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Abstract: Chromosomal diseases are heterogeneous 
conditions with complex phenotypes, which include 
also epileptic seizures. Each chromosomal syndrome 
has a range of specific characteristics regarding the 
type of seizures, EEG findings and specific response 
to antiepileptic drugs, significant in the context of 
the respective genetic etiology. Therefore, it is very 
important to know these particularities, in order to avoid 
an exacerbation of seizures or some side effects. In this 
paper we will present a review of the epileptic seizures 
and antiepileptic treatment in some of the most common 
chromosomal syndromes.
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1  Introduction
Neurogenetic developmental diseases represent a group 
of genetic heterogeneous conditions characterized by 
intellectual disability, dysmorphic features, behavior 
problems (autism, hyperactivity, etc.), neurologic and/ 
or psychiatric diseases, and different malformations. 

Epileptic seizures are common features of most of 
these conditions, with serious implications on patient 
management. Early diagnosis and a proper treatment of 
epilepsy in these patients are essential for a good outcome 
and a better quality of life. In this paper we review the 
impact of different genetic defects on therapeutic strategy 
of epileptic seizures, providing as examples the most 
common chromosomal developmental syndromes: Down 
syndrome, Angelman syndrome, Prader-Willi syndrome, 
and 22q11.2 deletion syndrome.

2  Down syndrome 
Down syndrome (DS) is the most common genetic cause 
of intellectual disability with a prevalence of 1 in 700 
-1000 newborns [1]. In 90% of DS cases it is caused by 
the presence of a supernumerary   chromosome 21. Other 
chromosomal mechanisms leading to partial or full 
trisomy 21 are unbalanced translocations, Robertsonian 
translocations, duplications, mosaicism. The clinical 
presentation is characterized by psychomotor delay 
(usually mild to moderate), specific facial dysmorphic 
features and limb anomalies (affecting mainly the hands), 
hypotonia, and different visceral anomalies (heart defects, 
digestive anomalies, eyes, ears, or teeth defects, etc.). 

The prevalence of epilepsy in people with DS has been 
reported to range from 1% to 13% [1]. Different types of 
epileptic seizures have been reported, including infantile 
spasms (IS), focal seizures (FS), generalized tonic-clonic 
seizures (GS), absences etc. [1]. The mechanism of the 
seizures is not completely understood, so far.  Studies 
focused on delineation of Down syndrome critical 
region (DSCR) based on extensive genotype-phenotype 
correlations [2, 3], suggested the involvement of more than 
a single chromosome 21 critical region in generating the 
entire phenotype. Thus, it seems more relevant to search 
for dosage-sensitive genes contributing to specific clinical 
manifestations. Among these genes, some proposed 
contributors to DS-associated brain phenotypes were  
KCNJ6 (potassium inwardly rectifying channel subfamily 
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J member 6), RCAN1 (regulator of calcineurin 1), DYRK1A 
(dual specificity tyrosine phosphorylation regulated 
kinase 1A), SIM2 (SIM bHLH transcription factor 2), DSCAM 
(DS cell adhesion molecule), GRIK1 (glutamate ionotropic 
receptor kainate type subunit 1), APP (amyloid beta 
precursor protein), S100B (S100 calcium binding protein 
B), SOD1 (superoxide dismutase 1) [4-10]. In some cases, 
seizures  have been attributed to structural anomalies 
of the brain or related to medical complications, such 
as congenital cardiovascular anomalies (Moyamoya’s 
disease), intracranial bleed and chemotherapy related 
neurotoxicity, bacterial and viral neurological infections 
[11, 12].

Studies on animal models revealed several risk 
factors including an abnormal neuronal structure, a 
decreased neurotransmission inhibition, a hyperexcitable 
membrane in ion channels, an increased GABA-B receptor 
activity [1]. For the treatment of IS in children with DS, 
different schedules have been used. Presently, the first-
line therapy of this type of seizures includes vigabatrin 
(VGB) and steroids or ACTH [13, 14], with a good control 
of seizures in almost half of children with DS and IS [15]. 
VGB represents an efficient drug for IS control, indicated 
mainly in tuberous sclerosis patients; however, a special 
care should be taken regarding the severe visual field 
defects due to retinal toxicity, reported with different 
frequencies in patients treated with VGB [16,17].   

Regarding the treatment with steroids, there are some 
controversies concerning their efficacy. Some authors 
reported a better response in children with IS and DS 
compared to children without DS [18]. In cases with 
infantile spasm without DS the outcome is, generaly, 
poor, depending on the underlying cause; there is a high 
risk of epilepsy, severe intellectual disability and autism 
in these children, especialy in cases with structural brain 
anomalies (such in tuberous sclerosis) [19]. 

However, other authors found a worse outcome for 
steroid treatment in IS in children with DS [20]. Another 
important aspect of the treatment with steroids is related 
to the serious side effects (increased weight or obesity, 
Cushing syndrome, behavioral disturbance, hypertension, 
hypokaliemia, femoral fracture, cardiac decompensation) 
of this therapy, taking into account that high doses 
are needed for seizures control in these patients [21]. 
Valproate (VPA), phenobarbital (PHB), topiramate (TPM) 
and levetiracetam (LVT) were also used with good effects 
in some children with DS and IS [12]. 

Regarding the treatment of other types of seizures 
(focal seizures, generalized seizures, absences), VPA is 
recommended as first-line option, alone or in association 
with lamotrigine (LTG) [12].  

Recently, Deidda et al. reported a positive effect 
of bumetanide (inhibitor of NKCC1 co-transporter) on 
epileptic seizures in DS mouse model by reversing the 
excitatory GABAA receptor signaling and restoring 
the inhibitory GABAergic currents [22]. Additionally, 
bumetanide enhanced the learning and memory 
performance by restoring the synaptic plasticity [22].

When we treat epilepsy in children with DS and 
other neurogenetic conditions, both the effect of 
seizures and of the antiepileptic drugs (AEDs) on child 
neurodevelopment should be taken into account. Thus, 
Goldberg et al. showed that children with DS and IS had 
a poor neurodevelopment despite the fact that seizures 
control was good [13]. On the other hand, Eiserman et 
al. reported delayed neurodevelopment and autistic 
behavior in children with DS and epilepsy who started 
the antiepileptic treatment with a delay of more than two 
months [23].

In DS patients over 50 years of age, late myoclonic 
seizures have been observed, especially in cases with 
dementia [24]. Moreover, epileptic seizures exacerbate the 
impairment of cognitive functions [25]. This type of seizures 
can be successfully treated with new AEDs, such as LVT and 
TPM; VPA was, also, used with good effect [1, 25]. However, 
the risk of side effects in these patients is higher, including 
those with impact on central nervous system: somnolence, 
dizziness, distractibility [26]. TPM should be used with 
caution because it can increase the cognitive decline [24]. 
Also, the AEDs which act on sodium channel and can 
aggravate myoclonic seizures, such as carbamazepine 
(CBZ) and phenytoin (PHT), should be avoided [25].   

3  Angelman syndrome
Angelman syndrome (AS) is a severe genetic 
neurodevelopmental disease secondary to the loss of 
function of E6-AP ubiquitin ligase (UBE3A) gene caused 
by one of these four mechanisms: deletion of chromosome 
15q11–q13 region of maternal origin (75%), paternal 
uniparental disomy (5-10%), an imprinting defect (5-10%) 
or point mutation in the maternal origin allele of UBE3A 
[27]. The prevalence of AS among children and young 
adults is approximately 1 in 12000-20000; with males 
and females equally affected [28]. AS is characterized by 
severe intellectual disability, specific facial dysmorphic 
features, ataxia, severe speech delay, a characteristic 
behavioral phenotype (happy disposition, sleep disorder, 
water attraction). Epilepsy is a common feature (80 to 
95%) in AS, often with onset before the age of 3 years 
[29, 30]. The mechanism of the seizures is not very clear, 
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the haploinsufficiency of a cluster of GABA receptors 
including GABRB3 in the distal end of 15q chromosome 
could be involved [31, 32, 33]. UBE3A gene product is 
part of the ubiquitin protein degradation system, being 
involved in recognition and digestion of ubiquitin-
targeted proteins at proteasome level. As loss of function 
mutations in maternal UBE3A allele lead to AS phenotype, 
it can be hypothesized that improper ubiquitin substrate 
regulation in those tissues where the UBE3A expression 
is dependent on the maternal allele contributes to the 
pathogenesis of the disorder [34]. Recent studies on mouse 
model demonstrate that Ube3a loss from GABAergic 
neurons produces AS-like EEG changes, enhances seizure 
susceptibility and severity [35].

 Patients with AS show a characteristic pattern on 
electroencephalogram (EEG) with large-amplitude slow-
spike waves of 1–2 or 4–6 Hz [36, 37]. Different types 
of seizures can be observed: FS, GS, tonic and atonic 
seizures, myoclonic, atypical absences [31, 38]. In many 
cases the seizures are resistant to AEDs, with a significant 
impact on life quality of these patients.

Different AEDs can be used in patients with AS. VPA 
and clonazepam (CLZ) are the most frequently used AEDs; 
LVT, LTG and clobazam (CLB) have also been commonly 
prescribed having less adverse effects [39, 40]. Recurrent 
myoclonic status epilepticus (SE) can be treated with 
VPA and ethosuximide (ESM) [41]. In some cases with 
refractory epilepsy TPM and ESM were effective [14]. 
CBZ, oxcarbazepine (OCZ) and VGB should be avoided 
in patients with AS because they can lead to worsening 
the seizures [29]. As seizures in AS are typically refractory 
to therapy, many patients need more than one AED for 
seizures control. 

An important aspect of antiepileptic therapy in 
patients with AS is related to the side effects, especially 
those with neuropsychiatric impact (tremor, imbalance, 
motor regression). Thus, development of new alternative 
methods to treat epileptic seizures in this disease is 
crucial. Several studies showed that ketogenic diet (KD) 
and low-glycemic index treatment (LGIT) are efficient and 
well-tolerated in patients with AS, due to a decrease of the 
neuronal excitability [42, 43, 44]. Studies on AS mouse 
models showed that oral administration of ketone esters 
(KE) induces therapeutic ketosis and has anticonvulsivant 
effect and improves motor and cognitive functions by 
increasing GABA/glutamate ratio [44]. In AS children 
with refractory epilepsy KD proved, also, to have a good 
effect [41]. LGIT was used to treat epilepsy in children 
with AS with highly efficacy [43]. Moreover, LGIT was 
more acceptable to the children and easier to integrate 
into daily meals than KD. The side effects of LGIT therapy 

include constipation and metabolic acidosis, which 
should be taken into consideration for the management 
plan of patients with AS [43].   

Myoclonus and non convulsive status epilepticus are 
other typical epileptic manifestations of AS. In children 
with AS non convulsive status epilepticus (NCSE) was 
reported in about 50% of cases and may include atypical 
absences, decreased alertness, hypotonia, atonic head 
drop, myoclonic movements, motor or developmental 
regression, somnolence or increased fatugability. NCSE 
can be triggered by different situations, such as infections, 
tapering of antiepileptic drugs, allergies or constipation. 
EEG shows slow sharp-waves discharges with high 
amplitude, especially on frontal derivations.

For distal myoclonus, an effective drug proved to be 
Piracetam [45], while non convulsive status epilepticus 
showed a variable response to benzodiazepines and 
corticosteroids [46]. 

4  Prader–Willi syndrome 
Prader–Willi syndrome (PWS) is a rare genetic condition 
(prevalence of 1 in 10,000 – 1 in 30,000), characterized by 
neurological, psychiatric and endocrinological features, 
which include hypotonia, psychomotor retardation, 
feeding difficulties during infancy and excessive eating 
after the age of 16-24 months with morbid obesity, 
compulsive behavior, temper tantrum, short stature, 
hypogonadism [47]. The cause of PWS is represented 
by the absence of expression of paternal genes from 
chromosome 15q11.2–q13 through different mechanisms: 
a deletion of chromosome 15q11.2–q13 of paternal origin 
(65–75%), a maternal uniparental disomy (20–30%), an 
imprinting defect of 15q chromosome (1–3%) [47].

The prevalence of epileptic seizures in PWS varies 
in different studies between 0 to 35%, mainly febrile 
seizures, focal and generalized tonic-clonic seizures 
[48]. Other types of seizures are rarely reported, such as 
complex partial seizures, atypical absence, staring spells, 
and myoclonic, tonic, hemiclonic and atonic seizures, [48-
52]. Focal epileptiform activity and EEG seizures are seen 
in individuals with no history of epilepsy, especially in the 
young age group [48]. 

All types of AED have been used, including CBZ, 
LTG, TPM, PHB, LVT, PHT, CLB [48]. Valproic acid, 
as well pregabalin, gabapentin, carbamazepine and 
corticosteroids, should be used with caution in these 
patients due to its high risk of weight gain. The progosis 
of epilepsy in PWS is favorable, a good control of seizures 
being achieved with monotherapy [53, 54].
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5  22q11.2 deletion syndrome
22q11.2 deletion syndrome (22q11.2DS) is the most frequent 
interstitial deletion syndrome, with a prevalence of 1:4000 
live newborns [55]. The main features include congenital 
heart malformations, palatal defects, hypoparathyroidism 
with hypocalcemia, dysmorphic facial features, 
intellectual disability, neuropsychiatric diseases 
(schizophrenia, autism spectrum disorders etc.), thymic 
hypoplasia/involution and T-cell anomalies [55, 56]. 
Although epilepsy was considered as a rare manifestation 
of 22q11.2DS, more recent studies reported a prevalence 
of epilepsy in this syndrome ranging from 3.4% to 15,2% 
[57, 58], and, also, an association of this syndrome with 
generalized epilepsy or juvenile myoclonic epilepsy [58]. 
Additionally, different brain malformations were reported 
as relatively common in 22q11.2DS, and represent an 
important cause of epilepsy [58], refractory at all types 
of AEDs. For generalized epilepsies, LVT or VPA can be 
used with good effect. Another risk factor for seizures in 
patients with 22q11.2DS is represented by hypocalcemia. 
Calcium plays an important role in neuronal excitability, 
but also in neuronal development and function [59]. 
Recent studies showed that neonatal seizures secondary to 
hypocalcemia in children with 22q11.2DS were associated 
with a subsequently moderate or severe intellectual 
disability [59]. Thus, a rapid correction of hypocalcemia 
in these children is mandatory in order to prevent both 
seizures and seizure related cognitive delay. 

In adults with 22q11.2DS an important risk factor 
for epileptic seizures is psychiatric medication. The 
antipsychotic drugs most commonly associated with 
seizures were clozapine, phenothiazines, risperidone, and 
haloperidol [60]. Among antidepressants, clomipramine 
was reported with a higher risk of seizures [60]. 

6  Ring chromosome 20
Ring chromosome 20 is a rare genetic syndrome 
associating epilepsy, intellectual disability and behavior 
problems. The prevalence of the syndrome is around 1 
in 30 000‐60 000 births, with mainly sporadic cases [61, 
62]. Taking in account the origin and structure of ring 
20, there are two patient groups described: one group 
with mosaic ring 20 and no detectable deletions and a 
non-mosaic group with a deletion at one or both ends of 
the chromosome 20 [63]. A difference has been observed 
between the two patient groups,  regarding the epileptic 
phenotype, the age of seizure onset was significantly 
lower in non-mosaic group [63]. 

The most common epileptic seizures type are partial 
complex seizures, and, in some cases non-convulsive 
status epilepticus has been reported. Childhood onset 
seizures consists of focal motor or dyscognitive seizures. 
Adolescence onset is usually associated with a milder 
evolution and no cognitive delay [64, 65].

The  mechanism underlying the epilepsy development 
in ring 20 syndrome is still unknown; the proposed 
theories include: haploinsufficiency of candidates genes 
(i.e. CHRNA4 and KCNQ2), gene expression silencing by 
a telomere position effect, the deleterious effect of ring 
instability [63, 66, 67].

In the great majority of cases the seizures are 
refractory to all antiepileptic drugs, both as monotherapy 
or in different combinations, with a deleterious effect on 
cognitive development of these children. The epilepsy 
outcome seems to be proportional to the percentage of ring 
chromosomes seen in the mosaic karyotype analysis, and 
the age of seizure onset [65]. Some authors recommend, 
as the first therapeutic choice, administration of VPA and 
LTG, in combination [64]. It is noteworthy that in some 
patients, the use of TPM or CBZ combined with LVT, led to 
a worsening of the seizures [65].

7  Wolf-Hirschhorn syndrome
Wolf-Hirschhorn syndrome (WHS) or chromosome 4p 
deletion is a rare genetic condition  characterised by 
global developmental delay, dysmorphic features, and 
various malformations. 

WHS frequency is approximately 1:50,000 births 
to 1:95,000 births [68, 69]. This syndrome is caused by 
partial deletions of chromosome 4 short arm, 4p16.3 being 
a critical region [70]. The genetic defects in most patients 
are de novo deletions; however in some patients the 4p 
deletions are generated by unbalanced translocations or 
other chromosomal rearrangements [71]. 

Epileptic seizures are present in over 90% of patients 
with WHS, generalised tonic-clonic and complex partial 
seizures beeing the most common reported seizures; some 
patients develop atypical absences by the age 1 to 6 year-
old [72, 73]. Approximately 40-50% of cases with WHS 
present also status epilepticus [72, 73]. 

As in other chromosomal deletion syndromes, 
the pathogenetic mechanisms of epilepsy are largely 
unknown. Two critical regions for this syndrome were 
detected, WHSCR1 and WHSCR2 [74,75].  Candidate genes 
for epilepsy phenotype were identified in these regions, 
such as Wolf-Hirschhorn Syndrome Candidate 1 gene 
(WHSC1, current name Nuclear Receptor Binding SET 
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Domain Protein 2 - NDS2) and Leucine Zipper And EF-Hand 
Containing Transmembrane Protein 1 gene (LETM1), 
respectively [75, 76, 77]. WHSC1 codes for a histone 
methyltransferase with H3K27me methyltransferase 
activity, expressed in early development and considered 
to function as a transcription regulator that binds DNA.  
LETM1, is involved in calcium signaling and homeostasis 
by encoding a member of the EF‐hand family of calcium‐
binding proteins [77].  

Different antiepileptic drugs, as monotherapy or in 
different combination, have been proposed. In a study on 
300 patients with WHS, the most efficacious drugs were 
LVT and CLB, followed by phenobarbital and VPA; on the 
other hand, CBZ, OCZ and PHT had the worst effect on 
seizures control [73]. Regarding the side effects, evaluated 
after the frequency of drug discontinuation, LVT, CLB and 
diazepam were well tolerated, whereas CBZ, OCZ, TPM 
and phenobarbital had a poor tolerability. 

8  Fragile X syndrome
Fragile X syndrome (FXS) is the most common cause of 
intellectual disability, affecting 1 in 2500 – 4000 males. 
In most patients, FXS is caused by triplet (CGG) repeat 
expansion mutation of the 5′-untranslated region of the 
fragile X mental retardation 1 (FMR1) gene localized in 
Xq27.3. FXS full mutation alleles contain 200 or more 
copies of the triplet repeat that are hypermethylated and 
thus inactivates FMR1 gene by transcriptional silencing 
[78, 79]. In rare cases (less than 1% of the patients), point 
mutations and partial or complete FMR1 gene deletions 
lead to FXS phenotype [80]. 

FXS is characterised by developmental delay, 
macrocephaly, dysmorphic features, behavior problems 
(autism, hyperkinesia etc), macroorchidy. Epilepsy was 
reported in 10 to 40% of patients with FXS, both males 
and females [78]. 

FXS is characterized by altered neuronal excitability 
[81] that leads to hyperactivity hypersensitivity to sensory 
stimuli and epilepsy [82]. The mechanisms that lead to this 
increased neuronal excitability in the absence of FMRP are 
not elucidated. Recently, Gross et al (2011) demonstrated 
in a Fmr1 KO mouse model, that FMRP is involved in 
regulation of translation and protein expression of the 
A-type potassium channel Kv4.2 [83]. Functional deletion 
of Kv4.2 has been previously reported in temporal lobe 
epilepsy in humans [84], thus Kv4.2 dysregulation might 
represent the link between FXS and epilepsy. 

The most common type of seizures are partial seizures, 
especialy in association with centrotemporal spikes, 

resembling benign rolandic epilepsy [78]. Generalised 
tonic-clonic seizures were also noted in these patients,and, 
with a lower frequency, status epilepticus. The most used 
antiepileptic drugs are CBZ for partial seizures and VPA 
for generalised seizures or for cases who do not responded 
to CBZ [78]. In patients with no seizure control with these 
two drugs, LTG can represent an option. 

9  Monosomy 1p36
Chromosome 1p36 deletion syndrome is a severe 
neurodevelopmental disorder characterized by 
intellectual disability and multiple congenital anomalies 
[85]. The prevalence of 1p36 monosomy is 1:5000 newborns  
[86, 87], making this condition the most common terminal 
deletion syndrome.  Chromosome 1p36 monosomy can be 
generated by terminal or interstitial deletions, derivative 
chromosomes or complex chromosomal rearrangements. 
1p36 deletions show an important size variability and no 
common breakpoints.

The typical clinical findings of this syndrome 
include moderate to severe global developmental delay, 
characteristic craniofacial abnormalities, and hypotonia. 
Additional common features are motor skills and language 
impairment, epilepsy, congenital heart defects, hearing 
loss and ocular problems [85, 88, 89].

Epilepsy is a clinical feature occuring in approximately 
50–60% of cases [87, 89]. The seizures types described in 
1p36 monosomy are highly variable and include infantile 
spasms, partial or generalized tonic–clonic, myoclonic, 
typical and atypical absence seizures and atonic seizures 
[85, 89, 90]. Similarly, the EEG findings are variable, focal 
and multifocal spikes, hypsarhythmia, and asymmetry of 
slow activity being reported [88, 91].

The pathogenesis of epilepsy in this syndrome is still 
unknown, due to the high gene density of 1p36 and to the 
variability of deletion sizes and genomic breakpoints. 
Diferrent critical region for epilepsy were delineated 
[92, 93, 94]. Haploinsufficiency of several genes was 
considered a potential contributor to seizures , such as 
GABRD (delta subunit of the gamma-amino butyric acid 
receptor gene), KCNAB2 (voltage-gated potassium channel 
subunit beta-2) gene and SKI (SKI proto-oncogene) [89,95].  

Various AEDs are reported in the literature for epilepsy 
treatment in 1p36 monosomy syndrome: high doses of 
oral steroids, VPA, LEV, VBG, ESM, PHB, association of  
VPA with ACTH or multidrug combination.  The prognosis 
of epilepsy is reported as usually favourable; however a 
percentage of patients experience drug resistant seizures 
[85, 89, 90, 95]. The onset of epilepsy with ISs, in 1p36 
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deletion syndrome, seems to be associated with a higher 
risk of developing refractory epilepsia [89, 91, 95].

10  Inv-dup(15) syndrome
Inverted duplication of chromosome 15 syndrome - inv 
dup(15) syndrome, isodicentric chromosome 15 syndrome, 
tetrasomy 15q syndrome - is caused by the presence of at 
least one supernumerary copy of 15q11.2-13.1, inherited 
from the mother, and which comprise PWS/AS critical 
region. The syndrome has an estimated incidence of 1 to 
30,000 newborn babies [96].

The clinical presentation include early central 
hypotonia, moderate to profound developmental delay 
and ID, epilepsy, and autistic behavior [97]. There are two 
chromosomal mechanisms that leads to the characteristic 
clinical presentation of inv dup(15) syndrome: the presence 
of a maternal isodicentric 15q11.2-q13.1 supernumerary 
chromosome resulting in tetrasomy or hexasomy for 
15q11.2-q13.1 (80% of cases) and a maternal interstitial 
15q11.2-q13.1 duplication or triplication (20% of cases). 

Epilepsy is present in more than 50% of the patients 
with inv dup(15); a wide variety of seizure can occur, 
including infantile spasms and myoclonic, tonic-clonic, 
absence, and focal seizures. Frequently, there are difficult 
to treat epilepsy forms associated with some degree 
of deterioration in cognitive skills and behaviour [98]. 
Various EEG abnormalities have been described, such 
as slow/sharp waves, and/or biphasic spikes-polyspikes, 
spike/wave complexes, and an excess of fast activity 
mainly over the fronto-temporal areas [98, 99].

An efficient control   of   IS can be achived by 
administration of ACTH in high doses [100]. VPA, CBZ, 
LTG and rufinamide proved to be the most effective as 
sole drug or in associations. The antiepileptic terapy can 
be selected based on type of seizures at onset: in cases 
with atypical absence, VPA can be use with good effect, 
whereas in patients with tonic seizure, CBZ can be the first 
choice [99].

11  Conclusions
Epilepsy associated to different chromosomal 
developmental syndromes, raises specific problems of 
treatment and prognosis. Thus, it is very important to 
choose the proper AEDs for specific types of epilepsy. 
Such examples are the use of VGB and steroids or ACTH 
in ISs associated to DS and use of VPA and LVT in AS, 
DS with myoclonic seizures (adult patients) and in 
generalized epilepsies associated with 22q11.2DS. Some 

AEDs should be avoided because they can exacerbate the 
seizures, such as CBZ and OCZ in patients with AS or in 
those with myoclonic seizures. Also, we should take into 
consideration the other clinical features of these patients 
which can be aggravated by some AEDs: TPM and VPA can 
increase the cognitive deficit, and VPA should be avoided 
in syndromes associating obesity such as PWS and DS. For 
patients with refractory epilepsy, like in AS, ketogenic diet 
or low-glycemic index treatment can be useful. 

In conclusion, as in all epileptic syndromes, the 
antiepileptic therapy in chromosomal developmental 
syndromes should be better standardized and 
personalized in order to obtain a good control of seizures 
and to avoid or minimize the side effects, especially those 
with neuropsychiatric impact.

These chromosomale syndromes should be taken 
into consideration in evaluation of a child with first 
episode of epileptic seizure, especially in association 
with some specific features such as intellectual disability, 
dysmorphic features, or behavioral problems.
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