LAD
regression (Portnoy and Koenker 1997). LAD regression problem is equivalent to the
linear program,

min
β

1Tn u + 1Tnv

s.t .

{
u − v + Xβ = y
u, v ∈ Rn+, β ∈ Rp.

(25)

Problem (25) is often solved with the interior method in its dual domain,

min
d

−yTd

s.t .

{
XTd = 0
d ∈ [−1/2, 1/2]n .

(26)

To apply this method to penalized LAD regression, just make a simple data aug-
mentation for X and y. Then, penalized LAD regression can be computed with the
follow dual domain,

min
d

−ỹTd

s.t .

{
X̃Td = 0
d ∈ [−1/2, 1/2]n+p,

(27)

where ỹ = (yT , 0pT )T , X = [XT , diag(λ)]T . Note that when λ = 0p, (27) is ordinary
LAD regression.

The main difficulty of solving pcLAD with linear programming algorithm is how
to bring equality and inequality constraints into optimization. Inspired by Koenker
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and Ng (2005), we can also following Berman (1973), consider the primal prob-
lem min

x
{cT x |Ax − b ∈ T , x ∈ S },where the sets T = {v ∈ Rn} and S = {v ∈

R2n ×Rp} can be arbitrary closed convex cones. This canonical problem has the dual
max
y

{bT y ∣∣c − AT y ∈ S∗, y ∈ T ∗ } , where S∗ = {v ∈ R2n×Rp
∣∣xT y ≥ 0 i f x ∈ S}

is the dual of S and T∗= {v ∈ Rn}.
Thus, pcLAD is equivalent to the following linear program

min
β

1Tn u + 1Tnv

s.t .

⎧
⎪⎪⎨

⎪⎪⎩

u − v + X̃β = ỹ
C1β = b1
C2β ≤ b2
u, v ∈ Rn+, β ∈ Rp

(28)

Then, for our purposes, it suffices to consider the following special case:

⎧
⎪⎪⎨

⎪⎪⎩

cT = (eTn , eTn , 0Tp )

xT = (uT, vT , βT )

T = {v ∈ 0n+p+m1 × Rm2+ }
S = {v ∈ R2n+ × Rp}

and

⎧
⎪⎪⎨

⎪⎪⎩

bT = (ỹT , b1T , b2T )

yT = (dT1 , dT2 , dT3 )

T ∗ = {v ∈ Rn+p × Rm1 × Rm2− }
S∗ = {v ∈ R2n+ × Op}

(29)

After some easy transformations, z1 = d1+en
2 , z2 = d2, z3 = −d3, z = (zT1 , zT2 , zT3 )T ,

the dual problem in (28) can be expressed more concisely as,

min
z1,z2,z3

− (ỹT , bT1 , bT2 )z

s.t .
[
X̃ T ,CT

1 ,−CT
2

]
z = X̃ T

2 en+p,

0n+p ≤ z1 ≤ en+p,

z3 ≥ 0m2 .

(30)

It is noteworthy that we can also use two equality constraints C1β ≥ b1 and −C1β ≥
−b1 instead of the inequality constraint C1β = b1 to solve optimization problems
(30),then the solution can be found using the R package quantreg, specifically, the
estimator is implemented in quantreg’s functions rq.fit.fnc and rq.fit.sfnc.

In addition to transforming the augmented data into an optimized form of con-
strained LAD, pcLAD can also be equivalent to the following linear programming

min
β

1Tn u + 1Tnv + nλT (β+ + β−)

s.t .

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u − v + Xβ = y
β = β+ − β−
C1β = b1
C2β ≤ b2
u, v, β+, β− ∈ Rn+, β ∈ Rp

(31)
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Similar to the derivation of (30),the dual to (31) is

min
z1,z2,z3

− (yT , 0Tp , bT1 , bT2 )z

s.t .
[
XT , ndiag(λ),CT

1 ,−CT
2

]
z = XT

2 ep + n
2λ,

0n+p ≤ z1 ≤ en+p,

z3 ≥ 0m2 ,

(32)

where diag(λ) denotes the diagonal matrix with the components of λ on its diagonals.
This result is consistent with the result in Gu et al. (2017). Furthermore, it’s very
easy to verify that (30) and (32) are equivalent. As Gu et al. (2017) points out, (32)
involves p equality constraints and often is solved with the interior point method, but
the interior point algorithm is the state-of-the-art method for fitting penalized LAD
(0.5 quantile) regression in low to moderate dimensions. When the p is very large,
the interior point method is less efficient. A lot of numerical evidence in Sect. 5.1 can
demonstrate it. This phenomenon motivates us to consider another efficient alternative
for fitting the high dimensional pcLAD regression.

4.2 Alternating direction algorithm

The ADMM is a general convex optimization algorithm first introduced by Gabay and
Mercier (1976) and Glowinski and Marrocco (1975). It has become popular recently
since its capability of solving high dimensional problems. In this subsection, we briefly
review the ADMM and propose a nested scale form ADMM for pcLAD. A compre-
hensive overview of the ADMM can be found in Boyd et al. (2010).

In general ADMM is an algorithm to solve a problem that features a separable
objective but connecting constraints.

min f (x) + g(z)
s.t . Mx + Fz = c,

(33)

where f , g : Rp �→ R ∪ ∞ are closed proper convex functions. The ADMM solves
problem (33) by writing it into the following equivalent form,

min { f (x) + g(z)} + τ
2 ‖Mx + Fz − c‖22

s.t . Mx + Fz = c,
(34)

where the last term is called the augmentation, which is add for better convergence
properties and the τ is a tunable augmentation parameter. Following standard convex
optimization method, problem (45) has the following Lagrangian.

Lτ (x, z, v) = f (x) + g(z) + vT (Mx + Fz − c) + τ

2
‖Mx + Fz − c‖22 , (35)

where v is the dual variable.
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The basic idea of ADMM is to utilize block coordinate descent to the augmented
Lagrangian function followed by an update of the dual variables v

x (t+1) ← argmin
x

Lτ (x, z(t), v(t));
z(t+1) ← argmin

z
Lτ (x (t+1), z(t), v(t));

v(t+1) ← v(t) + τ(Mx (t+1) + Fz(t+1) − c);
(36)

where t is the iteration counter. Often it is more convenient to work with the equivalent
scaled form of ADMM, which scales the dual variable and combines the linear and
quadratic terms in the update step (36). The updates become

x (t+1) ← argmin
x

f (x) + τ
2

∥∥Mx + Fz(t) − c + u(t)
∥∥2
2 ;

z(t+1) ← argmin
z

g(z) + τ
2

∥∥Mx (t+1) + Fz − c + u(t)
∥∥2
2 ;

u(t+1) ← u(t) + Mx (t+1) + Fz(t+1) − c;
(37)

where u = v
τ
is the scaled dual variable. As discussed in Gaines et al. (2018), the

scaled form is especially useful in the case where M = −F = I and c = 0, as the
updates can be rewritten as

x (t+1) ← proxτ f (z(t) − u(t));
z(t+1) ← proxτg(x (t+1) + u(t));
u(t+1) ← u(t) + x (t+1) − z(t+1);

(38)

where proxτ f is the proximal mapping of a function f with parameter τ . Recall that
the proximal mapping is defined as

proxτ f (v) = argmin
x

(
f (x) + τ

2
‖x − v‖22

)
(39)

One benefit of using the scaled form for ADMM is that, in many situations, the
proximal mappings have simple, closed form solutions, resulting in straightforward
ADMM updates. And Gaines et al. (2018) has proved that the scaled form ADMM
algorithm (hereinafter referred to as sADMM) is very effective in high dimensional
constrained lasso estimation. Following this work, we will show that the scaled form
ADMM can also be expanded to pcLAD.

Let f (β) = 1
n

n∑

i=1

∣∣yi − xTi β
∣∣ +

p∑

j=1
λ j

∣∣β j
∣∣ and g(z) = χC =

{+∞ z /∈ C
0 z ∈ C

,

where set C is defined as {z ∈ Rp : C1z = b1,C2z ≤ b2}. For the first update of (38),
proxτ f in classo is regarded as a regular lasso problem, but in pcLAD needs a more
technical method. Substitute f (β) and g(z) into proxτ f , we can get the following
update
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β(t+1) = argmin
β

1

n

n∑

i=1

∣∣∣yi − xTi β

∣∣∣ +
p∑

j=1

λ j
∣∣β j

∣∣ + τ

2

∥∥∥β + z(t) + u(t)
∥∥∥
2

2
. (40)

(40) is an unconstrained optimization problem of LAD loss function + penalty term,
but the penalty is a lasso + a quadratic penalty. When z(t) + u(t) = 0, this combined
penalty becomes an elastic net (Zou et al. 2005). Due to the combined penalty and
nonsmoothness of the LAD loss function, as far as we know, there is no good method
to resolve (40) directly when p is large scale. However, some recent literatures have
proposed a number of algorithms to solve elastic net penalized quantile regression in
high dimension such as Gu et al. (2017), Yu and Lin (2017). Inspired by these works,
we can derive some algorithms to calculate (40).

Using the same steps as section 3.2 in Gu et al. (2017), (40) is equivalent to

min
β,r

1
n

n∑

i=1
|ri | +

p∑

j=1
λ j

∣∣β j
∣∣ + τ

2

∥∥β + z(t) + u(t)
∥∥2
2

s.t . Xβ + r = y
(41)

Fix τ̃ > 0 and the augmented Lagrangian function of (41) is

L τ̃ (β, r, θ) = 1

n

n∑

i=1

|ri | +
p∑

j=1

λ j
∣∣β j

∣∣ + τ

2

∥∥∥β + z(t) + u(t)
∥∥∥
2

2
− θT (Xβ + r − y)

+ τ̃

2
‖Xβ + r − y‖22 . (42)

Denote (β(t+1,k), r (k), θ (k)) as the kth iteration of the algorithm for k ≥ 0 and the next
iteration is

β(t+1,k+1) ← argmin
β

p∑

j=1

λ j
∣∣β j

∣∣ + τ

2

∥∥∥β + z(t) + u(t)
∥∥∥
2

2
− βTXT θ(k)

+ τ̃

2

∥∥∥Xβ + r (k) − y
∥∥∥
2

2

r (k+1) ← argmin
r

1

n

n∑

i=1

|ri | − rT θ(k) + τ̃

2

∥∥∥Xβ(t+1,k+1) + r − y
∥∥∥
2

2

θ(k+1) ← θ(k) − τ̃ (Xβ(t+1,k+1) + r (k+1) − y)

(43)

It is noteworthy that although the β update of (43) is not the same as (40) in Gu et al.
(2017), one can expand the quadratic penalty into a ridge penalty ‖β‖22 and a linear
summation penalty βT(z(t) + u(t)). Then,
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β(t+1,k+1) ← argmin
β

⎛

⎝
p∑

j=1

λ j
∣∣β j

∣∣ + τ

2
‖β‖22

⎞

⎠ − βT[XT θ(k) − τ̃ (z(t) + u(t))]

+ τ̃

2

∥∥∥Xβ + r (k) − y
∥∥∥
2

2
(44)

It is the same as the update of elastic net penalized quantile regression.
Like algorithm 3 of Gu et al. (2017), whenwe use pADMM to solve (43), the update

steps have the following closed formula.

β(t+1,k+1) ← ((τ̃η + τ)−1shirnk[τ̃ ηβ(t+1k) + XT
j (θ

(k) + τ̃ y − τ̃ Xβ(t+1,k) − τ̃r (k))

− τ(z(t) + u(t)), λ j ])1≤ j≤p;
r (k+1) ← proxτ̃‖‖1(y − xTi β(t+1,k+1) + τ̃−1θ(k));
θ(k+1) ← θ(k) − τ̃ γ (Xβ(t+1,k+1) + r (k+1) − y);

(45)
where η ≥ Λmax(XT X), γ is a constant which is controlling the step length
for θ . Λmax(XT X) denotes the largest eigenvalue of a real symmetric matrix and
shrink[x, y] = sgn(x)max(|x | − y, 0) denotes the soft shrinkage operator with sgn
being the sign function. These definitions are the same as those in Gu et al. (2017).
Consider proxτ̃‖‖1(v) = argmin

r
( 1n

∑n
i=1 |ri | + τ̃

2 ‖r − v‖22) and as Lemma 1 proved

in Gu et al. (2017), it has an explicit solution.

proxτ̃‖‖1(v) = v − max

(
− 1

2τ̃
,min

(
v,

1

2τ̃

))
(46)

The main difference between (45) and algorithm is that the β update has one more
constant offset term τ(z(t) + u(t)) since the linear summation penalty βT(z(t) + u(t)).
Furthermore, we can also use scdADMM (algorithm 4 in Gu et al. (2017)) to solve
(43) by adding an same constant offset term to the corresponding position of β update.

For the second update of (38), we use the same method as Gaines et al. (2018).
proxτg is a projection onto the affine spaceC . This projection onto convex sets is well-
studied. In many applications, the projection can be solved analytically (see Section
15.2 of Lange (2013) for several examples). For situations where an explicit projection
operator is not available, the projection can be found by using quadratic programming
to solve the dual problem, which always has a smaller number of variables.

To sum up the above discussion, the nested scale form ADMM is described in
Algorithm 1. Although Algorithm 1 contains a nested ADMM iteration, both outer
and inner iteration have explicit expressions which makes it calculate very fast in high
dimensional setting. In fact, if lasso problem of the β update of sADMM is solved
by ADMM, sADMM also has a nested ADMM iteration. For numerical evidence, see
Sect. 5.1.
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Algorithm 1 Nested ADMM for solving the pcLAD
1.Initialize the algorithm with β(0) = z(0) = β0, u(0) = 0, τ > 0
2.For t = 0, 1, 2, . . . , repeat steps 2.1-2.4 until the convergence criterion is met.
2.1.Initialize β(t,0) = β(t), r (0) = y − Xβ(t), θ (0) = 0, τ̃ > 0

2.1.1.For k = 0, 1, 2, . . . , repeat steps 2.1.2-2.1.4 until the convergence criterion is met.

2.1.2.update
β(tk+1) ←
((τ̃η + τ)−1shirnk[τ̃ ηβ

(t,k)
j + XT

j (θ(k) + τ̃ y − τ̃ Xβ(t,k) − τ̃r (k)) − τ(z(t) + u(t)), λ j ])1≤ j≤p

2.1.3.update r (k+1) ← proxτ̃‖‖1 (y − xTi β(t,k+1) + τ̃−1θ(k))

2.1.4.update θ(k+1) ← θ(k) − τ̃ γ (Xβ(t,k+1) + r (k+1) − y)
2.2.update β(t+1) = β(t,k+1)

2.3.update z(t+1) ← projC(β(t+1) + u(t))

2.4.update u(t+1) ← u(t) + β(t+1) − z(t+1)

5 Simulation

In this section, we will show some numerical results when p is fixed and larger than n.
All simulations were performed on the Inter E5-2650 2.0 GHz processor with 16 GB
memory. In fixed dimension, we use the λ j = 5 log(p)

n
∣∣∣β̃ j

∣∣∣
, where β̃ j is the j th element

in the ordinary LAD estimation vector. As discussed in Wang et al. (2007), these
λ j satisfy

√
nan → 0 and

√
nbn → ∞. When p is high dimensional, we adopt

λ = √
1.1 log p/n, although it is smaller than λ = √

2 log p/n which is used most in
Wang (2013), it will not affect the result of Theorem 2.

In the simulation, themodel for the simulated data is yi = x ′
iβ+εi , i = 1, 2, . . . , n.

Each experiment uses three different error terms ε, that is N (0, 1), t(2), Cauchy(0, 1).
When the error term obeys the normal distribution, the λ of classo is selected according
to James et al. (2013). When the error term does not obey the normal distribution, we
use the 10 fold CV method to select λ. Moreover, each row of the design matrix X
is generated by N (0,Ω) distribution with Toeplitz correlation matrix Ωi j = 0.5|i− j |
and normalized such that each column has L2 norm

√
n.

5.1 Comparison of algorithms

In this subsection, we introduce some implementation details of the several algo-
rithms and compare theirs the time-consuming. In all numerical experiments, we
will use four R packages, quantreg, osqp, glmnet , FHDQP . The first three pack-
ages can be found on R official website, https://www.r-project.org/, and the link of
FHDQP package is https://users.stat.umn.edu/zouxx019/ftpdir/code/fhdqr/. LP and
QP for constrained regression are implemented by quantreg and osqp respectively.
More details about QP can be found in Gaines et al. (2018). In fixed dimensional con-
strained regression, the initial values of ADMMare unconstrained penalized estimates
calculated by quantreg, and under the setting of high dimension, the corresponding
initial value is calculated by FHDQP . For the first update of (36) in classo, we use
glmnet package. Other iterative steps of sADMM and nADMM does not need to use
R package since they have explicit solutions.

As noted in Algorithm 1, nADMM includes three additional tuning parameters,
τ, τ̃ , γ . We adopt τ = 1

n the (suggested by Gaines et al. (2018)), τ̃ = 0.05, γ =
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Fig. 1 Object function values computed by several algorithms

1(default value in FHDQP) in all numerical experiments. All ADMM algorithms
are iterated until some stopping criterion is met. We adopt the stopping criterion from
Boyd et al. (2010). Specifically, the outer iteration of nADMM is terminated either
when sequence {(β(t), z(t), u(t))} meets the following criterion:

∥∥Xβ(t) + z(k) − y
∥∥
2 ≤ √

nε1 + ε2 max{∥∥Xβ(t)
∥∥
2,

∥∥z(t)
∥∥
2, ‖y‖2};

τ
∥∥Xβ(t) + z(k) − y

∥∥
2 ≤ √

pε1 + ε2
∥∥XT u(t)

∥∥
2;

(47)

where typical choices are ε1 = 10−3 and ε2 = 10−3, or when the number of
nADMM iterations exceeds a certain number, say 105. The conditions for termi-
nation of inner iteration is the same as outer iteration’s. If one wants to get faster
convergence rate, the termination condition of inner iteration can be more relaxed,
such as ε1 = ε2 = 10−2. In order to verify the efficiency of LP and nADMM
algorithm in estimating pcLAD under different dimensions. Specifically, we set
n is fixed at 100, but p = (50, 200, 1000, 2000). The true coefficient vector is
β0 = (−1,−2,−3, 1, 2, 3, 0Tp−6)

T and εi ∼ N (0, 1). To make this experiment rep-

resentative, we use mixed constraint set C = {1Tn β = 0, β1, β2, β3 ≤ 0}. We use QP
(quadratic programming ) and sADMM to fit classo regression, LP and nADMM to
fit pcLAD regression. All simulations used 100 replicates and record the running time
in the Table 1.

For fixed dimension, LP outperform nADMM in time consuming, while with the
increase of p, the performance of LP is worse and worse. In all settings, although
we have used a very efficient ADMM algorithm proposed by Stellato et al. (2018),
QP needs longer computation time than LP since the optimization form of QP is
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Table 1 Timings (in seconds)
for running pcLAD and classo
regression with specific λ

Method p = 50 p = 200 p = 1000 p = 2000

LP 1.04 7.74 519 3368

nADMM 2.04 5.92 68 261

QP 1.27 8.32 736 4557

sADMM 1.33 3.05 38 120

Table 2 Sum to zero constraint in fixed p

Method Error N(0,1) t(2) Cauchy

pcLAD Estimation 3.580 (5.534) 3.676 (5.637) 4.097 (13.16)

Prediction 2.779 (3.403) 2.986 (4.480) 3.190 (4.949)

LADlasso Estimation 4.747 (9.919) 4.894 (8.934) 5.197 (14.64)

Prediction 4.406 (11.03) 4.535 (7.626) 5.015 (10.60)

classo Estimation 3.399 (4.144) 5.158 (66.46) 2747(109)

Prediction 2.681 (3.280) 4.787 (22.38) 1321(3 × 108)

more complex. On the contrary, nADMM takes more time than sADMM, due to
the nonsmoothness of LAD loss function. To be specific, the main difference between
nADMMand sADMMis the iteration of theβ step, the former is a variant ofLADlasso,
and the latter is a variant of lasso. One can also verify the different computation time
by using glmnet (lasso) and FHDQR(LADlasso) packages to fit a same set of high
dimensional regression data. Note also that to do a meaningful timing comparison,
we need to check the objective function values of pcLAD and classo at the optimal
solution computed by the different algorithm. To make sure different algorithms yield
the same objective function values, it is sufficient to compare the optimal objective
function value in (2) even though it’s unfair to classo. The results are illustrated in
Fig. 1. From Fig. 1, we know the objective functions of LP and nADMM are almost
the same, QP and sADMM are the almost same too.

5.2 Sum to zero constraints

The first simulation involves a sum-to-zero constraint on the true parameter vec-
tor,

∑
j β j = 0. Recently, this type of constraint on the lasso has seen increased

interest as it has been used in the analysis of compositional data as well as anal-
yses involving many biological measurement analyzed relative to a reference point
(Lin et al. 2014; Shi et al. 2016; Altenbuchinger et al. 2017). Written in the pcLAD
formulation (2), this corresponds to C1 = 1′

p and b1 = 0. For this simulation, in

order to distinguish the bounds of estimation error ||β̂ − β0||22 and prediction error
||X β̂ − Xβ0||22/n in different cases, the true parameter vector β0 , was defined as
β0 = (10, 10, 10,−10, 10,−10, 0, . . . , 0). The true parameter satisfies the sum to
zero constraint, then the constraints can be imposed on the estimations. The main
results of the simulation are given in the Tables 2 and 3.
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Table 3 Sum to zero constraint in high dimensional p

Method Error N(0,1) t(2) Cauchy

pcLAD Estimation 6.657 (27.57) 9.128 (55.45) 9.774 (107.2)

Prediction 4.411 (9.605) 5.794 (16.59) 6.736 (70.80)

LADlasso Estimation 6.548 (25.25) 8.997 (45.38) 9.755 (99.15)

Prediction 4.958 (11.61) 6.457 (18.08) 7.442 (75.62)

Classo Estimation 3.314 (2.375) 10.58 (300.3) 105(1011)

Prediction 3.128 (3.757) 7.648 (469.0) 9171(1010)

In Tables 2 and 3, we set n = 200 and p = 50, 400, respectively. Each data in the
table is the mean value after 100 repetitions and the numbers in brackets is its variance.
We can see classo has the best performance when the ε obeys the normal distribution.
When the ε obeys the t(2), which does not have bounded variance, the classo will
not perform as well as LADlasso and pcLAD. When the ε obeys the Cauchy(0, 1),
classo will no longer make sense because the errors in estimation and prediction are
intolerable. It is necessary to note that when the data in the table exceeds 105, in order
to facilitate recording, we will only take the highest order. For example, 1234567
will be recorded as 107. By the way, when ε obeys Cauchy distribution, the median
of prediction error and estimation error is not as large as the mean value, it is about
between 10 and 20, which reflects that the classo estimation fluctuates greatly under
Cauchy distribution.

In all dimensional settings, the unconstrained LADlasso can work normally under
three kinds of error terms. Due to the existence of prior information, its estimation
and prediction effects should be worse than that of equality constrained LADlasso. In
Table 2, the obvious conclusion is true, However, the surprising results are appeared
in Table 3, the estimation error of pcLAD is not as good as LADlasso in the three
cases of ε, but the prediction error is better than it.

At first, it puzzled us, but the results of many experiments are still the same. There-
fore, we notice that this equality constraint is for all coefficients, while in the setting of
the high dimensional model in Sect. 3.2, the equality constraints are only imposed on
the significance coefficients. In order to verify the conclusion of Sect. 3.2, we check the
selection of non-zero coefficients of pcLAD, and the results confirm our idea. There
are many zero coefficients being mistakenly selected as non-zero coefficients. At the
same time, we have done another group of experiments. All the settings of this group
of experiments are the same as the previous high-dimensional experiments. The only
difference is that we only restrict the significance coefficients. The constraint matrix
is as follows:

⎛

⎝
1 0 0 −1 0 · · ·
0 1 0 0 −1 0 · · ·
0 0 1 0 0 −1 0 · · ·

⎞

⎠ ,

and b1 = (0, 0, 0)′.
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Table 4 Three sum to zero constraints in high dimensional p

Method Error Three equality constraints One equality constraint

pcLAD Estimation 2.601 (6.080) 8.661 (54.94)

Prediction 3.122 (13.39) 6.058 (32.00)

Non-zero number 7.3 (2.677) 13.3 (47.78)

LADlasso Estimation 8.471 (47.27)

Prediction 6.396 (34.43)

Non-zero number 6.400 (0.933)

The main results of this experiment are shown in Table 4. From Table 4, we can see
that LADlasso’s result naturally does not change much because it has no constraints.
However, the results of pcLAD are greatly improved. This result shows when p is
high dimension, constraints should be placed on the significance coefficients, instead of
every coefficients.Otherwise itwill lead to excessive selection of non-zero coefficients.
One may ask why this constraint is not set on the sparse model with fixed dimensions
in this paper. Because in the fixed dimension pcLAD, we choose the adaptive L1
penalty, which will impose a very large penalty on the insignificant coefficient. This
forces the true zero coefficients to be estimated as 0.

5.3 Non negativity constraints

In this simulation, we choose the fixed dimension as n = 100, p = 50, the high
dimension is n = 100, p = 200. This choice of n and p is different from the previous
experiments and to verify whether the performance of the model is consistent under
differentn and p. In this experiment,we added type1 error and type2 error. The average
type 1 error means the average number of significant variables that are unselected
over 100 runs. The average type 2 error means the average number of insignificant
variables that are selected over 100 runs. Because of the nonnegative constraint, the
true coefficient we choose is (1, 2, 3, 4, 5, 6, 0, . . . ).

The main results are shown in Tables 5 and 6. Just like the conclusion in Sect. 5.2,
classo does better job in estimation and prediction errors under normal error. However,
it also has a disadvantage, that is the type 2 error is relatively large. The reason for this
is that the λ chosen by CV tends to choose more variables. For more details about this,
one can refer to Leng et al. (2004) and Wang (2013). The estimation and prediction
error of classo is worse than that of pcLAD in t(2), but it can still be acceptable.
However, under the Cauchy(0, 1) distribution, the classo results are unreliable.

The above results show that inequality pcLAD has better estimation and predic-
tion effect than inequality classo in non normal data. Moreover, in terms of variable
selection, pcLAD is better than classo in any case.

5.4 Complex constraints

In the above two simulations, we have considered the case of equality constraint and
inequality constraint respectively. In this subsection, we consider the case where both
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Table 5 Non-negativity constraints in fixed p

Method Error N(0,1) t(2) Cauchy

pcLAD Estimation 1.604 (2.812) 2.173 (6.969) 2.897 (4.758)

Prediction 1.317 (1.140) 1.611 (2.396) 1.970 (2.001)

Type1 0.18 (0.149) 0.25 (0.270) 0.42 (0.246)

Type2 0.01 (0.01) 0.07 (0.065) 0.45 (0.734)

Classo Estimation 0.956 (1.419) 3.402 (83.30) 264.5(2 × 107)

Prediction 0.960 (2.059) 3.863 (295.2) 292(3 × 107)

Type1 0.04 (0.038) 0.32 (0.219) 0.72 (0.931)

Type2 2.7 (29.28) 8 (76.92) 13.34 (108.3)

Table 6 Non-negativity constraints in high dimensional p

Method Error N(0,1) t(2) Cauchy

pcLAD Estimation 1.638 (3.024) 2.122 (3.693) 3.125 (10.18)

Prediction 2.010 (4.841) 2.546 (6.098) 3.770 (21.20)

Type1 0.09 (0.082) 0.12 (0.106) 0.16 (0.155)

Type2 0.45 (0.674) 0.56 (0.531) 0.91 (1.032)

Classo Estimation 0.602 (0.213) 3.145 (2.795) 1421(4 × 108)

Prediction 0.649 (0.317) 4.470 (5.821) 805.7(108)

Type1 0 (0) 0.2 (0.161) 0.92 (1.145)

Type2 2.53 (3.625) 18.22 (97.52) 36.18 (2629)

equality and inequality constraints are exist simultaneously. And two models will be
considered.

The first model we consider is complex constrained ordinary LADlasso with n =
200, p = 50, 400. In fact, this complex constrained lasso has already appeared in
Hu et al. (2015b). In order to compare the estimation error better, the coefficient of
Hu et al. (2015b) is increased by 10 times. The true parameter vector is defined as
β0 = (10, 5,−10, 0, . . . , 0, 10, 5,−10, 0, . . . , 0)′, so only its 1st, 2nd, 3rd, 11th,
12th, and 13th elements are nonzero. The constrained pcLAD is estimated subject to
the constraints:

β1 + β2 + β3 ≥ 0, β1 + β3 + β11 + β13 = 0,
β2 + β5 + β11 ≥ 10, β2 + β8 + β12 = 10.

The main results are shown in Tables 7 and 8, the result of data presentation is the
same as that in Sect. 5.3. We omit the data analysis in this section.

The second model we consider is the complex constrained LAD fused lasso and
complex constrained fused lasso with n = 200, p = 100, 1000. Indeed, this complex
constrained quantile lasso has already appeared in Liu et al. (2020). We adopt true
parameter vector used in Liu et al. (2020), that is β0 = (−1,−1, 1, 1, 0, . . . , 0)′. The
linear constraints are:
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Table 7 Complex constraints in fixed dimensional p

Method Error N(0,1) t(2) Cauchy

pcLAD Estimation 2.724 (3.310) 2.857 (4.151) 3.129 (4.105)

Prediction 2.407 (2.818) 2.638 (4.780) 2.868 (3.803)

Type1 0 (0) 0 (0) 0 (0)

Type2 0 (0) 0.03 (0.029) 0.19 (0.216)

Classo Estimation 2.699 (4.711) 4.800 (23.18) 105(1011)

Prediction 2.376 (3.050) 3.348 (8.657) 7489(3 × 1010)

Type1 0 (0) 0 (0) 0 (0)

Type2 19.10 (207.7) 20.19 (211.3) 25.36 (169.7)

Table 8 Complex constraints in high dimensional p

Method Error N(0,1) t(2) Cauchy

pcLAD Estimation 2.997 (4.335) 3.970 (8.457) 5.083 (10.65)

Prediction 2.646 (3.065) 3.225 (4.363) 4.070 (5.359)

Type1 0 (0) 0 (0) 0 (0)

Type2 2.18 (3.293) 2.44 (3.802) 2.82 (2.844)

Classo Estimation 2.511 (1.984) 6.849 (62.32) 106(1012)

Prediction 2.410 (2.125) 5.517 (41.01) 106(1012)

Type1 0 (0) 0 (0) 0.2 (0.326)

Type2 17.36 (174.6) 22.95 (139.94) 38.26 (8793)

Table 9 Complex constrained in fixed dimensional p

Method Error N(0,1) t(2) Cauchy

pcLAD Estimation 1.117 (2.078) 1.206 (2.643) 1.415 (2.910)

Prediction 0.987 (1.859) 1.132 (2.347) 1.347 (2.578)

Type1 0 (0) 0 (0) 0 (0)

Type2 0 (0) 0.020 (0.046) 0.187 (0.072)

Classo Estimation 1.084 (1.971) 3.792 (19.51) 5841(2 × 108)

Prediction 0.973 (1.772) 3.542 (15.30) 4920(1 × 108)

Type1 0 (0) 0 (0) 0 (0)

Type2 22.12 (115.7) 24.16 (157.7) 28.32 (191.4)

β1 − 2β2 − β3 + 2β4 ≥ 1, 3β1 − 2β2 + β3 + β4 ≥ 0,
β1 − β2 + 2β3 + 5β4 = 7, −3β1 + β2 − 6β3 − β4 = −5.

The main result of complex constrained LAD fused lasso in this synthetic data are
shown in Tables 9 and 10. Note that our theoretical analysis is not suitable for fused
LADlasso, so we utilize CV to select all penalty parameter λ.
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Table 10 Complex constrained in high dimensional p

Method Error N(0,1) t(2) Cauchy

pcLAD Estimation 1.216 (2.257) 1.377 (2.908) 1.507 (3.134)

Prediction 1.107 (1.982) 1.224 (2.681) 1.431 (2.769)

Type1 0 (0) 0 (0) 0 (0)

Type2 4.45 (12.89) 5.09 (19.67) 7.15 (27.42)

Classo Estimation 1.007 (1.528) 5.019 (37.49) 4 × 105(1010)

Prediction 0.959 (1.597) 4.782 (31.67) 2 × 105(1010)

Type1 0 (0) 0 (0) 0 (0)

Type2 37.45 (254.7) 42.38 (312.5) 55.29 (502.3)
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Fig. 2 Global warming data

In the Sect. 3.3, we have clarified that LAD fused lasso and constrained LAD
fused lasso may not have the Oracle theoretical properties under the assumption in
this paper. However, from Tables 9 and 10, constrained LAD fused lasso has good
estimation and prediction performances. This numerical result also shows that theoret-
ically constrained LAD fused lasso may also have Oracle property with new technical
assumptions and methods.

An interesting phenomenon is that the estimation error and prediction error, are of
the same order in all cases. We have not proved it in theory, but we believe that the
theoretical results should be close to the numerical results.

6 Real data applications

In this section, we apply pcLAD to three different real data, and compare with classo.
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6.1 Global warming data

For our first application of the pcLAD on a real data set, we revisit the global temper-
ature data provided by Jones et al. (2016). The data set contains of annual temperature
anomalies from 1850 to 2015. As mentioned, there appears to be a monotone trend
to the data over time, so it is natural to want to incorporate this information when the
trend is estimated.

Wu et al. (2001) and Gaines et al. (2018) achieved this by using isotonic regression.
The LAD version of isotonic regression which has been described in Sect. 2.2, so we
will not repeat it here. Because we want to get the temperature fitting data of each year,
the penalty term is unnecessary, so λ = 0. In this experiment, the sample size n and
dimension p are the same, and the value is not large, thus we use LP and QP to solve
pcLAD and classo respectively. Significantly, the design matrix X is p-dimension
identity matrix, so the optimal solution is the fitting value of y. Then we show the
fitting effect of pcLAD and classo in Fig. 2. To be honest, we can’t obviously see that
the method fits better, so we calculate the

∥∥y − ŷ
∥∥
1 of classo and pcLAD. The values

are 12.31 and 12.14 respectively, and show that the fitting of pcLAD is closer to the
real value in this rule.

6.2 Brain tumor data

Our second application of the pcLAD uses a version of the comparative genomic
hybridization (CGH) data from Bredel et al. (2005) which was modified and studied
by Tibshirani and Wang (2008) and Gaines et al. (2018). This version of the dataset
is available in the cghFLasso R package. The dataset includes CGH measurements
from 2 glioblastoma multiforme (GBM) brain tumors. CGH array experiments are
often used to estimate each gene’s DNA copy number by obtaining the log2 ratio of
the number of DNA copies of the gene in the tumor cells relative to the number of DNA
copies in the reference cells. Mutations to cancerous cells result in amplifications or
deletions of a gene from the chromosome, so the purpose of the analysis is to identify
these gains or losses in the DNA copies of that gene (Michels et al. 2007). For a more
detailed description of this data, one can see Bredel et al. (2005) and Michels et al.
(2007). The form of pcLAD applied to this data set is as follows:

minmize
β

‖y − β‖1 + nλ1 ‖β‖1 + nλ2

p∑

j=2

∣∣β j − β j−1
∣∣. (48)

From (48), we know the optimal solution is a sparse sequence fitting y, which is the
log 2 ratio mentioned above. In this experiment, the sample size n and dimension p
are the same, and the value is large. Thus, we use sADAMM and nADMM to solve
pcLAD and classo respectively. For the penalty parameters λ1 and λ2, we use 10-fold
CV to select them because our theoretical analysis is not suitable for fused LADlasso.
Moreover, (48) can also be solved by genlasso R package. We don’t show the results
of genlasso package, because Gaines et al. (2018) has been used it in this real data
applications, and proved that the experimental results of sADMM and genlasso are
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the same. We compare the fitting results of this form of pcLAD and classo (sparse
fused lasso Tibshirani et al. (2005)) in Fig. 2. From the Fig. 2, we can see that pcLAD
fitting is better, especially for some large data. In numerical terms, the

∥∥y − ŷ
∥∥
1 of

sparse fused lasso and pcLAD is 357.1 and 244.7 respectively. The difference between
the two fitting values shows that pcLAD is better than sparse fused lasso to fit this
dataset.

6.3 Stock index data

The last application of the real data is the Shanghai Stock Exchange 50 stock index
(SSE 50) and Shanghai Shenzhen 300 stock index (CSI 300). SSE 50 Index is com-
posed of 50 representative stocks with large scale and good liquidity in Shanghai
securities market. CSI 300 Index is made up of 300 A-shares from Shanghai and
Shenzhen stock markets.

Firstly, we give a brief introduction about stock index and index tracking. Stock
index is a method for fitting and predicting the trend of the stock market by choos-
ing some representative stocks. For example, SSE 50 contains 50 component stocks.
There are many other famous stock index named by their Exchanges such as S&P
500, FTSE 100 and so on. Index tracking is a hot issue, the main idea is to select a
few representative stocks to predict the whole stock index. The contribution of each
component stock to the stock index must be positive, so we need to add nonnegative
constraints on the regression coefficients. Because stock index tracking requires both
sparse and nonnegative constraints, many nonnegative constrained penalty estimates
have been proposed recently, include Wu et al. (2014), Yang and Wu (2016), Wu and
Yang (2014), Li et al. (2019), etc.. Following the above work, in this section, the form
of pcLAD applied to the stock index traching is the nonnegative LADlasso (nLAD-
lasso) mentioned in Sect. 2.4, which is the LAD version of nonnegative lasso (nlasso)
Wu et al. (2014). It is worth noting that the contribution of all component stocks to
the index is positive, that is, the true model does not have sparseness and every true
coefficient is positive. Then the assumption of sparsity is not tenable, and the selection
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criterion of λ is meaningless. FollowingWu et al. (2014), we can choose some penalty
parameters from 0 to a sufficiently large positive number which shrinks all coefficients
to 0, and the interval between the two parameters is equal.

Because the latest two component stock adjustments of CSI 300 Index and SSE 50
Index are on December 16, 2019 and June 15, 2020, we selected SSE 50 Index and
CSI 300 Index data from January 2 to June 12, 2020. It is necessary to note that some
component stocks of SSE50 and CSI 300 have been closed for a short period of time.
We use the average stock price of the constituent stock during the non-closing period
to fill the stock price at these closing times. The data is divided into time windows: the
first 80 days’ data used for modeling and the next 20 days’ data used for forecasting.
In the process of tracking SSE 50 Index, the sample size n is 80 and the dimension of
variable p is 50, which is a fixed dimension problem. But in CSI 300 Index, n = 80,
p = 300, which is a high dimensional problem. Therefore, we use fixed pcLAD and
classo in SSE 50 tracking and high dimensional pcLAD and classo in CSI 300. For
these data, λ = 100 is enough large to shrink all coefficients to 0, so we choose 1000
penalty parameters from 0 to 100 and the interval between the two parameters is 0.1.

Let xt, j and yt represent the returns of the j th constituent stock and the index
respectively, j = 1, 2, . . . , 50(300). Then we can describe the relationship between
xt, j and yt by a linear regression model:

yt =
∑

t

β j xt, j + εt , t = 1, 2, . . . T , (49)

where β j is the weight of the ith chosen stock, εt is the error term. In practical
application, the optimal estimate ofβ means the proportion of each stock. For example,
if β̂1 = 1, β̂2 = 2, then when tracking the stock index, for each unit of labeled 1 stock
held, it is necessary to hold 2 units of labeled 2 stock.

The bias measure for tracking, called Annual Tracking Error (ATE), is defined by

Tracking ErrorYear = √
252 ×

√∑
(errt − mean(errt )

2

T − 1
, (50)

where errt = ŷt − yt and ŷt is the fitted or predicted value of yt ,for t = 1, 2, . . . , T .
The results of pcLAD (nLADlasso) and classo (nlasso) are shown in Table 11. In

SSE 50 index tracking, we select 5, 10 and 20 component stocks respectively, and
in CSI 300 index, we select 25, 30 and 40 component stocks. For the same number
of non-zero coefficients, we only record the model with smallest training ATE value.
From Table 11, in all the tracking experiments, the ATE of pcLAD method is better
than that of classo, whether it is 80 days of modeling or 20 days of forecasting.

We are not surprised to see such a tracking result. Firstly, the data in financialmarket
rarely satisfy Gauss’s hypothesis. Secondly, this year’s outbreak of novel coronavirus
has led to more turbulence and uncertainty in stock index. Hence the reliability of
the usual OLS-based estimation and model selection method is severely challenged,
whereas theLAD-basedmethods becomemore attractive. In addition,with the increase
of non-zero coefficients, the values of both ATE are decreasing. The reason for this
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Table 11 SSE 50 and CSI 300 index tracking data

Number SSE 50 Number CSI 300
Method AT Etrain AT Etest Method AT Etrain AT Etest

5 pcLAD 141.1 406.7 25 pcLAD 230.5 593.6

Classo 289.3 409.1 Classo 950.2 604.0

10 pcLAD 111.6 406.5 30 pcLAD 211.2 593.4

Classo 244.3 408.4 Classo 924.2 603.6

20 pcLAD 61.71 406.4 40 pcLAD 116.4 592.6

Classo 214.7 408.1 Classo 868.6 602.9
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Fig. 4 The fitted and predicted results about tracking CSI 300 index

phenomenon is that the true coefficients are all positive. More non-zero coefficients
are selected, smaller ATE will be got. However, in the financial market, holding more
stocks means more costs, so sparsity is indispensable in stock index tracking. Finally,
we show the fitted and predicted results of classo and pcLAD selecting 30 stocks to
track CSI 300 in Fig. 4.

7 Discussion

When the noise does not obey Gaussian or near Gaussian, pcLAD is an effective
alternative to classo method. In this paper, we prove that effective constraints can
improve the accuracy of pcLAD estimation. In the fixed dimension, the constraints
will reduce the variance of the estimation, and in the high dimension, the constraints
will reduce the upper bound of the estimation bias. Furthermore, two algorithms named
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as linear programming and nested ADMM are proposed to solve pLAD effectively in
fixed and high dimension respectively.

However, there are still many further works to be studied. In this paper, we assume
that k is less than infinity when p is of order en

π
, where 0 < π < 1 . This assumption

is more strict than p < n and limits the number of equality constraints m. How to
generalize the theoretical results to the case that both k and m tend to infinity with
the growth of n is a challenging work. The upper bound (23) in high dimension can
also be improved, because when the equality constraintsm increases, the upper bound
will not continue to decrease, especially when m = k, the upper bound is equal to the
unconstrained case.

The derivation method in theory and algorithm of this paper can be well applied to
more general model such as constrained Huber’s estimation, quantile and composite
quantile estimation (Gu and Zou 2020). For other penalty terms constrained regression
such as elastic net, SCAD, MCP (Zhang 2010), the idea of nested ADMM is also
available, but the theoretical analysis needs more technical methods. In fixed and high
dimension, although the two proposed algorithms can be applied to generalized lasso
and constrained generalized lasso, their theoretical analysis cannot be included in the
framework of pcLAD. It’s also a challenge to get Oracle or near Oracle property of
generalized lasso and constrained generalized lasso with other assumptions.

Recently, parallel algorithms have been applied to large scale penalized regresion,
such as Liqun et al. (2017) and Fan et al. (2020), and achieved good performance in
numerical experiments. Extending nested ADMM to parallel algorithms’ framework
is a potentially valuable work for big data.

Appendix A

Proof of Lemma 1 When r = p, assume θ = Dβ, then (8) can be rewrite as

∥∥∥y − XD−1θ

∥∥∥
1
+ nλ ‖θ‖1 . (51)

When r < p, we construct a p× p matrix D̃ =
(
D
E

)
with rank(D̃) = p, by finding

a (p − r) × p matrix E , whose rows are orthogonal to those in D. Then we change
variables to θ = D̃β = (θ ′

1, θ
′
2)

′, so that the generalized LADlasso (8) becomes

θ̂ = argmin
θ∈Rp

{∥∥∥y − X D̃−1θ

∥∥∥
1
+ nλ ‖θ‖1

}
. (52)

This is almost a regular LADlasso, except that L1 penalty only convers part of the
coefficient vector. we write X D̃−1θ = X1θ1+X2θ2, then it is clear that at the solution
the second block of the coefficients can be given by linear LAD regression:

θ̂2 = argmin
θ2∈Rp−r

{‖y − X1θ1 − X2θ2‖1
}
. (53)
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Therefore, we can rewrite (52) as

θ̂1 = argmin
θ1∈Rr

{∥∥∥y − X1θ1 − X2θ̂2

∥∥∥
1
+ nλ ‖θ1‖1

}
. (54)

we use (53) and (54) get θ , then β = D̃−1θ , so, when r ≤ p, (8) can be seen as
LADlasso problem.

When r > p, since D has full column rank, we can write D as D =
(
D1
D2

)
, where

D1 ∈ Rp×p is an invertible matrix and D2 ∈ R(r−p)×p. Then,

‖y − Xβ‖1 + nλ ‖Dβ‖1 =
∥∥∥y − XD−1

1 D1β

∥∥∥
1
+ nλ ‖D1β‖1 + nλ ‖D2β‖1

=
∥∥∥y − (XD−1

1 )D1β

∥∥∥
1
+ nλ ‖D1β‖1

+ nλ

∥∥∥D2D
−1
1 D1β

∥∥∥
1
. (55)

Using the change of variables, θ1 = D1β, θ2 = D2D
−1
1 D1β = D2D

−1
1 θ1, and

θ = (θ ′
1, θ

′
2)

′.
we can rewrite the generalized LADlassso problem as follows:

argmin
β∈Rp

‖y − Xβ‖1 + nλ‖Dβ‖1 = argmin
θ∈Rr

{∥∥∥y − (XD−1
1 )θ1

∥∥∥
1

+ nλ‖θ‖1; D2D
−1
1 θ1 − θ2 = 0

}

= min
θ∈Rr

{
1

2

∥∥∥y − X̃θ

∥∥∥
1
+ nλ‖Dθ‖1;Cβ = 0

}
,

where X̃ = (XD−1, 0) and C = (D2D
−1
1 ,−I ). Note that β= (

D−1, 0
) ( θ1

θ2

)
. Thus,

this generalized LADlasso is a special case of the constrained LADlasso. ��
Proof of Lemma 4 From Section 3.1 of Wang (2013), we know ‖hA‖1 ≥ c̄ ‖hB‖1,
consider

∥∥hA1

∥∥
1 ≤ Φ

∥∥hA2

∥∥
1, ‖hA‖1 = ∥∥hA1

∥∥
1 + ∥∥hA2

∥∥
1, we arrive at a conclusion

that
∥∥hA2

∥∥
1 ≥ c̄

1+Φ
‖hB‖1.

We give a technical Lemma 5 to prove Theorem 1. Define a linear approximation
to |εi − t | by Di = sign(εi ) = I (εi > 0) − I (εi < 0). One intuitive interpretation
of Di is that Di can be thought of as the first derivative of |εi − t |, at t = 0 (Pollard
1991). Moreover, the condition that εi has the median zero, implies E(Di ) = 0.

Then, define Wn =
n∑

i=1
Di x ′

i/
√
n, and Wn,11 =

n∑

i=1
Di x ′

i1/
√
n. We draw a conclusion

Wn
L−→ N (0,

∑
),Wn,11

L−→ N (0,
∑

11) as Wang et al. (2007), Wu and Liu (2009). ��
Lemma 5 For model (13) with true parameter β0, denote Gn(u) =∑n

j=1

(∣∣εi − x ′
i u/

√
n
∣∣ − |εi |

)
, where εi = yi − x ′

iβ0, under condition Assumption 1
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and 2, we have for any fixed u, satisfying Cu = 0,

Gn(u) = f (0)u′
n∑

j=1

xi x
′
i u + W ′

nu + oP (1).

Detailed proof of this Lemma can be found at Lemma 1 of Wang et al. (2007) and
Lemma 3 of Wu and Liu (2009). The equality constraint Cu = 0 will not affect the
proof. ��

Appendix B

Proof of Lemma 2 For any given δ > 0, there exists a large constant R such that

P

{
inf‖u‖2=R,Cu=0

Q(β0 + u/
√
n) > Q(β0)

}
≥ 1 − ε (56)

where u = (u1, u2, . . . , u p)
′. Due to Cu = 0 and Cβ0 = 0, then C(β0 + u/

√
n) =

0. Therefore, β0 + u/
√
n satisfy the C(β0 + u/

√
n) = 0. From the fact Q(β) =

n∑

i=1
|yi − xTi β|+

p∑

j=1
λ j |β j | is convex and piecewise liner, the inequality (56) implies,

with probability at least 1 − δ, the pcLAD estimator lies in the ring {β0 + u/
√
n :

‖u‖2 ≤ R,Cu = 0}. This in trun implies that there exists a local minimizer such that∥∥∥β̂ − β0

∥∥∥
2

= OP (n− 1
2 ), which is exactly what we want to show. Therefore, to prove

Lemma 2, we only need to verify that (56) holds.
Note that

Q(β0 + u/
√
n) − Q(β0) =

n∑

i=1

[∣∣yi − x ′
i (β0 + u/

√
n)

∣∣ − ∣∣yi − x ′
iβ0

∣∣]

+ n
p∑

j=1

λ j
(∣∣β0 j + u j/

√
n
∣∣ − ∣∣β0 j

∣∣)

≥ Gn(u) − √
nan

k∑

j=1

∣∣u j
∣∣

= 1

n
f (0)u′

n∑

i=1

xi x
′
i u + W ′

nu + oP (1)

AsWu and Liu (2009), we can point out thatW ′
nu = E(W ′

nu)+OP (
√
Var(W ′

nu)),
togetherwithVar(W ′

nu) = E(
∑n

i=1 Di x ′
i u/

√
n)2 = 1

n u
′ ∑n

i=1 xi x
′
i u, impliesW ′

nu =
OP (

√
u′ ∑n

i=1 xi x
′
i u/n).
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The last equality follows from the Lemma 3 and
√
nan → 0. By applying the

Lemma 2 of Wu and Liu (2009), then Q(β0 + u/
√
n) − Q(β0)

L−→ 1
n f (0)u′Σu +

W ′
nu + oP (1), where Σ is a positive definite matrix in Assumption 2.
Based on all the above, Q(β0+u/

√
n)−Q(β0) is dominated by the quadratic term

1
n f (0)uTΣu when ‖u‖2 is enough large. This completes the proof of Lemma 2. ��
Proof of Lemma 3 For any βA − βA0 = OP (n−1/2), 0 ≤ ‖βB‖2 ≤ Rn−1/2, and
C(β − β0) = 0,

Q
[
(β ′

A, 0′)′
]

− Q
[
(β ′

A, β ′
B)

′]

=
{
Q

[
(β ′

A, 0′)′
]

− Q
[
(β ′

A0, 0
′)′

]}
−

{
Q

[
(β ′

A, β ′
B)

′] − Q
[
(β ′

A0, 0
′)′

]}

= Gn

[√
n((βA − βA0)

′, 0′)′
]

− Gn

[√
n((βA − βA0)

′, β ′
B)

′] − n
p∑

j=k+1

λ j |β j |.

The conditions βA − βA0 = OP (n−1/2), 0 ≤ ‖βB‖2 ≤ Rn−1/2, and 1
n

∑
xi x ′

i =
trace(Σ) imply that

Gn

[√
n((βA − βA0)

′, 0′)′
]

= f (0)
√
n((βA − βA0)

′, 0′)′ 1
n

n∑

i=1

xi x
′
i

√
n((βA − βA0)

′, 0′)′ = OP (1),

Gn

[√
n((βA − βA0)

′, β ′
B)

′] = f (0)
√
n((βA − βA0)

′, β ′
B)

′ 1
n

n∑

i=1

xi x
′
i

√
n((βA − βA0)

′, β ′
B)

′ = OP (1).

Moreover, n
∑p

j=k+1 λ j |β j | = √
n(

√
nbn)

∑p
j=1 |β j |. Hecen the condition that√

nbn → +∞, implies that n
∑p

j=k+1 λ j |β j | is of higher order than any other terms

and as a result. This in turn implies that Q
[
(β ′

A, 0′)′
] − Q

[
(β ′

A, β ′
B)

′]
< 0 for large

n. This proves the consistency of model selection of pcLAD. ��
Proof of Theorem 1 Similarly as in Fan and Li (2001) and Wang et al. (2007), part 〈a〉
holds simply due to Lemma 3. Next we prove part 〈b〉. From theorem of Wang et al.
(2007) and Theorem 3 of Wu and Liu (2009), we can obtain the result

min
u

n∑

i=1

{∣∣∣yi − x ′
iβA0 − n−1/2x ′

AiuA

∣∣∣

− ∣∣yi − x ′
AiβA0

∣∣} L−→ min
u

{
f (0)u′

AΣ11uA + u′
Aw0

}
,

where w0 is a k dimension normal random vector with mean 0 and variance matrix

Σ11,
√
n(β̂A − βA0)

L−→ N (0, 1
4 f 2(0)

Σ−1
11 ).
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For the constraints CAβ = b,CAuA = 0, we can use the method pro-
posed by Wang (1995) and Wang (1996), we can get the minimizer û A of

min
uA,CAuA=0

∑n
i=1

{∣∣yi − x ′
iβA0 − n−1/2x ′

AiuA
∣∣ − ∣∣yi − x ′

AiβA0
∣∣} will convergence to

min
uA,CAuA=0

f (0)u′
AΣ11uA + u′

Aw0 (57)

in distribution.
Following the Assumption 2 is a positive definite matrix. According the KKT

condition, û A is the minimizer of (52), if and only if

{
2 f (0)Σ11û A + w0 + C ′

Av = 0
CAûA = 0

(58)

where v is a m × 1 dimesional Lagrange multiplier, we can transform (58) to the
following formula: (

2 f (0)Σ11 C ′
A

CA 0

)(
û A

v

)
= 0

Let

B =
(
2 f (0)Σ11 C ′

A
CA 0

)
,

B is invertibble, because of CA is full of row rank. By routine calculation, we get

B−1 =
(
B11 B12
B21 B22

)
,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

B11 = Σ−1
11

2 f (0)

[
I − C ′

A

(
CAΣ−1

11 C ′
A

)−1
CAΣ−1

11

]

B12 = Σ−1
11 C ′

A

(
CAΣ−1

11 C ′
A

)−1

B21 = B12

B22 = −2 f (0)
(
CAΣ−1

11 C ′
A

)−1

Hence, we have {
û A = B11(−w0)

v = B21(−w0)

Therefore, û A = N (0,
Σ−1

11
4 f 2(0)

(I − VA)′(I − VA)), VA = C ′
A

(
CAΣ−1

11 C ′
A

)−1
CAΣ−1

11 .
��

Appendix C

Proof of Theorem 2 Without loss of generality, we assume |h1| ≥ |h2| ≥ · · · ≥ |h p|
as Wang (2013) and Wang et al. (2019). Let S0 = {1, 2, . . . ,m},S1 = {m +
1,m + 2, . . . , k},S2 = {k + 1, k + 2, . . . , 2k − m}, S0 = {2k − m + 1, 2k − m +
2, . . . , 3k − m},. . .. Due to h ∈ Δc̄ =

{
δ ∈ Rp : ∥∥δA2

∥∥
1 ≥ c̄

1+Φ
‖δB‖1

}
, we have
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∥∥hs1
∥∥
1 ≥ c̄

1+Φ
‖hB‖1 = c̄

1+Φ

∑

i≥2

∥∥hsi
∥∥
1. Then it follows from Lemma 8 of Wang

(2013) that

∑

i≥2

∥∥hsi
∥∥
2 ≤

∑

i≥1
‖hsi ‖1
√
k0

+
√
k0
4

∥∥hk0+1
∥∥
1 ≤

∑

i≥1

∥∥hsi
∥∥
1

√
k0

+ 1

4
√
k0

∥∥hs1
∥∥
1

≤
(
1 + Φ + c̄

c̄
√
k0

+ 1

4
√
k0

)∥∥hs1
∥∥
1 ≤

(
1 + Φ + c̄

c̄
+ 1

4

)∥∥hs1
∥∥
2, (59)

where k0 = k − m.
It is easy to see that

1√
n

(‖Xh + ε‖1 − ‖ε‖1) ≥
∑

i≥1

1√
n

⎛

⎝

∥∥∥∥∥∥
X

i∑

j=0

hs j + ε

∥∥∥∥∥∥
1

−
∥∥∥∥∥∥
X

i−1∑

j=0

hs j + ε

∥∥∥∥∥∥
1

⎞

⎠

+ 1√
n

(∥∥Xhs0 + ε
∥∥
1 − ‖ε‖1

)
.

Now for any fixed vector d, let

M(d) = 1√
n
E

(∥∥Xhs0 + ε
∥∥
1 − ‖ε‖1

)
.

By Lemma 3 of Wang (2013), for p > n and p > 3
√
max(m, k0), we know that

with probability at least 1 − 2p−4m(c22−1)+1,

1√
n

(∥∥Xhs0 + ε
∥∥
1 − ‖ε‖1

) ≥ M
(
hs0

) − c1
√
2m log(p)

∥∥hs0
∥∥
2, (60)

and for any i ≥ 1 with probability at least 1 − 2p−4k0(c22−1)+1,

1√
n

⎛

⎝

∥∥∥∥∥∥
X

i∑

j=0

hs j + ε

∥∥∥∥∥∥
1

−
∥∥∥∥∥∥
X

i−1∑

j=0

hs j + ε

∥∥∥∥∥∥
1

⎞

⎠ ≥ M
(
hsi

) − c1
√
2k0 log(p)

∥∥hsi
∥∥
2,

where c1 = 1+ 2c2
√

λuk and c2 > 1 is a constant. Put the above inequalities together,

we know that with the probability at least 1 − 2p−4min(m,k0)(c22−1)+1,

1√
n

(‖Xh + ε‖1 − ‖ε‖1) ≥ M(h) − c1
√
2max(m, k0) log(p)

∥∥hsi
∥∥
2.
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Due to ‖Xh + ε‖1 + nλ

∥∥∥β̂

∥∥∥
1

≤ ‖ε‖1 + nλ ‖β0‖1, ‖Xh + ε‖1 − ‖ε‖1 ≤ nλ ‖hA‖1.
By (59), we have

1√
n

(‖Xh + ε‖1 − ‖ε‖1) ≤ √
nλ‖hA‖1 ≤ √

nλ
(∥∥hs0

∥∥
1 + ∥∥hs1

∥∥
1

)

≤ √
nλ (1 + Φ)

∥∥hs1
∥∥
1 ≤ √

nλ (1 + Φ)
√
k0

∥∥hs1
∥∥
2,

∑

i≥0

∥∥hsi
∥∥
2 ≤ Φ

∥∥hs1
∥∥
2 + ∥∥hs1

∥∥
2 +

(
1

4
+ Φ + c̄ + 1

c̄

)∥∥hs1
∥∥
2

=
(
5

4
+ (c̄ + 1)(Φ + 1)

c̄

)∥∥hs1
∥∥
2.

Put the above inequalities together, we have that with the probability at least 1 −
2p−4min(m,k0)(c22−1)+1,

M(h) ≤ √
nλ (1 + Φ)

√
k0

∥∥hs1
∥∥
2

+ c1
√
2max(m, k0)log(p)

(
5

4
+ (c̄ + 1)(Φ + 1)

c̄

)∥∥hs1
∥∥
2. (61)

From Lemma 5 and Lemma 7 of Wang (2013), we have

M(h) = 1√
n
E (‖Xh + ε‖1 − ‖ε‖1) = 1√

n
E

[
n∑

i=1

|(Xh)i + εi | − |εi |
]

≥ 1√
n

a

16

[
n∑

i=1

|(Xh)i | (|(Xh)i | ∧ b

a
)

]

≥
{

3
16

√
n

‖Xh‖1
2 , ‖Xh‖1 ≥ 3n

a
a

16
√
n
‖Xh‖22, ‖Xh‖1 < 3n

a .

(62)
Therefore, if ‖Xh‖1 ≥ 3n

a , from inequality (62), we have

M(h) = 1√
n
E (‖Xh + ε‖1 − ‖ε‖1) ≥ 3

16
√
n
‖Xh‖1

≥ 3

16

√
nklk‖hA‖2 ≥ 3

√
n

16
klk

∥∥hs1
∥∥
2.

Then, from condition (22) and inequality (62), we can show
∥∥hs0

∥∥
2 = 0 with prob-

ability at least 1 − 2p−4min(m,k0)(c22−1)+1. Since |h1| ≥ |h2| ≥ · · ·|h p|, we have

‖h‖2 = 0, i.e., β̂ = β∗ holds with probability at least 1 − 2p−4min(m,k0)(c22−1). Then,
if ‖Xh‖1 < 3n

a , from inequality (62)

M(h) = 1√
n
E (‖Xh + ε‖1 − ‖ε‖1) ≥ a

16
√
n

‖Xh‖22 . (63)
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By the same argument as in the proof of Theorem 3.1 and 3.2 in Cai et al. (2010), we
know that

|〈XhA, Xh〉| ≥ nλlk ‖hA‖22 − nθkk ‖hA‖2
∑

i≥2

∥∥hsi
∥∥
2 ≥ n

(
λlk − θkk

(
1 + Φ

c̄

))
‖hA‖22

≥ n

(
λlk − θkk

(
1 + Φ

c̄

))∥∥hs1
∥∥2
2 .

and

|〈XhA, Xh〉| ≤ ‖XhA‖2‖Xh‖2 ≤ ‖Xh‖2
√
nλuk‖hA‖2

≤ ‖Xh‖2
√
nλuk

(√
1 + Φ

∥∥hs1
∥∥
2

)
.

Therefore, ‖Xh‖22 ≥ n[λlk−θkk ( 1+Φ
c̄ )]2

λuk (1+Φ)

∥∥hs1
∥∥2
2.

Hence by (62) and (63), let ηlk = [λlk−θkk ( 1+Φ
c̄ )]2

λuk (1+Φ)
, λ = 2c

√
log(p)/n, we have that

with probability at least 1 − 2p−4min(m,k0)(c22−1)+1

∥∥hs1
∥∥
2 ≤ 32c(1 + Φ)

aηlk

√
k0 log(p)

n

+ 16c1
√
2max(m, k0) log(p)

aηlk
√
n

[
5

4
+ (c̄ + 1)(Φ + 1)

c̄

]

≤
{
16[√2c(1 + Φ) + c1(

5
4 + (c̄+1)(Φ+1)

c̄ )]
aηlk

}

×
√
2max(m, k0) log(p)

n
,

Furthermore,
∑

i≥2

∥∥hsi
∥∥2
2 ≤ |hk+1| ∑

i≥1

∥∥hsi
∥∥
1 ≤ 1

c̄

∥∥hs1
∥∥2
2 and ‖h0‖22 ≤ Φ

∥∥hs1
∥∥2
2, we

know that with probability at least 1 − 2p−4min(m,k0)(c22−1)+1

∥∥∥β̂ − β

∥∥∥
2

≤
√

1+1

c̄
+Φ

16
{√

2c(1 + Φ) + c1[ 54 + (c̄+1)(Φ+1)
c̄ ]

}

aηlk

×
√
2max(m, k0)log(p)

n
.
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