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ABSTRACT Histamine is a key biological signaling molecule. It acts as a neu-
rotransmitter in the central and peripheral nervous systems and coordinates lo-
cal inflammatory responses by modulating the activity of different immune cells.
During inflammatory processes, including bacterial infections, neutrophils stimu-
late the production and release of histamine. Here, we report that the opportu-
nistic human pathogen Pseudomonas aeruginosa exhibits chemotaxis toward his-
tamine. This chemotactic response is mediated by the concerted action of the
TIpQ, PctA, and PctC chemoreceptors, which display differing sensitivities to his-
tamine. Low concentrations of histamine were sufficient to activate TIpQ, which
binds histamine with an affinity of 639 nM. To explore this binding, we resolved
the high-resolution structure of the TlpQ ligand binding domain in complex with
histamine. It has an unusually large dCACHE domain and binds histamine
through a highly negatively charged pocket at its membrane distal module. Che-
motaxis to histamine may play a role in the virulence of P. aeruginosa by recruit-
ing cells at the infection site and consequently modulating the expression of
quorum-sensing-dependent virulence genes. TIpQ is the first bacterial histamine
receptor to be described and greatly differs from human histamine receptors, in-
dicating that eukaryotes and bacteria have pursued different strategies for hista-
mine recognition.

IMPORTANCE Genome analyses indicate that many bacteria possess an elevated
number of chemoreceptors, suggesting that these species are able to perform
chemotaxis to a wide variety of compounds. The scientific community is now
only beginning to explore this diversity and to elucidate the corresponding
physiological relevance. The discovery of histamine chemotaxis in the human
pathogen Pseudomonas aeruginosa provides insight into tactic movements that
occur within the host. Since histamine is released in response to bacterial patho-
gens, histamine chemotaxis may permit bacterial migration and accumulation at
infection sites, potentially modulating, in turn, quorum-sensing-mediated pro-
cesses and the expression of virulence genes. As a consequence, the modulation
of histamine chemotaxis by signal analogues may result in alterations of the bac-
terial virulence. As the first report of bacterial histamine chemotaxis, this study
lays the foundation for the exploration of the physiological relevance of hista-
mine chemotaxis and its role in pathogenicity.
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acteria possess different types of signal transduction systems that enable them to

adapt to changes in environmental cues. In addition to one- and two-component
signal transduction systems, chemosensory pathways play an important role in this
process (1-3). In a canonical chemosensory pathway, signaling is initiated by the
binding of signal molecules to the chemoreceptor ligand binding domain (LBD), which
in turn modulates the autophosphorylation activity of the CheA histidine kinase and
the transphosphorylation of the CheY response regulator, which ultimately triggers
pathway output (2). While most chemoreceptors mediate chemotaxis, some also carry
out alternative cellular functions, such as modulating c-di-GMP levels or type IV
pilus-based motility (4-6).

Escherichia coli is the traditional model organism for the study of chemoreceptor-
based signaling processes (7). It has 5 chemoreceptors, of which 4 contain a periplasmic
4-helix bundle LBD. Importantly, these chemoreceptors bind signals either directly or in
complex with a periplasmic ligand binding protein. E. coli has a single chemosensory
cascade that mediates chemotaxis primarily toward sugars, amino acids, or dipeptides
(7, 8).

More recently, chemoreceptor-based signaling has been studied in an array of
bacteria with different lifestyles (9). The existing data suggest that the typical number
of chemoreceptor genes in bacteria, which can reach as high as 80, is much higher than
in E. coli (10). Furthermore, sequence analyses indicate that chemoreceptors comprise
more than eighty different LBD types (11). The most abundant of these are CACHE-type
LBDs, which are present in either the monomodular (sCACHE) or bimodular (dCACHE)
form (12). The large number of chemoreceptor genes and the diversity of LBD types
suggest that bacteria can respond to a wide variety of signal molecules. The scientific
community is now beginning to explore this diversity and to elucidate the correspond-
ing physiological relevance.

Pseudomonads are important model organisms for the study of chemoreceptor
function (13, 14), and the strains Pseudomonas putida KT2440 and Pseudomonas
aeruginosa PAO1 have been well studied and characterized (11). The former strain is a
nonpathogenic soil bacterium with a saprophytic lifestyle (15). In contrast, P. aeruginosa
strains are among the most virulent opportunistic human pathogens and the leading
cause of nosocomial infections, particularly in immunocompromised, cancer, burn, and
cystic fibrosis patients (16).

Strains KT2440 and PAO1 have similar numbers of chemoreceptor genes: 27 and 26,
respectively. The function and the corresponding ligand profiles have been established
for approximately ten receptors in each strain (11, 17). Among the functionally anno-
tated KT2440 chemotaxis receptors are several for different organic acids (18), purines
(19), proteinogenic amino acids (20), and gamma-aminobutyric acid (GABA) (21). In
addition, the McpU chemoreceptor of this strain was the first chemoreceptor identified
that responded to the polyamines putrescine, spermidine, and cadaverine (20, 22). In
contrast, PAO1 chemotaxis to proteinogenic amino acids and GABA is mediated by
three paralogous receptors, namely, PctA, PctB, and PctC (23, 24). Additionally, this
strain has two receptors for inorganic phosphate (25, 26) as well as receptors for malate
(27, 28), a-ketoglutarate (29), and chloroethylenes (30). P. aeruginosa is also attracted to
the plant hormone ethylene, and it was shown that the deletion of the gene encoding
the TIpQ chemoreceptor abolished ethylene chemotaxis (31).

In this study, we provide the first report of bacterial chemotaxis toward histamine.
This compound is produced by different animal tissues and is secreted by some
bacteria (32). Histamine is a signal molecule with multiple functions. It is an aminergic
neurotransmitter of the central and peripheral nervous systems, and it is involved in
numerous biological processes (33). It is also a key modulator of local immune re-
sponses by mediating the effects on many cell types such as antigen-presenting cells,
natural killer cells, and epithelial cells, as well as T and B lymphocytes (34). Bacteria have
been shown to impact histamine function. For example, bacterial respiratory tract
infections stimulate neutrophils to release histamine (35, 36). Also, it was shown that
infection by PAO1 greatly increased neutrophil histamine content and secretion but did
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FIG 1 Thermal shift assays of P. putida KT2440 McpU-LBD against a library of ligands. Shown are the
individual T,, changes caused by 95 compounds (Biolog array PM3B) that can serve as nitrogen sources.
The inset shows the unfolding curves of McpU-LBD when free from ligand (continuous line) and in the
presence of agmatine (dotted line) and histamine (dashed line).

not alter histamine production in mast cells, which are the classical histamine reservoirs
(36). Furthermore, it has been shown that histamine might play divergent roles in the
immune response: it has been implicated in mediating the defense against infection
(37) as well as increasing the susceptibility to infection (38). While there has been
preliminary evidence that histamine is a signal molecule for bacteria, the underlying
mechanisms remain largely unknown (39). The present study provides important
insight into the molecular mechanisms that permit bacteria to sense and respond to
histamine.

RESULTS

Identification of histamine and additional polyamines as novel ligands for the
P. putida KT2440 McpU chemoreceptor. By screening 190 compounds for binding to
the purified McpU-LBD, we previously found that McpU binds to and mediates che-
motaxis to putrescine, cadaverine, and spermidine (20). In the present study, we
extended this screening to include 285 additional compounds. These compounds were
mostly bacterial nitrogen, phosphorous, and sulfur sources (see Materials and Meth-
ods). We used a thermal shift assay to monitor changes in the midpoint of protein
unfolding (T,,,) caused by ligand binding (40). In the absence of ligand, McpU-LBD had
a T, of 46.5°C. Of the 95 nitrogen sources screened (Biolog plate PM3B), three
additional compounds—agmatine, ethylenediamine, and histamine—caused T,,, in-
creases greater than 2°C (Fig. 1).

Using isothermal titration calorimetry (ITC), we found that all three compounds bind
to McpU-LBD (see Fig. S1A in the supplemental material). Very tight binding was
observed for agmatine with a K, (equilibrium dissociation constant) in the nanomolar
range, whereas histamine and ethylenediamine bound with much lower affinities
(Table 1). It should be noted that of these three new McpU ligands and the previously
identified ligands (i.e., putrescine, cadaverine, and spermidine), all except for histamine
are polyamines (Fig. S1B).

Identification of TIpQ as a histamine receptor in Pseudomonas aeruginosa.
Because histamine plays an important role in the immune response, we aimed to
identify McpU homologues in P. ageruginosa that may also sense and mediate che-
motaxis to histamine. To this end, we carried out a sequence clustering analysis of all
dCACHE-containing chemoreceptors in PAO1 and KT2440 (see Fig. S2A). This analysis
revealed that the LBD of the TlpQ receptor shares 62% sequence identity with the
McpU-LBD homologue (Fig. S2B). To verify TIpQ function, we purified TIpQ-LBD for ITC
binding studies. The results showed that five McpU-LBD ligands bind to TIpQ-LBD with
nanomolar affinities, whereas the binding of ethylenediamine was slightly weaker
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TABLE 1 Thermodynamic parameters for the binding of ligands to McpU-LBD and TIpQ-LBD as derived from ITC experiments?

McpU-LBD TlpQ-LBD

Compound Kp (M) AH (kcal - mol—1) Kp (nM) AH (kcal - mol—7) Kp McpU-LBD/K,, TIpQ-LBD
Putrescine 2 = 0.18 —15 =05 134 = 12 —6.8 £ 03 15

Cadaverine 22 + 26 —15.5 = 0.5 150 + 4 —6.0 = 0.1 147

Spermidine 45 + 0.4b —43 + 0.3 56 + 4 —4.6* 04 80

Agmatine 0.48 = 0.02 —145 = 0.2 150 = 9 —54 £ 0.1 3

Ethylenediamine 39 x4 —9.7 £ 05 1,710 = 180 —6.3 = 0.6 23

Histamine 26 £ 2 —26 * 0.3 639 + 27 —9.1 = 0.3 41

9Means and standard deviations represent data from three independent experiments.
bReported previously in reference 20.

(Fig. 2A, Table 1). Spermidine had a K, of 56 nM, which is the highest ligand affinity ever
observed for a chemoreceptor. Histamine had a K, of 639 nM, which is an affinity 41
times higher than its affinity for McpU-LBD (Table 1, Fig. 2B). Thus, the affinities of the
ligands to TIpQ-LBD were 3 to 147 times higher than their affinities to the McpU-LBD
(Table 1). Previous studies showed that TIpQ mediates chemotaxis to ethylene (31), but
the titration of TIpQ-LBD with a saturated ethylene solution did not show any binding
(data not shown).

Characterization of histamine chemotaxis. KT2440 and PAO1 both contain
chemoreceptors that bind histamine. In initial experiments, we identified the optimal
culture conditions for motility of both strains (see Fig. S3). Using these conditions, we
carried out capillary chemotaxis assays of PAO1 toward the six TlpQ ligands (Fig. 2C). All
ligands caused chemotaxis, with significant responses observed for some ligands at
concentrations as low as 500 nM, whereas optimal responses occurred at 5mM. In
subsequent experiments, we compared the histamine dose response for KT2440 with
that of PAO1 (Fig. 3A). KT2440 showed only moderate chemotaxis over the entire
concentration range tested, whereas PAO1 responses were much stronger. In accor-
dance with the different binding affinities observed by ITC, the response onsets
between strains also differed. Thus, PAO1 required 500 nM histamine, while KT2440
required 5 uM.
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FIG 2 Identification and analysis of TIpQ ligands. (A) Microcalorimetric titrations of 15 uM TlpQ-LBD with 4.8 ul aliquots of 250 uM putrescine, spermidine, or
cadaverine. (B) Microcalorimetric titration of 17.5 uM McpU-LBD with 9.6 ul aliquots of 1 mM histamine and titration of 15 uM TIpQ-LBD with 4.8 ul aliquots
of 250 uM histamine. Upper graphs show raw titration data, while lower graphs show integrated corrected peak areas of the titration data fit using the “one
binding site model.” The derived thermodynamic parameters are provided in Table 1. (C) Quantitative capillary chemotaxis assays of P. aeruginosa PAO1 toward
TIpQ ligands. Shown are the ratios of cells after 2 min of exposure to the chemoattractant relative to the number of cells at the beginning of the experiment.
The horizontal line marks the ratio of 1, which is indicative of no chemotaxis; n = 3.
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FIG 3 Histamine chemotaxis in different bacteria. (A) Quantitative capillary chemotaxis assays of P.
aeruginosa PAO1 and P. putida KT2440 to different histamine concentrations. (B) Response of different
strains to 5 mM histamine; n = 3. **, P < 0.01 (by Student’s t tests).

To assess the metabolic value of these ligands, we conducted growth experiments
with PAO1 and KT2440 in minimal medium containing each of the ligands as the sole
carbon or nitrogen source. We found that most of the ligands supported growth either
as the carbon or nitrogen source (see Fig. S4). The exceptions were spermidine and
ethylenediamine that were either not or were poor growth substrates for PAO1 and
KT2440 (Fig. S4). Histamine permitted the growth of both strains as the sole C and N
source.

Additional experiments were conducted to assess histamine chemotaxis in other
bacteria. First, we assessed the motility of P. aeruginosa strains 227, 233, 287, 401, and
428, which were isolated from patients with urinary tract infections (41). Strains 233 and
401 exhibited motilities comparable to that of PAO1 and were therefore selected for
further studies. P. aeruginosa PA14 as well as the plant pathogen Ralstonia pseudoso-
lanacearum Ps29 were also included in these experiments. We found that all analyzed
P. aeruginosa strains showed significant chemotaxis to 5mM histamine, and their
chemotactic phenotype was significantly higher than that of KT2440. On the other
hand, the strain Ps29 was not attracted to histamine (Fig. 3B). Growth experiments with
Ps29 in minimal medium containing histamine as the sole carbon and nitrogen source
revealed no significant growth (Fig. S4B), suggesting a link between chemotaxis and
the capacity to use histamine for growth.

Three-dimensional structure of TlpQ-LBD in complex with histamine. To deter-
mine the molecular determinants for histamine recognition by TIpQ, we solved the
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FIG 4 Structure of the TIpQ chemoreceptor ligand binding domain in complex with histamine. (A) Ribbon
diagram with annotated secondary structure elements. Bound histamine is shown as a stick structure. (B)

Schematic representation of the secondary structure elements.

high-resolution structure of TIpQ-LBD in complex with histamine. There are four
monomers in the asymmetric unit,and the superimposition of their C, atoms resulted
in root mean square deviation (RMSD) values of 0.4 to 0.8 A, indicative of high similarity.
An inspection of the structure revealed that it is a dCACHE domain (12) (Fig. 4). A long
N-terminal helix is followed by two globular o/ modules, termed membrane-proximal
and membrane-distal modules. The membrane-distal module contained bound hista-
mine in all four monomers of the asymmetric unit (Fig. 4).

Structural alignments of TIpQ-LBD with entries in the protein data bank identified
structural homologues (see Table S1). Most of the homologues are categorized as
dCACHE_1 Pfam domains (12). This domain is found in histidine kinases and chemo-
receptors, as well as in a novel cytosolic receptor protein (PDB identifier [ID] 5ere), and
are found in different bacteria as well as in Arabidopsis. The average size of the domains,
while taking into account the segment in between both transmembrane regions, is
268 *= 17 amino acids (Table S1). Of all the homologous domains that we identified,
TIpQ-LBD was the largest, at 334 amino acids, namely due to particularly long inserts
between B-strands 1 and 2, extended helices a1 and «2, and an extended loop
between helices 13 and a3 (see Fig. S5).

A well-defined electron density for histamine was observed in all four monomers,
enabling the ligand placement to be determined (Fig. 5A). TlpQ ligands are present as
protonated polycations at neutral pH, which explains why the ligand binding pocket is
highly negatively charged (Fig. 5B). All three histamine nitrogen atoms establish
hydrogen bonds (Fig. 5C). TIpQ ligands contain at least one primary amino group, and
the primary amino group of histamine plays a central role in binding because it forms
hydrogen bonds with the side chains of Tyr208, Asp210, and Asp239. In addition, this
histamine amino group interacts with a water molecule coordinated by the main chain
oxygen of Lys211 and the hydroxyl group of Tyr158. Each of the histamine imidazole
nitrogen atoms forms hydrogen bonds with Asp210 and Glu170. The LBDs of TlpQ and
McpU of P. putida KT2440 share approximately 50% sequence identity (Fig. S2B). When
their structures containing either histamine or putrescine were superimposed (Fig. 5D),
it became apparent that the primary amino groups of both ligands are coordinated in
a similar manner via hydrogen bonds with Y208/D210/D239 of TIpQ-LBD or their
equivalents in McpU-LBD.

Histamine chemotaxis is mediated by multiple chemoreceptors in PAO1. To
assess the role of TIpQ in histamine chemotaxis, we generated a t/pQ mutant. Control
experiments showed that its response to Casamino Acids was comparable to that of the
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FIG 5 Ligand binding pocket of the TIpQ ligand binding domain. (A) Close-up view of the ligand binding
pocket. The electron density for histamine is shown. (B) Surface charge representation of the histamine
binding site; red and blue shading represent negative and positive charges, respectively. (C) Schematic
representation of amino acids involved in hydrogen bonds with histamine. (D) Superimposition of the
ligand binding pockets of McpU-LBD with bound putrescine (green, PDB ID 6F9G) and TIpQ-LBD with
bound histamine (blue).

wild type. However, the response of this mutant to 5 mM histamine was also similar to
that of the wild type (Fig. 6A), indicating that additional chemoreceptors may be
involved.

To identify these additional chemoreceptors, we screened a number of mutants, in
which 3 to 7 chemoreceptor genes had been deleted. Our results showed that the
deletion of the pctA, pctB, and pctC chemoreceptor genes (strain PCT2) abolished
chemotaxis to 5 mM histamine (Fig. 6A). PctA, PctB, and PctC are chemoreceptors for
L-amino acids (23, 24), while PctC also mediates chemotaxis toward GABA (21).

To clarify the roles of PctA, PctB, PctC, and TlpQ in histamine chemotaxis, we
conducted dose-response experiments using wild-type PCT2 as well as a mutant in
which the pctABC as well as the tIpQ gene had been deleted, named PCT2Q (Fig. 6B).
The latter mutant was devoid of histamine chemotaxis over the entire concentration
range (50 nM to 50 mM), whereas significant chemotaxis was observed for the PCT2
mutant at a concentration range between 500 nM and 500 wM. This indicates that TIpQ
mediates chemotaxis to low histamine concentrations, which is in agreement with the
very high affinity observed in vitro. In contrast, one or more of the PctA, PctB, and PctC
receptors mediate chemotaxis to elevated histamine concentrations.

To assess the role of the individual chemoreceptors, the PCT2Q mutant devoid of
histamine chemotaxis was complemented with plasmids containing one of the four
chemoreceptors—an approach that has previously proven effective to study complex
chemotactic processes (42). To confirm the phenotypes of these strains, chemotaxis
was measured toward previously identified ligands, namely L-lle (PctA), L.-Arg (PctB), and
GABA (PctC) (23, 24), and the three complemented strains responded to these ligands.
Histamine chemotaxis measurements revealed that the pctC and tlpQ genes in trans
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1 min and 2.5 min; n = 3. % P <0.05; ** P<0.01 (by Student’s t tests).
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recovered histamine chemotaxis using an exposure time of 1 min. At 2.5 min, comple-
mentation with pctA, pctC, and tlpQ resulted in significant chemotaxis (Fig. 6C). Thus,
these data reveal that histamine chemotaxis is mediated by the concerted action of
PctA, PctC, and TIpQ. To assess the role of these receptors in another strain, we
generated a triple mutant in the homologous receptors of P. aeruginosa PA14. As
shown in Fig. S6, the deletion of these receptors also abolished histamine chemotaxis.

TIpQ, PctA, and PctC employ different mechanisms to mediate histamine che-
motaxis. To determine the mechanism by which PctA and PctC respond to histamine,
microcalorimetric binding studies with purified PctA-LBD and PctC-LBD were con-
ducted. Whereas the proteins bound L-Ala and L-GIn (24), respectively, histamine did
not bind. Direct microcalorimetric titrations can only provide information on high-
affinity binding events because of the limitations presented by ligand dilution heats. To
assess the possibility of low-affinity histamine binding, we conducted a competition
assay. PctA-LBD was titrated with L-Ala in the presence and absence of 20 mM hista-
mine. However, the resulting titration curves were almost identical (see Fig. S7),
confirming that histamine does not bind directly to PctA-LBD.

To assess whether PctA and PctC may be activated by histamine-containing
periplasmic binding proteins, pulldown experiments with immobilized PctA-LBD and
PctC-LBD as well as PAO1 protein extracts were conducted using previously verified
protocols (25). However, our results provided no evidence for binding partners to either
domain.

DISCUSSION

The elevated numbers of chemoreceptors in many bacteria suggest that this abun-
dance confers chemotactic capabilities to many different stimuli, and the scientific
community is only beginning to explore the diversity of these responses. In general,
chemoeffectors can be classified into three groups according to their physiological role.
First, the majority of chemoattractants are important nutritional sources, as evidenced
by numerous receptors that respond to different organic or amino acids (11). Second,
chemoattraction has been observed for signal molecules such as plant hormones (31,
43), neurotransmitters (44), and quorum sensing signals (45), which inform bacteria
about their environment. Lastly, chemoreceptors can signal the presence of com-
pounds, such as histamine, that are involved in multiple functions.

Thus, what is the physiological relevance of chemotaxis toward histamine? One
possibility is certainly that, like most of the other McpU/TIpQ ligands, histamine
supports growth as the sole C and N source. However, chemotaxis to host signals has
been shown for many different pathogens to be essential for efficient infection and
virulence (46). Importantly, P. aeruginosa PAO1 was shown to greatly increase neutro-
phil histamine content and secretion in mouse models (36), and chemotaxis to this
host-derived signal will result in an accumulation of bacterial cells at the infection site.
This increase in bacterial cell density likely alters the expression of quorum-sensing-
controlled genes, including those responsible for the production of virulence determi-
nants and biofilm formation in P. aeruginosa (47). Nonetheless, the precise assessment
of the role of histamine chemotaxis in the virulence of P. aeruginosa is technically a
difficult undertaking, since it is unfeasible to generate a mutant that is deficient in
histamine chemotaxis without impairing taxis to the remaining identified ligands for
PctA (17 amino acids), PctC (GABA and 2 amino acids), and TlpQ (5 polyamines) (24).

The interference with motility and chemotaxis is an alternative strategy to block
bacterial pathogens (48). Previous work has shown that some chemoreceptors recog-
nize chemoattractants and antagonists (27, 49, 50), and the identification of antagonists
that specifically interfere with histamine chemotaxis may thus be an alternative ap-
proach to modulate the virulence properties of P. aeruginosa. Remarkably, the identi-
fication of these antagonists may be facilitated by the resolution of the three-
dimensional structure of TIpQ-LBD in complex with histamine (Fig. 4 and 5).

High sensitivity histamine responses are mediated by the TIpQ chemoreceptor,
which binds histamine directly. TIpQ is in many aspects an atypical chemoreceptor.
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First, its LBD, which is 334 amino acids, is larger than any other known chemoreceptor
LBD (11). Second, it has the highest affinity ever observed for the binding of a
chemoattractant to the recombinant LBD of a chemoreceptor. Histamine binding
occurred with an affinity of 639 nM, which is among the highest affinities observed for
chemoattractants. This unusually high affinity permits responses to very low histamine
concentrations, and the onset of chemotactic response occurred at the unusually low
concentration of 500 nM (Fig. 2Q).

Frequently, the deletion of a chemoreceptor abolishes taxis to a given compound,
indicating that there is a single receptor for a given chemoattractant (18, 29). However,
histamine chemotaxis is mediated by the concerted action of three receptors. Thus,
what is the advantage of having multiple receptors for the same chemoattractant? In
this context, close similarities exist between histamine chemotaxis and the mechanisms
by which P. aeruginosa is attracted to inorganic phosphate (P)). P; is a key signaling
molecule that controls the expression of many virulence genes (51, 52). Chemotaxis to
a low P, concentration is mediated by the CtpL receptor, whereas CtpH is responsible
for responses to high concentrations (25, 26). Whereas CtpH recognizes P, directly at its
LBD, CtpL is stimulated by the P;-loaded periplasmic binding protein PstS (25). A
chemoreceptor, either stimulated by direct or indirect signal recognition, is character-
ized by a response range (53). The combined action of multiple chemoreceptors with
different sensing abilities permits the microorganism to expand its response range to
a given chemoattractant. The presence of multiple receptors for a given chemoeffector
may suggest that a compound is particularly physiologically relevant.

Four human histamine receptors have been described, termed H1, H2, H3, and H4
(54). Histamine was shown to mediate the chemotaxis of mast cells via the H4 receptor,
and this mechanism might be responsible for mast cell accumulation in allergic tissues
(55). However, the topology of eukaryotic histamine receptors differs entirely from that
of their bacterial counterparts. All four receptor types form a barrel composed of seven
transmembrane helices (54). The three-dimensional structure of the human H1 receptor
has been solved (56), which revealed that ligands bind within this transmembrane
barrel. Therefore, the evolutionary strategies to sense histamine greatly differ between
bacteria and humans.

Here, we provide the first report of bacterial chemotaxis toward histamine. Hista-
mine is vital to cellular processes in mammals, and the initial evidence suggests that
histamine also functions as a bacterial signal molecule. This study expands the range of
known bacterial chemoeffectors and lays the foundation for deciphering the molecular
mechanisms underlying histamine chemotaxis and its role in bacterial virulence.

MATERIALS AND METHODS

Bacterial strains and plasmids. The bacterial strains and plasmids used are listed in Table 2, and
oligonucleotides are listed in Table S2 in the supplemental material.

Construction of bacterial mutant strains and plasmids. The pctA and tlpQ genes were deleted in
different mutant strains by unmarked gene deletion. Plasmids pK18mobsacB-pctA and pK18mobsacB-tipQ
were generated by amplifying 0.6- to 1.2-kb regions up- and downstream of the target gene. PCR
products were digested with the restriction enzymes listed in Table S2 and cloned into pK18mobsacB.
The resulting plasmids were introduced into E. coli S17-1 Apir by electroporation. Plasmids were
transferred to PAO1 by conjugation, and cells were selected in Simmons citrate (BBL; Becton, Dickinson)
agar plates supplemented with kanamycin. For plasmid excision, LB medium was inoculated with a
kanamycin-resistant colony and grown for 12 h, and then spread on LB plates containing 20% (wt/vol)
sucrose. To construct the triple deletion mutant in pctA, pctC, and tlpQ in P. aeruginosa PA14,
pK18mobsacB-pctA and pK18mobsacB-tlpQ were consecutively conjugated into PA14 to generate the
double mutant. Subsequently, the plasmid pK18mobsacB-pctC, generated by amplifying regions up- and
downstream of pctC, was conjugated into PA14 ApctA AtlpQ. Kanamycin-resistant colonies were grown
on LB agar plates supplemented with 20% (wt/vol) sucrose for selection. For complementation purposes,
the pctC gene was amplified by PCR and cloned into plasmid pUCP18 using the restriction enzymes listed
in Table S2. The ligation mixture was electroporated into E. coli JM109, and transformants were selected
on carbenicillin-containing LB plates. The resulting plasmid pPctC was transferred to PCTC1 and PCT2Q
by electroporation.

Construction of the TIpQ-LBD expression plasmid. The DNA fragment encoding the LBD of TIpQ
was amplified, digested with Ndel and BamHI, and cloned into pET28b(+) linearized with the same
enzymes.
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TABLE 2 Bacterial strains and plasmids used in this study

mBio’

Reference or

Strain or plasmid Characteristics’ source
Strains
Escherichia coli BL21(DE3) F~ ompl hsdSg(rg~ mg™) gal dam met 69
DH5a supE44 lacU169(¢80lacZAM15) hsdR17 (re~ my~) recAl endA1 gyrA96 thi-1 relA1 70
HB101 F~ A(gpt-proA)62 leuB6 supE44 ara-14 galK2 lacY1 A(mcrC-mrr) rpsL20 (Smr) xyl-5 71
mtl-1 recA13 thi-1
JM109 F’ traD36 proA+*B* lacld A(lac2M15 A(lac-proAB) ginV44 e14— gyrA96 recAl relA1 72
endAT thi hsdR17
S17-1 Apir Tpr Sm" (recA thi pro hsdR)~ M+RP4: 2-Tc:Mu: Km Tn7 Apir 73
Ralstonia pseudosolanacearum Ps29 Wild-type strain race 1, biovar 3, phylotype | 74
Pseudomonas putida KT2440 Wild type 15
KT2440R Rifampicin-resistant derivative of KT2440 75
KT2440R-McpU KT2440R transposon mutant pp1228:mini-Tn5-Km; Rif", Km* 76
Pseudomonas aeruginosa PAO1 Wild-type strain 77
PAO1 ApctA PAO1 derivative, pctA gene deletion mutant This study
PCTB1 PAO1 derivative, pctB:Km; Km- 23
PCTC1 PAO1 derivative, pctC:Km; Km- 23
PAO1 AtlpQ PAO1 derivative, pa2654 gene deletion mutant This study
PCT2 PAO1 derivative; ApctB-pctA-pa4308-pctCikm; Km 23
PCTAQ PAO1 derivative; ApctA AtlpQ This study
PCT2Q PAO1 derivative; ApctB-pctA-pa4308-pctC::Km, AtlpQ; Km® This study
PCT2QP PAO1 derivative; ApctB-pctA-pa4308-pctC:Km, AtlpQ AtlpP; Km* J. Kato lab
PCT2QART PAO1 derivative; ApctB-pctA-pa4308-pctC, AtlpQ AtlpA (pal1646), AtlpR(pa2652) J. Kato lab
AtlpT(pa1930); Km*
P. aeruginosa PA14 Wild-type strain; human clinical isolate that elicits disease in plants, nematodes, 78
insects, and mice
PA14-ACQ PA14 derivative; ApctA ApctC AtlpQ Apa4308 This study
P. aeruginosa isolate 227 Isolated clinical strain from patients with urinary tract infections 41
P. aeruginosa isolate 233 Isolated clinical strain from patients with urinary tract infections 41
P. aeruginosa isolate 287 Isolated clinical strain from patients with urinary tract infections 41
P. aeruginosa isolate 401 Isolated clinical strain from patients with urinary tract infections 41
P. aeruginosa isolate 428 Isolated clinical strain from patients with urinary tract infections 41
Plasmids
pUCP18 Escherichia-Pseudomonas shuttle vector; Ap" 79
pPctA pUCP18 with a PCR fragment containing pctA; Ap" 80
pPctB pUCP18 with a PCR fragment containing pctB; Ap® 80
pPctC pUCP18 with a PCR fragment containing pctC; Ap" This study
pTIpQ pUCP18 with a PCR fragment containing tlpQ; Ap" 27
pK18mobsacB Plasmid for allelic exchange; pK18 oriV lacZa mob sacB; Km* 81
pK18mobsacB-pctA pK18mobsacB containing a deletion of the pctA gene; Km* This study
pK18mobsacB-tipQ pK18mobsacB containing a deletion of the tlpQ gene; Km* This study
pK18mobsacB-pctABC pK18mobsacB containing a deletion of pctB, pctA, pa4308, pctC; Km® This study
pK18mobsacB-pctC pK18mobsacB containing a deletion of pctC and pa4308; Kmr This study
pET28b(+) Protein expression plasmid; Km® Novagen
pET28b-McpU pET28b derivative used to produce His-tagged McpU-LBD; Km* 20
pET28b-TIpQ pET28b derivative used to produce His-tagged TIpQ-LBD; Km* This study

aAp, ampicillin; Km, kanamycin; Rif, rifampin.

bThe pa4308 gene (orf-1), which forms part of the pctABC operon, encodes a hypothetical protein that is not involved in chemotaxis (23).

Overexpression and purification of proteins. PctA-LBD and PctC-LBD were overexpressed and purified
as described in reference 24. McpU-LBD and TIpQ-LBD were generated as reported in reference 20.
Thermal shift assay. Thermal shift experiments were conducted as reported in reference in 57.
McpU-LBD in polybuffer {5 mM Tris, 5 mM PIPES [piperazine-N,N’'-bis(2-ethanesulfonic acid)], 5 mM MES
[morpholineethanesulfonic acid], 10% glycerol [vol/vol], 150 mM NaCl, pH 7.0} was used at a final
concentration of 10 uM. Biolog (Hayward, CA, USA) compound arrays PM3B (nitrogen sources), PM4A
(phosphorous and sulfur sources), and PM5 (nutrient supplements) were used for screening. The
compositions of these arrays are provided at http://208.106.130.253/pdf/pm_lit/PM1-PM10.pdf.
Isothermal titration calorimetry. Titrations were carried out in a VP microcalorimeter (MicroCal,
Northampton, MA, USA) at 25°C. Proteins dialyzed into polybuffer were titrated with ligands in dialysis
buffer. Typically, 15 to 30 uM protein was titrated with 0.25 to 1 mM ligand solutions. For ethylene
binding studies, TIpQ-LBD was titrated with 12-ul aliquots of a saturated ethylene solution in polybuffer,
prepared as reported in reference 31. The mean enthalpies from the injection of ligands into the buffer
were subtracted from titration data prior to data fitting using the “one binding site model” of ORIGIN.
Chemotaxis assays. (i) Soft agar plate assays. Strains were grown overnight in M9 minimal
medium containing 0.1% glucose (wt/vol), diluted to an optical density at 600 nm (OD,) of 1 with fresh
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medium, and washed twice with M9 medium. The pellet was resuspended in 1 ml M9 medium.
Ten-microliter aliquots of 5 mM chemoattractant solutions were placed onto plates containing M9
medium, 2.5 mM glucose, and 0.25% (wt/vol) agar. Two-microliter aliquots of bacterial suspensions were
placed horizontally to each of the chemoattractant spots. The plates were incubated at 30°C for 16 to
20 h.

(ii) Quantitative capillary chemotaxis assays. Two protocols were used that differed in the ways
the cells were counted. The first protocol was used to generate the data shown Fig. S6, whereas the
second protocol was used for the remaining chemotaxis experiments. In the first protocol, overnight
cultures of strains were diluted to an ODgg, of 0.05 in MS medium (58) supplemented with 6 mg-liter !
Fe citrate, trace elements, and 15 mM glucose and grown at 37°C. At an ODg, of 0.4, the cultures were
centrifuged at 1,700 X g for 5min and the pellet was washed twice with chemotaxis buffer (50 mM
potassium phosphate, 20 mM EDTA, 0.05% [vol/vol] glycerol, pH 7.0). The cells were resuspended in this
buffer and adjusted to an ODg4, of 0.1, and 230-ul aliquots were placed into 96-well plates. Capillary
tubes (P1424, Microcaps; Drummond Scientific) were heat sealed at one end and filled with chemotaxis
buffer or chemotaxis chemoattractant solution. The capillaries were then immersed in bacterial suspen-
sions at their open ends. After 30 min at room temperature, the capillaries were removed and rinsed with
sterile water, and the content was expelled into 1 ml of M9 medium. Serial dilutions were plated on LB
medium, and the CFU were determined. In all cases, the data were corrected to the number of cells that
swam into the buffer-containing capillaries. In the second protocol, we used computer-assisted image
analysis as reported previously (59). Briefly, capillaries were filled with chemoattractant solutions in
10 mM HEPES buffer (pH 7.0) containing 1% (wt/vol) agarose and heat sealed on one side. The cells were
grown in 2X yeast extract-tryptone (YT), medium and 10-ul aliquots of the cell suspension were placed
onto a microscope slide within the U-shaped spacer, which was then covered by a coverslip. The
chemoattractant-filled capillaries were introduced into the chemotaxis chamber, and cell movement was
videotaped, with images taken at the beginning and at different time intervals. If not otherwise stated,
the contact time between the cell and the chemoattractant was 2 min. The Bioinformatics Assistant Icy
Sport detector software (60) was used to determine the number of cells per image. The magnitude of
chemotaxis was expressed as the number of cells after a given time over the number of cells at the
beginning of the experiment. The data shown are the means and standard deviations from three
experiments conducted in triplicates.

Growth experiments. PAO1 was grown overnight in MS minimal medium (29) containing 20 mM
p-glucose. Cultures were diluted to an ODg,, of 0.02 in MS medium supplemented with 5 mM carbon or
nitrogen source. The assays were performed in 100-well polystyrene plates and incubated at 30°C
(KT2440) or 37°C (PAO1) in a Bioscreen microbiological growth analyzer. The data represent the means
and standard deviations from three biological replicates conducted in triplicates.

Assessment of motility. To assess bacterial motility, PAOT and KT2440 were used to inoculate LB
and 2X YT medium to an ODg,, of 0.01. Growth was carried out at 37°C (PAO1) or 30°C (KT2440), and
the bacteria were inspected microscopically. According to their motility, they were given different scores:
score 1, 25% of bacteria are motile; 2, 50%; 3, 75%; and 4, 100%.

Crystallization and structure resolution. Crystallization trials were carried out with TIpQ-LBD in the
absence and presence of histamine. TIpQ-LBD in polybuffer was incubated with a 2-fold molar excess of
histamine on ice for 30 min. Unbound ligand was removed by buffer exchange using 10-kDa-cutoff filters
(Amicon) and polybuffer. The apo- (6 mg/ml) and ligand-bound (26 mg/ml) proteins were loaded into
0.3-mm-diameter capillaries for counter diffusion crystallization using screen kits from Triana S & T
(Granada, Spain). Only the LBD-TIpQ-histamine complex produced crystals in 1.5 M ammonium phos-
phate and 0.1 M sodium citrate pH 5.6. The same protocol was used to crystallize the Se-Met TIpQ-LBD.
The capillaries were emptied into mother solution containing 10% to 25% (vol/vol) glycerol as the
cryoprotectant. Crystals were diffracted at the European Synchrotron Radiation Facility and the Spanish
Synchrotron ALBA. The data were indexed and integrated with XDS (61) and scaled with SCALA (62). All
attempts to obtain a molecular replacement solution failed. Phases were obtained from the Se-
methionine derivative by combining SAD data, at the selenium peak, with an initial model generated by
Phyre2 (63), as input files for Auto-Rickshaw (64). All 26 expected heavy atom positions were identified
by SHELXD (65) using the data to 3.5 A. The model generated was refined with phenix.refine (66). Further
refinement was performed against the best data set (2.45 A) with phenix.refine (66) using Coot (67).
Model quality was checked using MolProbity (68). The refinement statistics and quality indicators of the
final model are summarized in Table S3. The structure was deposited at the protein data bank with
identifier (ID) 6fu4.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mBio
.01894-18.
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