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A B S T R A C T   

Long non-coding RNAs (lncRNAs) have been shown to play a regulatory role in various processes 
of human diseases. However, lncRNA experiments are inefficient, time-consuming and highly 
subjective, so that the number of experimentally verified associations between lncRNA and dis
eases is limited. In the era of big data, numerous machine learning methods have been proposed 
to predict the potential association between lncRNA and diseases, but the characteristics of the 
associated data were seldom explored. In these methods, negative samples are randomly selected 
for model training and the model is prone to learn the potential positive association error, thus 
affecting the prediction accuracy. In this paper, we proposed a cyclic optimization model of 
predicting lncRNA-disease associations (COPTLDA in short). In COPTLDA, the two-step training 
strategy is adopted to search for the samples with the greater probability of being negative ex
amples from unlabeled samples and the determined samples are treated as negative samples, 
which are combined together with known positive samples to train the model. The searching and 
training steps are repeated until the best model is obtained as the final prediction model. In order 
to evaluate the performance of the model, 30% of the known positive samples are used to 
calculate the model accuracy and 10% of positive samples are used to calculate the recall rate of 
the model. The sampling strategy used in this paper can improve the accuracy and the AUC value 
reaches 0.9348. The results of case studies showed that the model could predict the potential 
associations between lncRNA and malignant tumors such as colorectal cancer, gastric cancer, and 
breast cancer. The predicted top 20 associated lncRNAs included 10 colorectal cancer lncRNAs, 2 
gastric cancer lncRNAs, and 8 breast cancer lncRNAs.   

1. Introduction 

The high-throughput sequencing technology allows researchers to glimpse the full picture of species’ genes. The human genome 
contains about 3.16 billion DNA base pairs, but the number of exons only accounts for 1–2% of the total length of the genome and the 
remaining 98% cannot be encoded as protein sequences. According to the size, non-coding RNAs are divided into large non-coding 
RNAs and small non-coding RNAs [1,2]. Long non-coding RNA (lncRNA) is a large non-coding RNA with a length of more than 
200 nucleotides and the largest subspecies of non-coding RNA with the important genetic role, but it was initially thought to be only a 
short copy of DNA [3,4]. More evidences have shown that lncRNA can change mRNA splicing through the interaction with splicing 
factors, regulate the epigenetic state through chromosome remodeling proteins, promote or block transcription factors to affect gene 
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expression, and participate in multiple biological processes such as cell differentiation, proliferation, and apoptosis [5–8]. LncRNA has 
a close regulatory association with the occurrence and development of human diseases. For example, lncRNA H19 has been shown to 
increase the HMGA2-mediated epithelial-mesenchymal transformation (EMT) in pancreatic ductal adenocarcinoma (PDAC) by 
antagonizing let-7, at least partially promoting PDAC cells [9]. In the future, lncRNA is expected to become a new biomarker to study 
the pathogenesis of diseases and guide disease treatment [10–14]. Therefore, it is of great significance to study the associations be
tween lncRNA and diseases. 

Traditional biological experiments are time-consuming and costly and it is difficult to make achievements from numerous data, so 
the number of experimentally verified lncRNAs associated with diseases is limited. Therefore, it is necessary to predict the potential 
associations between lncRNAs and diseases with computational methods. Currently, the calculation methods of predicting the po
tential associations between lncRNAs and diseases can be roughly divided into the following three categories. Firstly, based on 
traditional calculation methods, Chen et al. constructed a semi-supervised learning framework named LRLSLDA to predict potential 
disease-related lncRNAs [15]. Lu et al. used the induction matrix completion model SIMCLDA to predict the associations between 
lncRNA and diseases [16]. Secondly, based on deep learning methods, Zeng et al. used a neural network model based on deep matrix 
factorization to predict potential lncRNA-disease associations [17]. Thirdly, with the calculation results from other biological infor
mation, the correlations between lncRNA and diseases were predicted. Chen et al. integrated the miRNA-disease correlation with 
lncRNA-miRNA interaction to predict the potential associations between lncRNA and diseases [18]. 

In addition, other interaction prediction models in computational biology can also provide valuable references for lncRNA-disease 
association prediction. Such as, Wang et al. propose a method based on graph convolutional neural (GCN) network and conditional 
random field (CRF) for predicting human lncRNA-miRNA associations, named GCNCRF [19]. The model uses the GCN network to 
obtain the initial embedding of nodes. At the same time, an attention mechanism is added to the CRF layer to re-weight nodes, so as to 
better grasp the feature information of important nodes. Li et al. developed a network distance analysis model (NDALMA) for 
lncRNA-miRNA association prediction [13]. Firstly, the similarity networks of lncRNA and miRNA were calculated, and the Gaussian 
interaction spectrum (GIP) nuclear similarity was used to integrate the model. Then the network distance analysis is carried out on the 
integrated similar network, and the final score is obtained through the confidence calculation and score conversion. Sun et al. proposed 
a new deep learning algorithm called Graph convolutional Networks and Graph Attention Networks (GCNAT) to predict potential 
associations of disease-related metabolites [14]. First, they constructed a heterogeneous network based on the known information, and 
then encoded and learned the metabolites and disease characteristics through the graph convolutional neural network. Then, the graph 
attention layer is used to combine the embedding of multiple convolutional layers, the corresponding attention coefficient is calcu
lated, and different weights are assigned to the embedding of each layer. Finally, the predicted results are obtained by decoding and 
scoring the final composite embeddings. 

In the studies on the association between lncRNA and disease, some researchers used the association matrix to describe whether 
there was any association between the research objects, and extracted the rows and columns of the matrix from the association matrix 
between lncRNA and diseases as feature vectors. However, the association matrix is a sparse matrix consisting of a few positive samples 
and a large number of unlabeled samples containing potential positive samples. In the training process of most models, the samples 
from unlabeled samples are randomly selected as negative samples and used together with existing positive samples. In this way, rough 
labeling of unlabeled samples with negative labels leads to biased classifiers, which inevitably affect the prediction accuracy of the 
model. Whether the negative samples used in model training are accurate and reasonable is crucial to the prediction accuracy of the 
model. 

In order to better predict the associations between lncRNA and diseases, the two-step method of positive and unlabeled (PU) 
learning is used as the learning strategy of the model. A novel method called cyclic optimization model (COPTLDA) is proposed to 
predict potential associations between lncRNAs and diseases. The two-step method is a strategy of PU learning. According to the 
strategy, the samples with greater probability of being negative examples are obtained from the U set (unlabeled samples) and then 
used together with the known positive samples from the P set, to train the model. After repeated searching and training, the best model 
is chosen to predict the remaining unlabeled samples. 

2. Theory and calculation 

2.1. Establishment of the correlation matrix 

Given m lncRNAs L = {L1, L2, …, Li, …, } and n diseases D = {D1, D2, …, Dj, …, Dn}, then the lncRNA-disease interaction matrix is 
defined as R (R ∈ Rm×n), as shown in formula (1): 

Rij =

{
1, LncRNAs have been linked to diseases

0,The relationship between lncRNA and diseases is unknown (1)  

In the training process of the model, the rows and columns of the association matrix are respectively taken as the input of the model. It 
is a sparse matrix, in which the value of 1 accounts for 1.166%. 

2.2. PU learning 

PU learning (positive and unlabeled learning) is a semi-supervised binary classification method, in which P and U respectively 
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represents positive samples and unlabeled samples. In PU learning, the training dataset D consists of a set of positive of DP and a set of 
unlabeled DU, where D = DP ∪ DU. DP contains np positive samples xp sampled from P (x|Y = 1). DU contains nu unlabeled samples xu 

sampled from P(x). The prior probabilities of positive and negative classes are respectively expressed as Πp = P(Y = 1) and Πn = P(Y =
− 1), where it is assumed that Πp is known in the paper. The parameters are set as follows. G: Rd→R indicates the binary classifier; θ is 
the parameter of the binary classifier; L: R × {1, − 1}→R indicates the loss function. Then, the risk of classifier, R̂Pu(g), can be 
approximated to formula (2) as follows 

R̂Pu(g)=
πp

np

∑np

i=1
L(g(xp

i ), 1)+
1
nu

∑nu

i=1
L(g(xp

i ), − 1) −
πp

np

∑np

i=1
L(g(xp

i ), − 1) (2) 

This approximation process is called unbiased risk estimation. However, this estimation yields negative values, which may lead to 
overfitting of the model. Therefore, non-negative PU unbiased estimation, nnPU, can be replaced with formula (3) as shown below: 

R̂Pu(g)=
πp

np

∑np
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L(g(xp
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1
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∑nu

i=1
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PU learning provides benefits for machine learning problems where there are only positive samples and the remaining samples are 
unreliable for binary classification. Since deep learning was proposed, it has been widely applied in computer vision, natural language 
processing, bioinformatics, and other fields [20,21]. Some researchers applied deep learning in the association prediction of lncRNA 
and diseases [22–25]. Inspired by the previous studies, we combined the PU learning strategy with deep learning algorithms to 
construct a neural network model based on two-step method in PU learning, COPTLDA. 

2.3. COPTLDA model 

In the basic model of COPTLDA, a fully connected neural network is used to train the data. The row vectors and column vectors of 
the association matrix are respectively used as the inputs of a three-layer neural network and a four-layer neural network. For the 
intersection of the row and column, the value is masked and replaced with 0. The basic model diagram is shown in Fig. 1. 

The numbers of the nodes in the four-layer network of training row vectors are respectively 581, 290, 150, and 70. The numbers of 
the nodes of the three-layer network for training column vectors are respectively 215, 120, and 70. The ReLU function is set as the 
activation function for each middle layer, as shown in formula (4): 

ReLU=max(0, x) (4) 

During model training, two neural networks are used to train the rows and columns of the correlation matrix respectively, and their 
output is two vectors with the same dimension. Then combine two different features by element-wise multiplication and expect to find 
something more representational. So, through element-wise multiplication, the vectors of a lncRNA and a disease are fused into a new 
vector, as shown in formula (5): 

w=Element − wise multiplication(V1,V2) (5) 

The obtained vector is then put into a two-layer neural network as an input vector. The number of the input nodes of this network is 
70 and the number of the output node is 1. In the final output layer, sigmoid is set as the activation function, as shown in formula (6): 

Fig. 1. Diagram of the basic model of COPTLDA.  
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sigmoid(x)=
1

1 + exp (− x)
(6) 

The cross-entropy function is used as the loss function and Adam is used as the optimizer to train COPTLDA. The learning rate is set 
to 0.005 and the number of iterations is set to 100. The model prediction result is the prediction value of the association between 
lncRNAs and diseases. In this way, the first sub-model is obtained. 

Fig. 2 shows the training strategy of COPTLDA model. The gray frame represents the process of obtaining a sub-model through one 
sampling and the pink frame represents the process of obtaining the final model through continuously selecting unlabeled samples that 
are more likely to be negative samples and training the sub-models. 

In COPTLDA, each lncRNA is represented as the row Li of the association matrix and each disease is represented as the column Dj of 
the association matrix, so that the association matrix R is obtained. Each lncRNA has a one-to-one association with all kinds of diseases. 
When the i-th lncRNA is associated with the j-th disease, Rij = 1 is a positive sample; otherwise, it is an unknown sample. In the 

Fig. 2. Training strategy diagram.  

H. Biyu et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e17726

5

association matrix, 1477 positive samples and 123,438 unlabeled samples are obtained. Then, 60% of the positive samples, 886 cases, 
are taken as the training set and 10% of positive samples, 147 cases, are doped into the unknown sample set after changing their labels. 
Finally, 30% of the samples, 444 cases, are taken as the test set. 

The quantity of the data is small and negative samples are randomly selected, so the obtained model is rather rough. However, it is 
still considered to have a certain predictive ability. At this time, the untrained unknown samples are predicted with the first model and 
then the most possible negative samples, the highest ranked top 886 samples, are selected as the negative samples of the second model. 
Then, the 886 negative samples are combined with the 886 positive samples to train the second model. Then, the negative samples in 
the previous round of training are added into the unknown sample pool to repeat the training process of the second model. In the 
process, the most possible negative samples are continuously selected and combined with the fixed positive samples to train the 
models. Each obtained model is verified with the test set to evaluate its predictive ability and then the remaining unlabeled samples are 
predicted to obtain the predicted value. The negative samples selected in all the training models are statistically analyzed, and the 
highest ranked top 886 samples are selected as negative samples for training according to the descending order of selection times. In 
this way, the final model was obtained. 

3. Experiments and result analysis 

3.1. Data sources and model evaluation 

Two datasets were downloaded from lncRNADisease Database V2.0 [26]. One dataset contained the experimentally verified as
sociations between lncRNAs and diseases. After removing the information of other species and repeated entries, 581 lncRNAs and 215 
diseases were obtained as the training model. The statistics are shown in Table 1. 

From the lncRNA-disease association matrix, 1477 positive samples were obtained. In the obtained samples, 60% of positive 
samples were used as the training set and 30% of positive samples were used as the test set to determine the accuracy of the model. The 
remaining 10% of positive samples were used as the test set to determine the recall rate of the model. 

The other dataset contained the association information between lncRNA and diseases predicted by other models and was used as 
the verification cases for case study. The two datasets were also downloaded from the RNADisease Database V4.0 [27]. One dataset 
was verified by experiments and the other was predicted by other models (Table 2). The two datasets were also used to evaluate the 
case study results. 

In the plotting process of receiver operating characteristic (ROC) curve, no negative sample was obtained, so the samples with the 
largest probability of being negative samples (top unlabeled samples) were selected as negative samples. The proportions of positive 
and negative samples remained the same as the training dataset. The numbers of positive and negative samples were respectively 444 
and 38,079. The data were input into the trained model to calculate the true positive rate (TPR) and false positive rate (FPR) with the 
predicted new values, as shown in formula (7) and formula (8): 

TPR=
TP

TP + FN
(7)  

FPR=
FP

FP + TN
(8)  

where TP represents the number of correctly identified positive samples and FN represents the number of incorrectly identified positive 
samples. According to the settings of different classification thresholds, FPR and TPR were used as horizontal and vertical coordinates 
to plot receiver operating characteristic (ROC) curves. FPR and TPR were also used as the performance evaluation indexes of the 
model. The area under ROC curve was defined as AUC. It is generally believed that the larger value of AUC indicates the better 
performance of classifier. 

A total of 444 cases (30% of the positive samples) were taken as the test set and the ratio of the number of positive samples correctly 
predicted by the test to the number of positive samples in the test was defined as accuracy. The accuracy calculation formula is shown 
in formula (9): 

ACC=
TP

TP + FN
(9) 

A total of 10% positive samples (147 cases) were doped into the unknown sample dataset for model training. After training, the 
prediction accuracy of these positive samples was used as one of the evaluation indexes of the model. The recall rate calculation 
formula is shown in formula (10): 

Table 1 
Training set of the model.  

Dataset LncRNAs Diseases Association Association rate 

LncRNADisease V2.0 581 215 1477 1.166%  
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recall=
TP

TP + FN
(10)  

In the calculation of accuracy and recall rate, TP represents the number of correctly identified positive samples and FN represents the 
number of incorrectly identified positive samples. 

3.2. Distribution analysis of the results 

Fig. 3(a) shows the result distribution of the final model. After each sub-model was trained, the untrained unlabeled samples were 
predicted. When the prediction result was less than 0.001, corresponding sample was more probably a negative sample. When it was 
greater than 0.999, it was a positive sample. The distribution of prediction results of 60 sub-models was recorded. The negative 
samples for training the first sub-model were mixed with 147 known positive samples, thus resulting in the weak prediction ability of 
the model. The proportion of predicted samples in the unknown samples was small and only 5% of the samples had a predicted value 
greater than 0.999. Starting from the second sub-model, according to two-step strategy, the samples were trained and the number of 
samples determined as positive samples increased. The calculated average values indicated that the proportion of the most probably 
positive samples reached 25%, whereas the proportion of the most probably negative samples was 55%. The prediction results of most 
sub-models fluctuated within a certain range (Fig. 3(b) and (c)). This fluctuation might be interpreted as follows. The samples selected 
for each sub-model did not include the negative samples selected for the former sub-model, thus reducing the number of the most 
probably negative samples. Therefore, in the final prediction result, the proportion of positive samples decreased and the corre
sponding proportion of negative samples increased. In the prediction with the final model, the extreme thresholds of 0.001 and 0.999 
were set for classification and the results were relatively stable, indicating that COPTLDA had the stable prediction ability. 

3.3. Loss analysis of the prediction results 

Table 3 lists the loss values of the two models respectively after training for 60 times and 80 times. The comparison results of the 

Table 2 
Test set of the model.  

Datasets File names URL 

LncRNADisease v2.0 Predicted lncRNA-disease information.xlsx http://www.rnanut/lncrnadisease/ 
RNADisease V4.0 Experimental Data: lncRNA-disease information http://rnadisease.org/ 
RNADisease V4.0 Predicted Data: lncRNA-disease information http://rnadisease.org/  

Fig. 3. Distribution of prediction results. (a) The distribution of the proportion of unknown samples predicted by the final model as positive and 
negative samples and their average proportion. (b) Distribution diagram of the proportion of unknown samples predicted by the final model as 
negative samples. (c) Distribution diagram of the proportion of unknown samples predicted by the final model to be positive. 
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loss values of the COPTLDA model and the single model indicated that after the trained model converged, the losses of sub-models in 
the COPTLDA model were similar, whereas the losses of the sub-models in the single model were quite different. 

The loss difference of COPTLDA model between M50 and M40 (or M60) after training for 60 times was the largest and reached 
0.017. The loss difference of single model between M30 and M60 after training for 60 times was the largest and reached 0.073. This gap 
might be interpreted as follows. Negative samples of the single model were randomly selected and more positive samples were mis
classified, further indicating that the training strategy of the COPTLDA model was more reliable. Fig. 4 shows the loss curves of 
COPTLDA model and single model. 

Fig. 4(a) and (c) respectively show the loss functions of the seven sub-models in the two models trained for 100 times. Each line 
represents the loss function of a sub-model. Fig. 4(b) and (d) respectively show the violin plots of 7 sub-models and each violin 
represents the loss distribution of a sub-model. Sub-model 1 (M1) of COPTLDA contained incorrectly identified samples, thus resulting 
in the slow training convergence speed. After training for 40 times, the loss of Sub-model 1 was 4–6 times of that of other sub-models 
and its loss was still larger than that of other models when the model converged after training for 100 times. After the two models were 
training for 80 times, the losses of several sub-models fluctuated sharply. This fluctuation might be interpreted as follows. The set 
learning rate was slightly higher and the softmax activation function adopted in the output layer might cause overflow. In addition, the 
weight in the neural network changed to NAN, which resulted in a steep increase in loss. COPTLDA model has a smaller loss range than 
the single model, and the loss value of the 60th sub-model was the smallest (Fig. 4(b) and (d)). The loss function did not fluctuate in the 
training process, indicating that COPTLDA model had a more stable performance in predicting the association between lncRNA and 
diseases. 

3.4. Accuracy of the model 

Fig. 5 shows the probability that 444 positive samples of the test set are correctly predicted in each sub-model. 
Fig. 5(a) shows the variation of accuracy of the sub-models of the two models. Red lines and blue lines respectively represent the 

accuracy of COPTLDA model and single model and the purple dotted lines represent the accuracy of the first 886 samples that are 
repeatedly selected as the negative samples for the largest probability after training for 60 times. Fig. 5(b) shows the ridge maps of the 
accuracy of the two models. Red peaks represent the COPTLDA model and yellow peaks represent the single model. Except Sub-model 
1 in COPTLDA whose accuracy was lower than that of Sub-model 1 of the single model because the training set contained multiple 
samples with label errors in the initial state, the accuracy of other sub-models of COPTLDA exceeded that of the corresponding sub- 
models of the single model. The red peak was larger and closer to the right (Fig. 5(b)), indicating that the sub-models in COPTLDA 
model had higher accuracy. It was also confirmed that the two-step strategy could improve the prediction ability of the model. The 
accuracy of the purple dotted line reached 0.876, which was basically equal to the highest accuracy of the sub-models. Therefore, the 
statistical selection times-based selection method of negative samples could select more reliable negative samples and further improve 
the accuracy of the model. 

3.5. Model recall rate 

Fig. 6 shows the probability that the positive samples doped in the unlabeled sample set were re-predicted as positive samples in the 
prediction with each sub-model of COPTLDA model (also called recall rate). 

Fig. 6(a) shows the variations of recall rates of sub-models of the two models. Green lines and blue lines respectively represent the 
recall rates of COPTLDA model and single model. Like the accuracy calculation results, the red dotted lines in Fig. 6(a) indicate the 
recall rate of the first 886 samples that are repeatedly selected as the negative samples for the largest probability after training for 60 
times. Fig. 6(b) shows the half-fiddle plot of recall rates of the two models. After stable prediction, the recall rates of sub-models of 
COPTLDA were always greater than those of sub-models of the single model. The red dotted lines showed a recall rate of 0.932, which 
was better than all sub-models of the single model. The results further confirmed that qualified negative samples could be selected with 
the two-step strategy so as to obtain the optimized model and improve the predictive ability of the association between lncRNA and 
diseases. 

3.6. ROC curve of the final model 

Through the comprehensive judgment of the accuracy and recall rate of the 60 sub-models, negative samples were selected ac
cording to the descending order of the number of selections to train the final model, which was used to predict the potential association 
between lncRNA and diseases. Fig. 7 shows the ROC curve of the final selected model in the COPTLDA model. 

Table 3 
Loss values of the two models after training for 60 and 80 times.  

Model loop M10 M20 M30 M40 M50 M60 

COPTLDA 60 0.018 0.016 0.019 0.012 0.029 0.012 
80 0.010 0.011 0.007 0.004 0.016 0.005 

single 60 0.040 0.037 0.096 0.069 0.041 0.033 
80 0.018 0.014 0.076 0.034 0.021 0.013  
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Fig. 4. Loss curves of COPTLDA model and single model. (a) Loss function of seven sub-models in COPTLDA model. (b) Loss distribution of seven 
sub-models in COPTLAD model. (c) Loss function of seven sub-models in single model. (d) Loss distribution of seven sub-models in single model. 

Fig. 5. Accuracy of the two models.(a) Prediction accuracy of 60 sub-models in COPTLAD model and single model and prediction accuracy of final 
model. (b) Accuracy distribution of COPTLAD model and single model. 
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When FPR = 0, the TPR value was above 0.9. Because it’s in the prediction, most of the predicted values of positive samples are 
greater than 0.99, while the predicted values of negative samples are basically close to 0. Therefore, when the threshold is set as 1-δ (δ 
is infinitesimal), the x-coordinate approaches 0 and the y-coordinate approaches 1. Then, the threshold is reduced, so that when the x- 
coordinate gradually increases from 0 to 1, the y-coordinate basically does not change, but when the threshold is set to 0 + δ (δ is 
infinitesimal), now all samples are predicted to be positive samples, so there’s a sudden change at the tail of the ROC curve. But this has 
no effect on the performance of the model. The AUC value finally reached 0.9348. The results fully proved that COPTLDA model had 
the superior performance and contributed to the prediction of the association between LncRNA and diseases. The two-step sampling 
strategy could significantly improve the prediction ability of the model. 

Fig. 6. Variations of recall rates of sub-models of the two models. (a) Recall rate of COPTLAD model and single model 60 sub-models and recall rate 
of final model. (b) Recall rate distribution of COPTLAD model and single model. 

Fig. 7. ROC curve of the final model.  
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3.7. COPTLDA compared to other models 

In order to further verify the advantages of COPTLDA model, 5 models with good prediction performances were selected as the 
benchmark comparison model in this paper. Table 4 provides relevant theories and parameter information of each model. 

Fig. 8 shows the AUC values of the six models. The AUC values of COPTLDA, DMFLDA, SIMCLDA, TPGLDA, MFLDA, and LDAP 
models showed the descending order. In this paper, the AUC value of the COPTLDA model reached the maximum value of 0.9348, 
indicating that COPTLDA performed better than the other five models and had the higher confidence in predicting the potential as
sociation between lncRNA and diseases. 

4. Case studies 

The predicted results of three common cancers were output and the top 20 lncRNAs were selected and compared with the predicted 
results of other papers in the database or manually mined biomedical references. 

COPTLDA predicted the top 20 lncRNAs associated with colorectal cancer, including 12 lncRNAs validated in the validation set 
(Table 5). 

Colorectal cancer is a common malignant tumor whose onset age tends to be middle-aged and elderly and ranks second among 
cancers of males and third among cancers of females. It seriously endangers public health security [31]. Therefore, it is important to 
find the lncRNAs associated with colon cancer. In this paper, COPTLDA was used to predict the lncRNAs associated with colorectal 
cancer. Among the top 20 lncRNAs, 10 experimentally verified lncRNAs and 2 lncRNAs predicted by other models in the validation 
dataset were NBR2 [32], DANCR [33], Lnc00312 [34], HIF1A-AS2 [35], lnc34a [36], ADAMTS9-AS2 [37], PCBP2-OT1 [38], 
LINC00339 [39], UHRF1 [40], LncBRM [41], GIHCG, and LINC00968. 

COPTLDA predicted the top 20 lncRNAs associated with gastric cancer, including 13 lncRNAs validated in the validation set 
(Table 6). 

Gastric cancer is a common malignant tumor in the digestive system, mostly in middle-aged and elderly patients, most of which are 
male. Most of the diagnosed patients of gastric cancer have entered the middle and late stages of the cancer and gastric cancer ranks 
second among the most common causes for cancer death [42]. Similarly, COPTLDA was used in this paper to predict lncRNAs asso
ciated with gastric cancer. Among the top 20 lncRNAs, 2 lncRNAs found in the validation dataset and 11 predicted lncRNAs were 
HIF1A-AS2 [43], BLACAT1 [44], GIHCG, LINC01844, TRIM52-AS1, ADAMTS9-AS2, PCBP2-OT1, LINC00339, SBF2-AS1, TSIX, 
LINC01116, TCF7, and FTX. 

COPTLDA predicted the top 20 lncRNAs associated with breast cancer, including 9 lncRNAs validated in the validation set 
(Table 7). 

According to the latest data of the International Agency for Research on Cancer (IARC) in 2018, the global incidence of breast 
cancer in female cancers was 24.2% and breast cancer ranked first among the cases of female cancers, among which 52.9% cases 
occurred in developing countries [45]. In this paper, COPTLDA was used to predict lncRNAs associated with breast cancer. Among the 
top 20 lncRNAs, 8 lncRNAs validated in the validation dataset and 1 predicted lncRNA were GIHCG [46], HIF1A-AS2 [47], 
ADAMTS9-AS2 [48], LINC00339 [49], BLACAT1 [50], SNHG20 [51], SBF2-AS1 [52], TSIX [53], and SCHLAP1. 

In the paper, COPTLDA model was used to predict the associations between three types of cancers and lncRNAs. In the prediction 
results, a total of 20 experimentally verified lncRNAs included 10 lncRNAs associated with colorectal cancer, 8 lncRNAs associated 
with breast cancer, and 2 lncRNAs associated with gastric cancer. In the prediction results, a total of 14 lncRNAs predicted by other 
researchers included 2 lncRNAs associated with colorectal cancer, 1 lncRNA associated with breast cancer, and 11 lncRNAs associated 
with gastric cancer. The obtained results proved that COPTLDA model had the ability to predict the potential associations between 
lncRNA and diseases. Due to different data sources and scarce positive samples, the real prediction ability of the model should be more 
accurate than the above data. 

5. Conclusions 

LncRNAs play an important role in various biological processes. The identification of disease-related lncRNAs is of great signifi
cance for understanding the pathogenesis of diseases at the lncRNA level and contributes to disease prevention and treatment. The 
COPTLDA model uses the following strategies: (1) The two-step strategy is used to select more likely negative samples. The selected 
negative samples and some known positive samples are used to train the first sub-model and record the evaluation indicators of the 
sub-model. (2) Without putting back the negative samples selected in the last round, the process of selecting negative samples and 
training sub-models is repeated constantly, and the evaluation index of each sub-model is recorded. (3) Count the number of negative 
samples that have been selected, sort by the number of selection times, and select a certain number of negative samples with higher 
ranking. The selected negative samples are trained together with the positive samples to obtain the final model, and then all unknown 
associations are predicted. 

In this paper, the two-step strategy in PU learning was adopted to select the training data and train the model. Unknown positive 
samples mixed with unlabeled samples for training affected the predictive performance of the model, indicating that PU learning 
method performed better in predicting the associations between lncRNA and diseases. Then, COPTLDA model was compared with the 
single model. The results of multiple parameters indicated that the two-step strategy in training data could greatly improve the 
predictive performance of lncRNA-disease association model. Based on the statistics of the first 60 sub-models, the top 886 samples 
with the largest probability of being selected were obtained and the higher accuracy and recall rate were finally realized, thus further 
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confirming the effectiveness and superiority of the two-step sampling strategy. 
In COPTLDA, only the association between lncRNAs and diseases is used to construct the association matrix without using other 

biological data. However, other kinds of biological data are also significant for the prediction of association between lncRNAs and 
diseases. In future studies, it is necessary to integrate various biological data for joint prediction and develop more effective algorithms 
to adapt to complex data relationships. 
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Fig. 8. AUC values of six models.  

Table 5 
Prediction results of lncRNAs associated with colorectal cancer.  

Ranks LncRNAs References PMID 

1 GIHCG LncRNADiseaseV2.0 (pre) / 
2 NBR2 RNADisease V4.0 (ex) 31571148 
3 DANCR RNADisease V4.0 (ex) 31863900 
4 Lnc00312 RNADisease V4.0 (ex) 29461596 
5 HIF1A-AS2 RNADisease V4.0 (ex) 29278853 
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7 ADAMTS9-AS2 RNADisease V4.0 (ex) 27596298 
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10 UHRF1 RNADisease V4.0 (ex) 26768845 
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