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Abstract: Pheochromocytomas (PCC) and paragangliomas (PGL) are rare neuroendocrine tumors.
Head and neck paragangliomas (HNPGL) can be categorized into carotid body tumors, which are
the most common, as well as jugular, tympanic, and vagal paraganglioma. A review of the current
literature was conducted to consolidate knowledge concerning PGL mutations, familial occurrence,
and the practical application of this information. Available scientific databases were searched using
the keywords head and neck paraganglioma and genetics, and 274 articles in PubMed and 1183
in ScienceDirect were found. From these articles, those concerning genetic changes in HNPGLs
were selected. The aim of this review is to describe the known genetic changes and their practical
applications. We found that the etiology of the tumors in question is based on genetic changes in the
form of either germinal or somatic mutations. 40% of PCC and PGL have a predisposing germline
mutation (including VHL, SDHB, SDHD, RET, NF1, THEM127, MAX, SDHC, SDHA, SDHAF2, HIF2A,
HRAS, KIF1B, PHD2, and FH). Approximately 25–30% of cases are due to somatic mutations, such as
RET, VHL, NF1, MAX, and HIF2A. The tumors were divided into three main clusters by the Cancer
Genome Atlas (TCGA); namely, the pseudohypoxia group, the Wnt signaling group, and the kinase
signaling group. The review also discusses genetic syndromes, epigenetic changes, and new testing
technologies such as next-generation sequencing (NGS).

Keywords: pheochromocytoma; paraganglioma; head and neck neoplasms; head and neck tumors;
genetic syndromes; mutations

1. Introduction

Pheochromocytomas (PCC) and paragangliomas (PGL) are rare neuroendocrine tumors originating
from either adrenomedullary chromaffin cells (PCCs); sympathetic ganglia of the thorax (T-PGL);
or abdominal (A-PGL), pelvic, or parasympathetic ganglia in the head and neck (HNPGL) [1,2].
They are referred to collectively as PPGL. PCCs typically secrete one or more than one catecholamine:
epinephrine, norepinephrine, and dopamine [1], while PGLs in most cases are non-secretory [1,3–5].
PCC represent 80% to 85% of chromaffin-cell tumors, and PGL represent 15% to 20% [6]. These tumors
are characteristically well-vascularized and typically benign; nonetheless, roughly 10–15% may
metastasize to the lungs, bone, liver, and lymph nodes. They most frequently occur between the third
and sixth decades of life and present more commonly in women [7]. HNPGL can be categorized
into carotid body tumors, which are the most common, as well as jugular, tympanic, and vagal
paraganglioma. Other rare locations include the larynx, thyroid gland, parathyroid gland, nose,
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paranasal sinuses, parotid gland, or orbit [8]. PGL have also been described in the urogenital system,
in the spermatic cord in particular [9]. Clinical symptoms vary according to the location and size of the
tumor. Carotid body tumors typically produce a painless, slow-growing neck mass [10,11] that may
eventually cause dysphagia and cranial nerve disorders. In contrast, pulsatile tinnitus and conductive
hearing loss are characteristic of tympanic paraganglioma [12].

Neuroendocrine tumors show the highest degree of heritability in all neoplasms (approximately
40–50%) [13–17]. The first reports of the familial occurrence of PGL date from 1933, when carotid
paragangliomas were first described by Chase [18,19]. In recent years, it has been confirmed that
more than one-third of these tumors are genetically determined [20]. Today, the planning of further
treatment considers family history, the extent and location of the tumor, its genetic origin, and
the molecular pathways involved, especially as genetic testing becomes increasingly available and
consistently improves the efficacy of therapy [3]. When a mutation is detected in a susceptibility gene
such as VHL, SDH, or the recently discovered MDH2, a search for common co-occurring tumors is
indicated [20,21]. Mutation in the SDHB subunit is also associated with the risk for malignancy and
worse prognosis [3,10,22,23]. In 50% of patients with metastatic disease, a mutation in the SDHB gene
was found. In the remaining 50% of cases, the genetic factors of the malignancy are still unidentified [23].
With this knowledge, genetic testing of PGL and the testing of first-degree family members should be
routinely implemented to diagnose low-grade tumors [24]. Therefore, we aim to comprehend and
conclude the most recent knowledge surrounding mutations in PGL, family occurrence, and their
practical application based on the current literature and the paradigm of diagnostics.

2. Results

The outcomes are presented in the form of a literature review, structured by thematic subsections
concerning the classification of head and neck paragangliomas with regard to genetic and molecular
changes (based on 21 papers), as well as elucidation of genetic syndromes (based on 19 publications).
Moreover, the review presents new methods as they pertain to the investigation of these tumors,
such as investigation of epigenetic patterns or the application of new advanced molecular tools like
next-generation sequencing (NGS) (based on five publications).

The details concerning the content of the presented articles (materials, methods, and conclusions)
are presented in Table 1.
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Table 1. The table includes details concerning the content of the presented articles (authors, year of publication, number of patients in the study, reported genes, and
most significant findings). Only data from original papers are included; no reviews are considered.

Author, Year No. of Patients Genes Findings

Niemann et al. (2001) [25]

Five patients with histologically proven paraganglioma
(single family members) and one patient (of this family)
with imaging findings consistent with a PGL. 33 family

members were clinically unaffected.

SDHC gene location The disease locus in PGL3 was determined to be located at 1q21-q23.

Mannelli et al. (2009) [26]

501 patients with PCC and/or PGL
160 patients under 50 years of age whose DNA

sequencing results revealed wild-type RET, VHL, SDHB,
SDHC, and SDHD were subsequently analyzed for

genomic rearrangements involving the VHL gene or one
of the SDH genes.

RET
VHL

SDHD
SDHB
SDHC

Genomic rearrangements (total deletion of
the SDHD gene)

Detection of germinal mutations (such as VHL, RET, NF1, SDHB, SDHC and
SDHD) in 32.1% of cases. From 100% in patients with associated lesions to 11.6%

in patients with a single tumor.
Genomic rearrangements were found in two of 160 patients (1.2%), both involving

total deletion of the SDHD gene.

Bayley et al. (2010) [27]

443 patients with apparently sporadic PCC/PGL who did
not have mutations in SDHD, SDHC, or SDHB.

Examination of a Spanish family with HNPGL presenting
with a young age of onset.

SDHAF2

No germinal (315 patients) or somatic (128 patients) mutations, and no germinal
deletions of the SDHAF2 gene were found.

After pedigree analysis of a Spanish family with HNPGL a pathogenic mutation
in SDHAF2 was found that resulted in an amino acid substitution (p.Gly78Arg).

The same mutation was noted previously in a Dutch kindred.

Kunst et al. (2011) [28] 57 family members. SDHAF2
Establishing a correlation between HNPGL occurrence (based on phenotypic

analysis) and SDHAF2 mutation. The mutation carriers showed early onset of the
disease and high levels of multifocality.

Casey et al. (2014) [29] 31 patients with confirmed PCC/PGL.
TMEM127
SDHAF2

RET

The occurrence of TMEM127, SDHAF2 and RET mutations was found in patients
without indications for genetic testing based on phenotypic evaluation.

Fishbein et al. (2015) [23]

Stage 1: whole exome sequencing on a discovery set of 21
patients with PCC/PGL.

Stage 2: targeted sequencing of a separate validation set
of 103 patients withPCC/PGL.

NF1
ATRX

Mutations in NF1 were detected in 42% of tumors. In 28% of SDHB-related
tumors, deleterious variants of ATRX were found (PP119F1 p.W2275* and

PP098F2 p.R2197H). ATRX protein was not detected in tumor cells by
immunohistochemistry.

The study found somatic mutation of ATRX in 12.6% of cases; 30% of them had
truncating mutations and 69% missense mutations, classified as deleterious.

Luchetti et al. (2015) [30] 85 patients: PCC 60, PGL 5, HNPGL 20. HRAS
BRAF

Missense mutation was found in six cases (PCC = 6/60, PGL = 0/5, and HNPGL =
0/20) in HRAS in the hotspot region of codon 13 and 61. In one case of PCC, an
activating BRAF mutation was found. In two patients a missense mutation was

identified in the tetramerization domain of TP53 protein.

Fishbein et al. (2017) [31] 173 patients with PCCs/PGLs.

SDHB, RET,
WHL, NF1,

SDHD, MAX
EGLN1 (PHD2),

TMEM127,
CSDE1, HRAS,

EPAS1, MAML3,
BRAF, NGFR

27% of patients had germinal mutations (including SDHB 9%, RET 6%, VHL 4%,
and NF1 3%). SDHD, MAX, EGLN1 (PHD2), and TMEM127 mutations were

found in less than 2% each. CSDE1 was identified as a somatically mutated driver
gene complementary to the other four known drivers (HRAS, RET, EPAS1, and

NF1). MAML3, BRAF, NGFR, and NF1 fusion genes were discovered.
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Table 1. Cont.

Author, Year No. of Patients Genes Findings

Bausch et al. (2017) [32] 972 unrelated patients without mutations in the classic
PCC/PGL associated genes.

SDHA, TMEM127,
MAX, SDHAF2

Six percent of patients were mutation carriers (including SDHA, TMEM127, MAX,
and SDHAF2). 91% of patients had familial, multiple, extra-adrenal, and/or
malignant tumors and/or had younger age of onset. Extra-adrenal tumors
occurred in 48% of mutation carriers and in 79% of carriers with HNPGL.

Chen et al. (2017) [22] 37 patients with HNPGLs.
SDHD
SDHB

SDHAF2

SDHD gene mutations were found in: the Chinese founder mutation (c.3G>C,
p.Met1Ile) in six cases, a missense mutation (c.284T>C, p.L95P) in one case, an

in-frame deletion (c.278–280delATT, p.Y93S) in one case. A missense SDHB
mutation (c.647A>G) and a nonsense SDHAF2 mutation (c.130C>T, p.Gln44Ter)
were found in two cases. Frequent methylation was observed in six of the TSGs
tested (HIC1, DcR1, DcR2, DR4, DR5, and CASPS8). Four of them (HIC1, DcR1,

DcR2 and CASPS8) showed more frequent mutations in SDH-associated HNPGL
than in non-mutated ones.

Calsina et al. (2018) [21] 830 patients with PPGLs, negative for the main PPGL
driver genes. MDH2

Twelve heterozygous variants of MDH2 were found (five of the 12 were missense
(41.7%), one synonymous (8.3%), four were located in the intronic region (33.3%),
one was an in-frame deletion (8.3%), and one affected a donor splice-site (8.3%).

Five of these were unreported variants.
The study showed the functional impact of two variants (p.Arg104Gly and

p.Lys314del) and suggests altered molecular function of two variants
(p.Val160Met and p.Ala256Thr).

Ding et al. (2019) [33] 23 cases of multiple HNPGL.

SDHD, SDHB,
SDHC,

SDHAF2,
VHL, RET

Family 1: 12 SDHD mutations (8 bilateral carotid body tumor (CBT) with 1
bilateral malignant CBT)

Family 2: 3 SDHD mutations (1 bilateral CBT, 2 unilateral CBT)
Family 3: 2 cases of SDHD mutations (vagus PGL and pheochromocytoma)

Other patients: sporadic manifestations (5 cases SDHD gene mutation, 1 case RET
gene mutation).

Two novel mutations were found: c.387–393del7 mutation of SDHD gene and
c.3247A>G mutation of RET gene. More frequent occurrence of SDHD mutations

was found in patients and family members with multiple HNPGL.
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2.1. Classification Based on the Genetic and Molecular Background

Germinal mutations occur in the germ line and are passed on to all cells of the developing
body [34]. A germline predisposing mutation is found in approximately 40% of PCCs and PGLs in one
of at least 12 genes (VHL, SDHB, SDHD, RET, NF1, THEM127, MAX, SDHC, SDHA, SDHAF2, HIF2A,
HRAS, KIF1B, PHD2, FH). The second type of genetic alteration is classified as somatic. These occur
later in life, affecting only a single cell of a particular tissue, and give rise to the development of a
specific neoplasm. Somatic mutations of RET, VHL, NF1, MAX, and HIF2A account for 25–30% of these
tumors [13,16,23,32,33,35,36].

PGLs are classified into three clusters by the Cancer Genome Atlas (TCGA) on the basis of
molecular, cytogenetic abnormalities, and specific single-nucleotide causative mutations, which led to
the development of PPGLs. Moreover, contributing genes are grouped according to their biological
activity—namely, the pseudohypoxia group, the Wnt signaling group, and the kinase signaling group.
This division into groups with different clinical, imaging, molecular, and biochemical features allows
for the personalization of patient care as well as the development of new screening and treatment
guidelines [14,35,37,38].

The pseudohypoxia group can be further divided into two subgroups. The first comprises
tricarboxylic acid cycle (TCA)-related factors concerning 10–15% of PPGLs. This group includes
germline mutations in succinate dehydrogenase subunits SDHA, SDHB, SDHC, SDHD or SDHAF2
(SDHx)—succinate dehydrogenase complex assembly factor 2, and FH (a second enzyme in the TCA
cycle). The second subgroup encompasses VHL/EPAS1-related genes and accounts for 15–20% of
PPGLs [14,35,37–40].

Activation of hypoxia inducible factors (HIFs) is a mutual characteristic for this cluster. HIFs are
released in physiological response to cellular hypoxia. A pseudo-hypoxic state is caused by the presence
of abnormal, mutated VHL, SDH, EGLN1, and HIF2A genes. The effect of this is constant activation
of HIF pathways in the cell despite normal oxygen levels. This condition causes epigenetic changes
in HIF target genes, which affects many processes including proliferation, angiogenesis, migration,
apoptosis, and invasion. These events may all contribute to PPGL formation [19,35,38,41–44].

The Wnt signaling cluster is another group that are, in particular, triggered by somatic mutations
in the CSDE1 gene or somatic gene fusions which affect the MAML3 gene. This results in the activation
of Wnt and Hedgehog signaling pathways. Patients with sporadic PPGLs (5–10% of all PPGLs)
are grouped here. Many developmental processes such as proliferation, cell polarity, adhesion, or
differentiation are regulated by the Wnt pathway. As a result, these tumors are considered more
aggressive, recur significantly, and are often prone to metastases [14,31,37–39,45].

The kinase signaling cluster (50–60% of PPGLs) includes germline or somatic mutations in RET,
NF1, MAX, HRAS, and TMEM127 genes [14,37]. The RAS/MAPK and PI3/AKT signaling pathways
are enabled due to RET proto-oncogene activation or NF1 tumor suppressor inactivation, resulting in
tumor formation. In contrast, TMEM127 mutations trigger the mTOR pathways. Another mechanism
includes deactivation of the MAX suppressor gene, causing an abnormally elevated expression of
cofactor MYC (proto-oncogene), resulting in the formation of PPGLs [14,38–41,43,44].

Several genetic syndromes are associated with PPGL: Multiple endocrine neoplasia type 2 (MEN2),
Neurofbromatosis type 1 (NF1), Von Hippel–Lindau (VHL) disease, and Hereditary paraganglioma
syndrome (PGL 1, PGL2, PGL3 and PGL4) [46,47].

HNPGL are very rare in NF1, MEN 2, and VHL patients. Rather, they display a predisposition
toward the development of PCCs.

2.2. Genetic Syndromes

HNPGL are a solid manifestation in hereditary paraganglioma syndromes. They are caused by
mutations in the succinate dehydrogenase (SDH) complex, which is necessary for the mitochondrial
electron transport chain and ATP generation. This compound is composed of four subunits (A-D) with
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SDHAF2 stabilizing the entire complex. Subunits B, C, and D are strongly correlated with PCCs and
PGLs [8,12,14,26,35,42,46–48].

PGL1 syndrome is an autosomal dominant disease linked to HNPGLs. It is correlated with
inactivating mutations of the SDHD gene localized on chromosome 11q23. PCCs and sympathetic PGLs
occur in 40% of cases, and bilateral or multifocal tumors are present in approximately 74% of patients.
Though these tumors are typically not malignant, they have a tendency toward recurrence [14]. SDHD
mutations are also associated with maternal genomic imprinting. Tumors are more likely to develop in
children if the father is affected or a mutation carrier himself. If the mutation is inherited from the
mother, it is inactivated but still genetically transmitted [8,12,15,35,41,47,49].

PGL4 syndrome also arises from a mutation with an autosomal dominant mode of inheritance,
is responsible for inactivating the SDHB gene located on 11p35. In this condition, the following
symptoms are reported: sympathetic extra-adrenal PGLs, PCCs, and HNPGLs. In up to 70% of all
cases of PGL4 syndrome, the tumors are malignant [13]. PGLs typically produce catecholamines
such as dopamine and norepinephrine, and only 10% of SDHB mutated tumors are biochemically
silent; however, the clinical consequences are generally the result of significant mass effect rather
than catecholamine excess. Typical tumor localizations include the abdomen and the mediastinum.
The SDHB gene mutation increases the risk of renal cell carcinoma, gastrointestinal stromal tumor
(GIST), and breast and papillary thyroid carcinoma, and while patients with metastatic disease should
be routinely tested for the presence of the predisposing SDHB mutation, there are no guidelines
regarding the screening of asymptomatic SDHx gene mutation carriers. Experts do suggest annual
biochemical screening for PCC/PGLs from between the ages of five and 10, as well as full-body MRI
screening for all associated tumor types every 2–5 years [8,12,14,35,41,47,49].

PGL3 syndrome is caused by an SDHC gene mutation located on 1q21-q23 and is inherited
in an autosomal dominant pattern. PGL3 is associated with the occurrence of benign HNPGL,
sympathetic PGL, and PCC and is typically multifocal. Metastases of these tumors is exceedingly
rare [8,25,42,47,49,50].

Mutations in the SDHAF2 gene have also been recently reported. SDHAF2 mutation results in
a rare type of familial paraganglioma syndrome that leads to HNPGL, but only in the children of a
father who is a carrier of the defective gene. This syndrome is transmitted in an autosomal dominant
manner, and usually manifests in the third decade of life. Genetic screening of SDHAF2 mutation is
crucial in patients with HNPGL with suspicious family history, young age of onset, or multiple tumors
and have already tested negative for SDHB, SDHC, and SDHD mutations [27–29,37,46,47].

2.3. Epigenetic Patterns in HNPGL

Epigenetic changes are gene modifications that do not change the DNA sequence but affect
gene activity. Most often the changes include methylation—the addition of a methyl group to the
DNA strand—which results in the switching off or silencing of the gene and subsequent altered
protein production. Other types of epigenetic modification include acetylation, phosphorylation,
ubiquitylation, and sumoylation. Some of these changes can be inherited [51]. However, the most
frequent of all epigenetic markers in DNA is cytosine methylation. This change in the human genome
is referred to as “CpG methylation” or “DNA methylation” [52]. Inactivation of tumor-suppressor
genes (TSGs) is caused by overall DNA hypomethylation and hypermethylation of CpG islands located
in the closest vicinity of the promoter. Tumorigenesis of HNPGL is not yet fully explained, and the
search for new genetic as well as epigenetic changes is ongoing.

In a study by Chen et al. [22], the methylation status of a panel of TSGs (p16, HIC1, DcR1, DcR2,
DR4, DR5, CASP8, HSP47, MGMT, and RASSF1A) has been determined and compared in HNPGLs
with and without SDH mutations. A correlation between the methylation index (MI) and the presence
of germline mutations was observed. Six out of 10 TSGs showed frequent methylation: HIC1 and those
involved in the apoptosis pathway DcR1, DcR2, DR4, DR5, and CASPS8. More frequent methylation
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in SDH-related HNPGLs compared to non-mutated analogues was observed in four analyzed TSGs
(CASPS8, HIC1, DcR1, and DcR2).

2.4. Next-Generation Sequencing (NGS)

Most of the studies conducted as of today have utilized conventional Sanger sequencing.
Next-generation sequencing (NGS), in contrast to Sanger sequencing, enables broader and more
accurate sequencing, leading to the detection of mutations in multiple genes. This technology allows
for sample multiplication and also increases capacity and effectiveness, as well as reducing costs.
Therefore, the use of NGS could provide the opportunity to test all patients at risk, rather than just a
few selected targets [36]. It may provide a better understanding of the crucial role of the mutations
acquired on various level of disease development, as well as those underlying the carcinogenesis of
HNPGLs [53]. Luchetti et al. [30] analyzed 50 “mutation hotspot” variants in PCC and PGL using NGS
in 20 patients with HNPGL and 85 patients with PPGL. The authors identified mutations in HRAS
(7.1%), and BRAF (1.2%) as well as for TP53 in 2.35% of cases. In the group of PPGL tumors with
identified hereditary mutations (21 cases), HRAS, BRAF, and TP53 genes were not mutated. It was
concluded that the occurrence of HRAS/BRAF mutations predominates in sporadic PPGL (8.9%) but is
inconsequential for inherited PPGL.

3. Materials and Methods

This study assumes a review of world scientific literature. An online search was conducted
using the scientific databases PubMed and ScienceDirect applying the key words head and neck
paraganglioma and genetics. The first resulting article in PubMed dated from 1981 and from 1996 in
ScienceDirect. Over the last 10 years, the number of articles on the subject has doubled. While this
review considers articles from the last 20 years, over 85% of them were published in the last 10 years.
Detailed data concerning the number of articles in each year are presented in Figure 1.
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In total, 274 articles containing the indicated keywords were found in PubMed and 1183 in
ScienceDirect. Of these, only those from the last 20 years reporting genetic changes in head and neck
paraganglioma were selected.
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4. Conclusions

The conclusions of this review are based on the entire overview of the literature and may prove
useful for the improvement of diagnostic and therapeutic schemes surrounding PCCs and PGLs.
According to the article “Recommendations for Somatic and Germline Genetic Testing of Single
Pheochromocytoma and Paraganglioma” [54], the study of germline DNA should be prioritized in
head and neck paraganglioma and thorax paraganglioma. A strong recommendation for genetic
testing—somatic as well as germline mutations, regardless of the age at diagnosis—is indicated. It is
also strongly recommended even in patients with a negative family history, especially if the lesions
occur at a young age and are multifocal [55]. Genetic testing is very effective for predicting the incidence
of metastatic tumors. Numerous authors [3,56,57] have demonstrated the variability in the SDHB
gene, which leads to metastatic disease in 40% or more of patients. An agreement in the literature on
the selection of mutations in HNPGL has been drawn, and encompasses the following genes: SDHA,
SDHB, SDHD, SDHAF2, SDHC, SDHB, VHL, FH, RET. These should be routinely determined in PGL
patients. Different combinations of these genes should be tested depending on the availability of a
tumor sample or the performance of SDHB-immunohistochemistry (SDHB-IHC).

To conclude, the diagnostic schedule in PGL should include the collection of clinical data including
epidemiology, family history concerning neoplasms, the course of the disease (e.g., tumor growth
rate), and/or its relapses. Radiological evaluation of the tumor consisting of imaging and angiography
(assessment of tumor size, vascularization, localization, position relative to other structures, presence
of metastases) should also be considered. Furthermore, in light of the expanding knowledge of the
genetic basis of this disease, genetic testing concerning causative alterations has become increasingly
important. A multidisciplinary team consisting of an ENT specialist, a radiologist, an endocrinologist, a
nuclear medicine physician, and a geneticist can qualify the patient on the grounds of such information
for further treatment and the management of follow-up.
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