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ABSTRACT

Objective: We implement 2 different multitask learning (MTL) techniques, hard parameter sharing and cross-

stitch, to train a word-level convolutional neural network (CNN) specifically designed for automatic extraction of

cancer data from unstructured text in pathology reports. We show the importance of learning related informa-

tion extraction (IE) tasks leveraging shared representations across the tasks to achieve state-of-the-art perfor-

mance in classification accuracy and computational efficiency.

Materials and Methods: Multitask CNN (MTCNN) attempts to tackle document information extraction by

learning to extract multiple key cancer characteristics simultaneously. We trained our MTCNN to perform 5

information extraction tasks: (1) primary cancer site (65 classes), (2) laterality (4 classes), (3) behavior (3

classes), (4) histological type (63 classes), and (5) histological grade (5 classes). We evaluated the perfor-

mance on a corpus of 95 231 pathology documents (71 223 unique tumors) obtained from the Louisiana

Tumor Registry. We compared the performance of the MTCNN models against single-task CNN models

and 2 traditional machine learning approaches, namely support vector machine (SVM) and random forest

classifier (RFC).

Results: MTCNNs offered superior performance across all 5 tasks in terms of classification accuracy as com-

pared with the other machine learning models. Based on retrospective evaluation, the hard parameter sharing

and cross-stitch MTCNN models correctly classified 59.04% and 57.93% of the pathology reports respectively

across all 5 tasks. The baseline models achieved 53.68% (CNN), 46.37% (RFC), and 36.75% (SVM). Based on pro-

spective evaluation, the percentages of correctly classified cases across the 5 tasks were 60.11% (hard parame-

ter sharing), 58.13% (cross-stitch), 51.30% (single-task CNN), 42.07% (RFC), and 35.16% (SVM). Moreover, hard

parameter sharing MTCNNs outperformed the other models in computational efficiency by using about the

same number of trainable parameters as a single-task CNN.

Conclusions: The hard parameter sharing MTCNN offers superior classification accuracy for automated coding

support of pathology documents across a wide range of cancers and multiple information extraction tasks while

maintaining similar training and inference time as those of a single task–specific model.

VC The Author(s) 2019. Published by Oxford University Press on behalf of the American Medical Informatics Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com 89

Journal of the American Medical Informatics Association, 27(1), 2020, 89–98

doi: 10.1093/jamia/ocz153

Advance Access Publication Date: 9 November 2019

Research and Applications

https://academic.oup.com/
https://academic.oup.com/


Key words: deep learning, multitask learning, convolutional neural network, cancer pathology reports, natural language process-

ing, information extraction

INTRODUCTION

Cancer registries provide reliable surveillance by collecting and as-

similating regional data on histological cancer evidence and charac-

teristics. Such critical information resides in pathology reports that

not only are ungrammatical, fragmented, and marred with typos

and abbreviations, but also exhibit linguistic variability across path-

ologists even when describing the same cancer characteristics [1–3].

Consequently, information extraction (IE) from unstructured text in

pathology reports remains a heavily manual effort performed by hu-

man expert coders to ensure high quality of the extracted informa-

tion. Cancer registries face challenges scaling the manual effort to

handle the increasing volumes of clinical reports they need to pro-

cess and the amount of information they need to capture per re-

port [4]. They capture detailed information for more than 70

different cancer sites (ie, body organs where cancer develops) and

more than 500 histological types (ie, different cell types) (https://

training.seer.cancer.gov/abstracting/) [5].

Natural language processing (NLP) is a promising technology to

semi-automate the IE process [6, 7]. Liu et al [8] described in detail

the broad difficulties and different sources of error when applying

NLP systems for IE from cancer pathology reports. Existing NLP

efforts have focused mostly on specific cancers (ie, colorectal, breast,

prostate, lung) [9–13] and single clinical settings. In addition, these

systems are primarily rule-based requiring intense domain expertise

and continuously evolving task-specific dictionaries of medical

phrases and terms. Manually developing rule-based clinical NLP sys-

tems for cancer registry use is unsustainable due to the prohibitively

large number of rules that need to be carefully curated by domain

experts. Scaling NLP systems for robust use across cancer registries

demands an intelligent approach which can retrain, refresh, and con-

tinuously adapt to new IE tasks to ensure high accuracy.

Recently, DL algorithms have demonstrated superior perfor-

mance for document-level IE and classification utilizing word

embeddings. They have been successfully applied for clinical NLP

applications [14] showing superior performance. Where, DL has

outperformed traditional machine learning (ML) approaches in

terms of accuracy [15] by being able to capture both semantic and

syntactic information in clinical text without having explicit knowl-

edge of the clinical language. Although DL applications for NLP are

quite extensive, their application on cancer pathology reports is

fairly limited. Qiu et al [16] presented the first CNN for IE of pri-

mary cancer site topography from breast and lung cancer pathology

reports using a relatively small text corpus. Using the same corpus,

Gao et al [17] boosted performance using a hierarchical attention

neural network for cancer site topography and histological grade

classification. However, the authors noted the significant computa-

tional demands of the hierarchical attention neural network relative

to the CNN making it an impractical choice for training with high

volumes of cancer pathology reports.

Existing DL models are designed to operate in a single-task

mode, where models are mostly focused on extracting a single can-

cer characteristic at a time without considering other key character-

istics that might be related and could improve model performance.

Single-task learning not only ignores domain knowledge shared

across related IE tasks, but also imposes additional workload be-

cause a different DL model must be developed for each task sepa-

rately. Therefore, Multitask learning (MTL) has been proposed as

an efficient technique to develop a more general and robust model

across multiple related tasks [18]. MTL considers knowledge com-

ing from multiple partially or fully related tasks to learn shared fea-

tures and has been shown to often boost model performance across

tasks [19]. To date, the only multitask DL for IE from cancer pathol-

ogy reports efforts are the ones presented in [20, 21]. Although

results showed a statistically significant improvement over single-

task DL models, these studies were limited to 2 cancer types, 2 to 3

IE tasks, and a small corpus of pathology reports.

Collectively these studies shaped critical decisions made for mov-

ing forward with a multitask CNN (MTCNN) to combine the

strengths of the previous efforts; namely lack of feature engineering,

computational efficiency, and better performance via shared learn-

ing. In this article, 2 different MTCNN approaches (hard parameter

sharing [HS] and cross-stitch [CS]) are implemented to extract 5

cancer key characteristics from cancer pathology reports—primary

site, laterality, behavior, histological type, and histological grade.

Each cancer characteristic constitutes a different learning task. We

show the ability of our HS MTCNN model to train in approxi-

mately one-fifth the time it takes to develop 5 individual task-

specific networks. This model can achieve the best clinical perfor-

mance across all tasks. The proposed approach offers sublinear scal-

ing with the number of IE tasks, thus offering a time-efficient way to

develop scalable NLP systems for cancer registries. In particular, the

HS MTCNN model is able to train in approximately one-fifth the

time it takes to develop 5 individual task-specific networks. Owing

to privacy protection constraints with actual pathology reports from

the national cancer surveillance program, we have provided a syn-

thetically derived dataset for public access with our source code

(https://github.com/ORNL-BSEC/MT-CNN).

MATERIALS AND METHODS

Dataset Description and Preprocessing
This study was executed in accordance to the institutional review

board protocol DOE000152. We obtained a text corpus of cancer

pathology reports from the Louisiana Tumor Registry. The corpus

consists of unstructured text from 360 202 pathology reports cover-

ing cancer cases diagnosed in Louisiana from 2004 to 2017. Each

pathology report is identified by a combination of patient ID and tu-

mor ID, which is called case ID. All documents associated with met-

astatic tumors were excluded from the study (93 037 reports). From

the remaining corpus, documents generated within 7 days between

the date of diagnosis and either path specimen collection date or the

surgery date were identified as relevant to the specific case ID. The

7-day window was based on an analysis of the pathology report sub-

missions with the vast majority of reports and addenda included

within that time frame. The remaining 166 476 pathology reports

that were outside the 7-day window were excluded from the total

corpus. Finally, another 5458 reports were found to be duplicates

and they were also excluded. The final dataset consisted of 95 231

cancer pathology reports. As labels are provided at the tumor level,

pathology reports with the same case ID are concatenated as one

document. This results in a dataset of 71 223 concatenated docu-

ments, each corresponding to a unique primary cancer, and the DL
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model is considered a tumor-level abstractor. The flow chart of data

preparation is illustrated in Figure 1.

Detailed information for each cancer case was obtained from manu-

ally abstracted and consolidated records in the cancer registry. This in-

formation served as the ground truth. Various labels were associated

with each unique case ID for the 5 data elements of interest in this

study—primary cancer site, laterality, behavior, histological type (or

histology), and histological grade (or grade). Primary cancer site is the

body organ where the cancer was detected. Laterality in cancer

describes which side of a paired organ is the origin of the primary can-

cer. Behavior describes the way a tumor acts within the body. Histologi-

cal type describes the cell type found in cancer tissue. Histological grade

is used to determine how quickly the cells are growing and spreading.

Except for the cancer primary site, across all other data elements some

classes were condensed as one class label called “other.” This process

leads to a total of 65, 4, 3, 63, and 5 labels, respectively. The number of

occurrences per label of all cancer characteristics are shown in Figure 2.

See Supplementary Appendix 1 for details regarding the data cleaning

process, label descriptions, rules for condensing labels, and number of

concatenated pathology reports per tumor. After text cleaning, we ob-

serve that the average number of words per document is 1290 tokens

and the average number of sentences per documents is 117.

Multitask CNN
MTL has been proposed to tackle several related tasks jointly in-

stead of focusing on each task in isolation [18]. In the context of the

specific application, we adopted MTL to train a CNN-based model

to extract simultaneously different data elements from cancer pa-

thology reports. The word-level CNN model was previously applied

for primary cancer site extraction from breast and lung cancer pa-

thology reports [8]. In this study, we extend the single-task CNN

and present 2 different MTL methods, HS and CS, to train a word-

level CNN.

Hard Parameter Sharing MTCNN

HS is the most common method in multitask learning. It is consid-

ered the standard MTL method especially for closely related tasks

[19]—the features required for each task reinforce each other, result-

ing in more universal features relevant to all tasks. This approach

reduces the risk of overfitting the shared parameters by N times

compared with overfitting the task specific parameters [22]. As

shown in Figure 3, the shared layers begin with a common word

embeddings layer. The convolution layers in HS are shared across

all tasks; as a result, the same set of features are used across all tasks.

The concatenated max pooling outputs are followed by multiple

task-specific classifiers. Each task has a separate softmax fully con-

nected layer and its size is determined by the number of labels for

each task. In this study, the sizes of softmax layers for cancer pri-

mary site, laterality, behavior, histological type, and histological

grade are 65, 4, 3, 63, and 5, respectively. We treated the loss weight

for all tasks equally as in a prior study [23].

Cross-Stitch MTCNN

CS approach is a type of MTL that has been shown to perform

slightly better than HS in multitask image classification settings [24].

When some of the tasks are more distinct from the others, HS

MTCNNs may be less effective in capturing a shared set of features

that are equally applicable toward all tasks involved. CS networks at-

tempt to address this limitation through the use of CS operations. In a

CS network, each task has its own set of feature-extraction layers (eg,

convolution layers), and each feature extraction layer may be fol-

lowed by a CS operation. For each task, the CS operation outputs a

linear combination of the features generated across all tasks (equa-

Figure 1. Louisiana Tumor Registry (LA) data preparation flow chart.
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tion 1). This allows the network to selectively choose which features

to use for a given task based on the feature relevance to the task. In

other words, tasks that are closely related will share their features

more, while tasks that are less related will share their features less.

CSi ¼
Xn

j

aijxj (1)

In equation 1, CSi is the output of the CS operation for task i, aij

is a scalar value learned through back-propagation that represents

how much of the features from task j should be used for task i, and

xj are the features learned in the previous layer(s) for task j.

In our CS network implementation, each task has its own set of

convolution filters, as shown in Figure 4, followed by a CS opera-

tion. Each task then has its own individual max-pool, concatena-

tion, and softmax layers. We train our MTCNN-CS on the same 5

tasks as the HS MTCNN. Similar to the original CS MTL article,

we initialize aij to 0.9 if i ¼ j and to 0.025 otherwise.

Baseline Models and Hyperparameter Optimization
In our experiments, we compare the performance of MTCNN

approaches to single-task CNNs as well as traditional ML models.

For the CNN-based models, including single-task and multitask

approaches, word embeddings are used for data representation. These

word embeddings are randomly initialized and learned through back-

propagation. To optimize the hyperparameter of CNN models, we

follow the sensitivity analysis method proposed by Zhang et al [25]

for sentence classification CNNs, which was shown to be effective for

information extraction from cancer pathology reports [8]. The

method starts with the same CNN configuration presented by Kim

[26]. Then, we specify the search space of the substantial hyperpara-

meters to be explored. We use scikit–optimize library methods to find

the best CNN hyperparameters. The optimization process produces a

word vector representation of size 300. The window sizes l of the con-

volutional filters are 3, 4, and 5 with 300 feature maps each. Rectified

linear unit is used as the activation function. A dropout rate of 50% is

applied to the max pooling layer outputs. Last, to account for class

imbalance, we weigh the error costs so that the weights are inversely

proportional to the class prevalence in the dataset.

We compare the DL methods against support vector machine

(SVM) random forest classifier (RFC), 2 popular choices with clini-

cal text classification. We use term frequency-inverse document fre-

quency (TF-IDF) on unigrams, bigrams, and trigrams as input

features for the these classifiers. We apply same hyper-parameter

tuning for each of the traditional ML classifiers and for

each classification task. Specifically, we use the gradient boosted

trees optimization as in a prior work [9]. The final hyper-parameters

used for the traditional ML classifiers are listed below Table 1. The

Figure 2. The number of occurrences per label of all cancer characteristics.
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traditional ML classifiers are implemented in Python using the sci-

kit–learn package, while DL models are implemented using Keras

with TensorFlow backend package in Python.

Experimental Design and Performance Evaluation
Our experimental design is composed of 2 experiments. The first ex-

periment is a retrospective analysis using the pathology reports col-

lected from year 2004 to 2015 for model development and hyper-

parameter optimization. The data is split into balanced 2 folds of sizes

23 771 and 23 772 documents. For each fold, one portion is used for

training and validation with a ratio of 80:20 and the other portion is

used for testing. The model performance is evaluated on the com-

bined predicted-actual results from each fold. The second experiment

is to simulate real-world production environment by performing pro-

spective evaluation, in which models are trained on cancer pathology

reports collected before a specific path specimen collection date and

tested on those collected after that date. Specifically, we train and val-

idate the model on 59 427 pathology reports collected from 2004 to

2015, and hold out 11 796 pathology reports collected in 2016 and

2017 for test purposes. Model accuracy is evaluated on the validation

set after each epoch. Training stops when there is no accuracy im-

provement for 10 consecutive epochs. The model’s architecture and

weights are saved for the model with highest validation accuracy to

be evaluated on the future test set.

We evaluate the models using standard NLP metrics—micro-

and macro-averaged precision, recall, and F score. As micro-aver-

aged precision, recall, and F scores are equivalent for multiclass

Figure 3. Architecture diagram of the hard parameter sharing multitask convolutional neural network model. Colors differentiate convolution layers, in which

each set of filters uses a different filter size.

Figure 4. Architecture diagram of the cross-stitch multitask convolutional neural network model.
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single-label tasks [27, 28], we report only the macro-averaged re-

call and precision metrics. More details about the evaluation met-

rics are in Supplementary Appendix 2. For all metrics, we calculate

95% confidence intervals by bootstrapping [29] from the test set.

The confidence intervals are used to determine the statistical sig-

nificance of the difference in performance between the baseline

model and our proposed approach. See Supplementary Appendix 2

for details on how to derive confidence intervals using the boot-

strap procedure.

RESULTS

This section presents the retrospective and prospective evaluation

results. More experimental results are available in our Supplemen-

tary Appendices 3-5 to study the model confidence, the effect of

class imbalance, and the impact of using different number of tasks

to train a model, respectively.

Retrospective Evaluation (2-Fold Cross-Validation)
Given a cancer pathology report, our MTCNN models

simultaneously predict 5 tumor characteristics: primary cancer site,

laterality, behavior, histological type, and histological grade. In con-

trast, single-task CNN and traditional ML models are trained to

predict 1 task at a time. Therefore, 5 separate models must be devel-

oped, 1 per task. Table 1 shows the classification performance for

the 2-fold cross validation experiment across all 5 tasks. The table

compares the MTCNNs with the single-task CNN and traditional

classifiers in terms of micro and macro F scores, precision, and re-

call. The results show that DL classifiers consistently and signifi-

cantly outperformed traditional ML classifiers across all 5 tasks.

Table 1. Retrospective evaluation performance (with 95% confidence interval) of classification models on each classification task

Classifier micro F macro F Precision Recall

Cancer primary site – 65 classes

Traditional machine learning classifiers

Support vector machine 0.857 (0.854-0.860) 0.390 (0.382-0.398) 0.475 (0.460-0.492) 0.364 (0.358-0.371)

Random forest classifier 0.886 (0.883-0.888) 0.392 (0.385-0.399) 0.494 (0.447-0.505) 0.382 (0.377-0.388)

Deep learning classifiers

Single-task CNN 0.915 (0.913-0.917) 0.491 (0.481-0.500) 0.611 (0.578-0.628) 0.472 (0.464-0.479)

Multitask CNN cross-stitch 0.944 (0.942-0.946)a,b 0.592 (0.582-0.602)a,b 0.678 (0.653-0.700)a,b 0.573 (0.565-0.583)a,b

Multitask CNN hard parameter sharing 0.941 (0.939-0.943)b 0.575 (0.565-0.586)b 0.652 (0.621-0.666) 0.560 (0.553-0.572)b

Laterality – 4 classes

Traditional machine learning classifiers

Support vector machine 0.887 (0.884-0.890) 0.714 (0.706-0.722) 0.792 (0.775-0.808) 0.692 (0.687-0.697)

Random forest classifier 0.910 (0.908-0.912) 0.770 (0.761-0.778) 0.805 (0.794-0.816) 0.749 (0.741-0.757)

Deep learning classifiers

Single-task CNN 0.921 (0.919-0.923) 0.758 (0.750-0.767) 0.831 (0.816-0.846) 0.736 (0.730-0.743)

Multitask CNN cross-stitch 0.930 (0.928-0.932)b 0.812 (0.804-0.820)b 0.830 (0.820-0.840) 0.799 (0.791-0.807)b

Multitask CNN hard parameter sharing 0.933 (0.931-0.935)a,b 0.822 (0.814-0.831)a,b 0.848 (0.838-0.858)a 0.804 (0.796-0.813)a,b

Behavior – 3 classes

Traditional machine learning classifiers

Support vector machine 0.935 (0.933-0.937) 0.845 (0.839-0.851) 0.886 (0.879-0.892) 0.812 (0.804-0.820)

Random forest classifier 0.945 (0.943-0.947) 0.842 (0.835-0.848) 0.908 (0.902-0.915) 0.793 (0.784-0.801)

Deep learning classifiers

Single-task CNN 0.958 (0.956-0.959) 0.911 (0.907-0.915) 0.943 (0.939-0.946) 0.883 (0.877-0.889)

Multitask CNN cross-stitch 0.973 (0.972-0.974)b 0.946 (0.943-0.950)b 0.951 (0.947-0.954)b 0.942 (0.938-0.947)b

Multitask CNN hard parameter sharing 0.975 (0.973-0.976)a,b 0.952 (0.949-0.955)a,b 0.954 (0.950-0.958)a,b 0.950 (0.946-0.954)a,b

Histological type – 63 classes

Traditional machine learning classifiers

Support vector machine 0.664 (0.660-0.667) 0.298 (0.292-0.304) 0.457 (0.426-0.475) 0.268 (0.264-0.273)

Random forest classifier 0.722 (0.719-0.726) 0.373 (0.366-0.378) 0.565 (0.530-0.594) 0.344 (0.339-0.349)

Deep learning classifiers

Single-task CNN 0.776 (0.773-0.779) 0.540 (0.532-0.547) 0.688 (0.675-0.700) 0.510 (0.503-0.516)

Multitask CNN cross-stitch 0.811 (0.808-0.814)a,b 0.650 (0.643-0.656)b 0.730 (0.720-0.741)b 0.623 (0.617-0.630)a,b

Multitask CNN hard parameter sharing 0.811 (0.807-0.814)a,b 0.656 (0.649-0.662)a,b 0.750 (0.704-0.724)a,b 0.621 (0.633-0.646)b

Histological grade – 5 classes

Traditional machine learning classifiers

Support vector machine 0.659 (0.655-0.663) 0.592 (0.586-0.597) 0.664 (0.657-0.671) 0.563 (0.559-0.569)

Random forest classifier 0.754 (0.751-0.758) 0.699 (0.694-0.704) 0.729 (0.723-0.734) 0.680 (0.675-0.685)

Deep learning classifiers

Single-task CNN 0.797 (0.794-0.800) 0.754 (0.749-0.759) 0.775 (0.770-0.780) 0.738 (0.734-0.743)

Multitask CNN cross-stitch 0.796 (0.792-0.799) 0.753 (0.748-0.758) 0.768 (0.763-0.773) 0.742 (0.737-0.747)

Multitask CNN hard parameter sharing 0.802 (0.799-0.806)a 0.766 (0.761-0.770)a,b 0.771 (0.767,0.777)a 0.761 (0.756,0.766)a,b

Support vector machine hyper-parameters: (C ¼ 4.0, kernel¼ linear). Random forest classifier hyperparameters: (num trees ¼ 500, max features ¼ 0.6).

CNN: convolutional neural network.
aBest-performing classifier.
bStatistically significant difference between a multitask learning model and all baseline models.
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Comparing the best MTCNN classifier with the baseline single-task

CNN, we can summarize the performance improvement as follows:

• Cancer primary site: CS MTCNN outperformed CNN across all

metrics, with a micro F score of 0.944 and a macro F score of

0.592. This is a 3.2% and 20.6% improvement for micro and

macro F scores respectively.
• Laterality: HS MTCNN achieved a micro F score of 0.933 and a

macro F score of 0.822. These scores represent an improvement

of 1.3% and 8.4% for micro and macro F scores respectively

over the CNN.
• Behavior: HS MTCNN outperformed CNN with a micro F score

of 0.975 and the macro F score of 0.952. This is an 1.8% and

4.5% improvement for micro and macro F scores, respectively.
• Histological type: HS MTCNN achieved a micro F score of 0.811

and a macro F score of 0.656. This is an improvement of 4.5% and

21.5% for micro and macro F scores, respectively, over the CNN.
• Histological grade: HS MTCNN achieved a micro F score of

0.802 and a macro F score of 0.766. These scores represent

marginal improvement for micro F, but statistically significant

1.6% for macro F score over the CNN.

Prospective Evaluation (Holdout Validation)
The results, illustrated in Figure 5, show that DL models once again

outperform the traditional ML models on both the micro and macro

F scores across all 5 tasks. The best MTCNN classifier shows marginal

improvement on the micro F score as compared with the baseline sin-

gle-task CNN for classifying cancer primary site, laterality, and histo-

logical type. However, it outperforms the baseline CNN for the

behavior and histological grade tasks, with micro F scores of 0.981

and 0.814, which is an improvement of 3.9% and 9.9%, respectively.

Furthermore, Figure 5 clearly shows that MTCNNs outperform the

single-task CNN on macro F score across all 5 tasks. The HS

MTCNN achieves 0.551, 0.819, 0.963, 0.687, and 0.791 macro F

scores, which is an improvement of 8.5%, 4.9%, 19.9%, 6.7%, and

18.8% over the baseline CNN for cancer primary site, laterality, be-

havior, histological type, and histological grade, respectively.

ERROR ANALYSIS

In Supplementary Appendix 4, we analyzed the performance of dif-

ferent models for each class label and studied the impact of class

prevalence on classification accuracy. As expected, highest F scores

were observed for class labels with the highest prevalence, while for

the lowest prevalence class labels classification accuracy was the

lowest. Although MTL outperformed the CNN model on the least

prevalent classes, classification error was still high (see Supplemen-

tary Appendix Figures S6-S9). Supplementary Appendix Figure S11

shows the confusion matrices from the HS MTCNN for each of the

5 tasks. For the primary cancer site task, a frequent error type is

when the true and predicted class labels are within the same organ

system or neighboring organs. For example, (1) when the true label

is uterus (C55), the model mostly predicts corpus uteri (C54); and

(2) when the true label is hypopharynx (C13), the model mostly pre-

dicts tonsil (C09). The second type of misclassification error is due

to having an unspecified or ill-defined organ system. In these cases,

Figure 5. Prospective evaluation micro- and macro-averaged F scores comparing the multitask convolutional neural network (MTCNN) models and the baseline

models. CS: cross-stitch; HS: hard parameter sharing; RFC: random forest classifier; SVM: support vector machine.
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the MTCNN model predicts a cancer primary site associated with the

specific organ. For example, when the true label is other and ill-

defined sites in lip, oral cavity, and pharynx (C14), the model mostly

predicts base of tongue (C01). Similarly, when the true label is other

and unspecified female genital organs (C57), the model mostly pre-

dicts ovary (C56). The third source of misclassification error we ob-

served in this study comes from unknown and ill-defined sites, for

example, other and ill-defined sites (C76) and unknown primary site

(C80). For these ground truth labels, the model incorrectly predicts all

samples associated with them. For the laterality task, prediction errors

occur mainly for cases with unknown laterality or when a paired or-

gan is involved. For the histology task, we observed 2 main sources of

error. The first one results from semantic constructs. For example, (1)

when the true label is basaloid squamous cell carcinoma (8083), the

model mostly predicts squamous cell carcinoma (8070); and (2) when

the true label is adenocarcinoma with mixed subtypes (8255), the

model mostly predicts adenocarcinoma (8140). The second type of

misclassification error occurs with histological types associated with

the same primary cancer site. For example, (1) when the true label is

intraductal micropapillary carcinoma (C50.x) (8507), the model

mostly predicts Infiltrating duct mixed with other types of carcinoma

(C50.x) (8523); and (2) when the true label is papillary serous cysta-

denocarcinoma (C56.9) (8460), the model incorrectly predicts serous

cystadenocarcinoma, NOS (C56.9) (8441). Finally, for the histologi-

cal grade task, most errors happen with neighboring class labels.

DISCUSSION

Our results build a strong case for the effectiveness and robustness

of DL approaches over traditional vector space approaches like TF-

IDF for clinical NLP. Their advantage could be attributed to their

ability to encode words with similar semantic meaning into similar

embedding representations. This feature is generally lacking in TF-

IDF based models. Although our study was based on randomly

initialized word embeddings due to our positive experience from a

previous work [8], a comprehensive analysis study is currently under

way to evaluate randomly initialized vs pretrained embeddings

based on state-of-the-art word embedding training models and di-

verse text corpora.

Figure 6 shows that MTCNNs achieve a higher accuracy across

all tasks in both retrospective and prospective evaluations as com-

pared with the single-task CNNs. Comparing separate task metrics,

we observe that the HS MTCNN and CS MTCNN had similar over-

Figure 6. Comparing the multitask convolutional neural network (MTCNN) models and the baseline models in terms of number of correctly classified tasks for

each document: (A) retrospective evaluation (B) prospective evaluation. CS: cross-stitch; HS: hard parameter sharing; RFC: random forest classifier; SVM: support

vector machine.
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all performance, with CS slightly outperforming on the site task and

HS slightly outperforming in the histological type and histological

grade tasks. Misra et al [24] found CS with a deep CNN network

for computer vision tasks to consistently outperform HS. Our differ-

ent conclusion may be attributed to 2 major use case differences.

First, the amount of information sharing in our CS network is not

significantly greater than in the HS network because word-level

CNN network with a single convolution layer uses only 1 CS opera-

tion. Second, the original CS implementation was used for image

segmentation and image classification—these 2 tasks are highly re-

lated because segmented image shapes strongly correlate with image

class. In our case, the relationships among the 5 clinical classifica-

tion tasks are not straightforward.

Our HS MTCNN uses approximately the same number of train-

able parameters as a single-task CNN. In practice, this means that

we can train a multitask network to do inference on all 5 tasks in ap-

proximately one-fifth the time it takes to train 5 individual task-

specific networks while gaining in classification accuracy. Table 2

summarizes the number of trainable parameters and the time needed

for each DL model to converge on a single NVIDIA Tesla P100 GPU

(NVIDIA, Santa Clara, California). The train time improvements

can be interpreted as a result of increased parallelism with finer

computational granularity when training multiple tasks with a single

training batch. Unlike the HS MTCNN, the CS MTCNN takes sig-

nificantly longer to converge than the single-task CNNs do. As the

CS MTCNN utilizes 5 parallel CNN architectures linked together

by CS operations, the number of trainable parameters in the CS

MTCNN is about 5 times that of a single-task CNN, after factoring

out the trainable parameters from the shared word embeddings.

Owing to the similar performance of the HS and CS MTCNNs on

our tasks, we expect that HS CNNs may be more practical for time-

sensitive applications.

From the series of experiments in the Supplementary Appendix, the

results of the class imbalance study highlight the advantage of multitask

DL to boost the classification performance on the low prevalent classes by

leveraging important features captured from related information extraction

tasks. Also, our 2-task experiment results in Supplementary Appendix Fig-

ure S10 show that adding more learning tasks boosts mostly classification

accuracy on minority classes. In addition, even if there is no additional ben-

efit from pairwise task training, there is no negative impact on the overall

performance, with 5-task MTCNNs consistently outperforming 2-task

MTCNNs. Furthermore, HS MTCNNs appeared to provide more confi-

dent predictions, achieving high positive predictive value while rejecting

fewer cases due to low confidence compared with the CS model.

There are 2 main limitations in our study. First, CNN-based

architectures can only capture linguistic relationships within a

fixed window size of words—in our case, 5 words. However, cer-

tain tasks may benefit from learning linguistic relationships across

longer distances. In future work, deeper CNN approaches that

have a wider receptive field or recurrent neural network–based

approaches such as the hierarchical attention network [9] may

mitigate this issue. Second, our current MTCNN models do not

consider the correlations between these tasks (eg, some histologi-

cal type codes are not possible for some cancer sites). In future

work, we will pursue constraint optimization with MTCNNs to

eliminate the potential negative impact from predicting

“unallowable” label combinations.

CONCLUSION

Here, we present an approach to train generalized multitask learning

CNN models for automated extraction of key cancer characteristics

from unstructured pathology reports. The series of experiments pre-

sented in this article and in the supplementary information demon-

strate that MTCNN approaches consistently outperform single-task

CNNs and traditional ML classifiers. Owing to its computational ef-

ficiency while achieving similar accuracy, HS MTCNN offers a

competitive advantage over CS MTCNN for large-scale application

across population cancer registries.
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Table 2. Summary of training time and number of trainable

parameters for deep CNN–based models.

Model Trainable

parameters

Training

time

Single-task CNN, for cancer primary site 10 355 465 1 h 50 min

Single-task CNN, for laterality 10 300 504 2 h 35 min

Single-task CNN, for behavior 10 299 603 2 h 50 min

Single-task CNN, for histological type 10 353 663 1 h 50 min

Single-task CNN, for histological grade 10 301 405 2 h 25 min

Multitask CNN, cross-stitch 14 746 715 12 h

Multitask CNN, hard parameter sharing 10 423 040 2 h

For each model, 9 216 000 parameters are associated with the word

embeddings.

CNN: convolutional neural network.
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