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Abstract: The effects of rapid thermal annealing (RTA) on Schottky barrier diodes (SBDs) made from
oxygenated aluminum nitride (AlN) thin films deposited on a silicon carbide (SiC) substrate using
radio frequency sputtering were investigated. The annealed SBD devices exhibited a 10x increase
in the on/off current ratio vs. non-annealed devices for measurement temperatures ranging from
300 K to 450 K. The ideality factor, derived from the current density–voltage (J-V) characterization,
increased by a factor of ~2.2 after annealing, whereas the barrier height decreased from ~0.91 to
~0.68 eV. Additionally, Auger electron spectroscopy indicated decreased concentrations of atomic
oxygen in the AlN thin film, from ~36% before, to ~24% after annealing. This may have contributed
to the reduced barrier height and improved on/off ratio in the annealed AlN/SiC diodes.

Keywords: aluminum nitride; silicon carbide; rapid thermal annealing; Schottky barrier diodes;
radio frequency sputtering; Auger electron spectroscopy

1. Introduction

Owing to its high bandgap (~6.2 eV), high breakdown voltage, high thermal conductivity and
low thermal expansion, aluminum nitride (AlN) is of considerable interest for the manufacture of
deep ultraviolet (DUV) lasers, LEDs and detectors [1,2]. The lattice match of AlN and SiC makes
SiC a suitable substrate on which to grow AlN thin films. It is reported that the highly-oriented
MoS2 film may act as an excellent template for guiding the growth of AlN on a 2D surface at lower
temperatures and that, additionally, annealing can provide low dislocation density AlN templates [3–5].
AlN epilayers of high quality are commonly obtained using metal-organic chemical vapor deposition
(MOCVD). AlN grown at high temperature on sapphire substrates need to be relatively thick (upwards
of ~600 nm) for achieving high-quality films [6], limiting its suitability for certain device types.
Sputtered thin films are known to have the disadvantage of possible degradation during deposition
due to the plasma. This can be avoided by using molecular beam epitaxy (MBE), which allows highly
controlled thin film growth. However, the primary disadvantage of MBE includes high operation
costs and difficulty in scaling up. Hence, as the deposition of AlN thin films at low temperatures has
become increasingly important, the sputtering technique is promising under circumstances where
low-temperature deposition, large-scale or conformal film growth are to be readily achieved [7–10].
However, this results in a low polar field which diminishes the performance of high electron mobility
transistors [1,11]. AlN thin films grown by RF-sputtering contain defects relating to oxygen impurities,
resulting in impaired electrical and optical properties [12]. The theoretical modeling of oxygen
in semiconductor materials is still computationally challenging. This is due to the native oxygen
(e.g., binding properties, large electronegativity), which is difficult to clearly explain using conventional
empirical or semi-empirical methods [13]. Annealing is an important process for manufacturing
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high-quality compound semiconductors such as GaAs, SiC, and AlN. Annealing reduces the number
of defects in GaAs thin films by approximately two orders of magnitude. [14]. Similarly, annealing of
AlN substrates and epilayers in an oxygen atmosphere results in the passivation of deep donor type
oxygen vacancy states. Annealing as a means of reducing the number of oxygen vacancies improves
the rectification ratio, response speed and sensitivity of AlN based photodetectors [15]. Schottky
barrier diodes (SBDs) have simple structures to form and yet they can be the basis for complicated
device structures such as junction barrier Schottky (JBS) diodes and various types of transistors [16].

In this study, we fabricated AlN/SiC SBDs and investigated the effects of rapid thermal annealing
(RTA) on SBD properties.

2. Materials and Methods

A schematic of the vertical oxygenated-AlN SBD is shown in Figure 1. The starting substrates
were n-type 4H-SiC wafers, onto which AlN thin films were deposited using an RF-sputtering method.
AlN films were deposited from an AlN target with 99.9% purity, in an atmosphere of high purity
argon gas (99.999%), onto 4H-SiC wafers (ND = 1 × 1019 cm−3) with an n-type epitaxial 4H-SiC layer
(ND = 5 × 1016 cm−3). After chemical cleaning of the SiC substrate in a 4:1 Sulfuric Peroxide Mix
(SPM) cleaning solution of sulfuric acid (H2SO4) and hydrogen peroxide (H2O2), the native SiO2 layer
was stripped using a buffered oxide etch solution. A 150 nm thick Ni-film was then deposited using
e-beam evaporation to create a diode cathode on the reverse side of the substrate. After the back-side
nickel (Ni)-deposition, the samples were annealed at 1323 K in N2 for 90 s by RTA to form nickel
silicide (Ni2Si) for ohmic contacts. AlN films were then deposited by RF sputtering onto the front of
the substrate at room temperature. A sputtering power of 150 W was applied to a 5.08 cm diameter
target. Argon gas was injected into the chamber at a flow rate of 5.5 sccm using a mass flow controller.
The working pressure was maintained at 10 mTorr during the 120 min deposition time, resulting in a
film thickness of approximately 200 nm. The deposited AlN layer was annealed at 673 K, for 5 min in a
nitrogen atmosphere. For the top electrode contact, a Ni (150 m) metal layer was deposited. Auger
Electron Spectroscopy (AES) was used to analyze the stoichiometry of the AlN films. The SBDs were
characterized by current–voltage (I-V) measurements carried out over the temperature range 300–450 K.
The J-V characteristics were measured using a semiconductor analyzer (Keithley 4200-SCS) at 300K
under ambient air pressure.
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oxygenated-AlN SBDs measured at 300 K. The J-V characteristics on a log scale are shown in the inset 
of Figure 2. The forward current density of the as-deposited device was lower than that of the 
annealed device (annealed at 673 K for 5 min). In the case of reverse bias, the annealed AlN SBD 
exhibited a higher leakage current to that of the as-deposited AlN SBD, rising from 1.5 × 10−7 to 2.6 × 
10−6 mA/cm2. 

Figure 1. Structure of an aluminum nitride (AlN) Schottky barrier diode.

3. Results and Discussion

Figure 2 shows the typical current density–voltage (J-V) characteristics of the fabricated
oxygenated-AlN SBDs measured at 300 K. The J-V characteristics on a log scale are shown in
the inset of Figure 2. The forward current density of the as-deposited device was lower than that
of the annealed device (annealed at 673 K for 5 min). In the case of reverse bias, the annealed AlN
SBD exhibited a higher leakage current to that of the as-deposited AlN SBD, rising from 1.5 × 10−7 to
2.6 × 10−6 mA/cm2.
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Figure 2. J-V curves of as-deposited (before annealing) and annealed AlN Schottky barrier diodes.

To study how thermal annealing influenced the electrical properties of each AlN SBD, J-V
measurements were made for varying temperatures. Figure 3 shows the J-V characteristics of different
devices with and without annealing, measured at temperatures between 300 K and 450 K, at steps of
25 K. Both samples exhibit good rectification features, as can be seen from Figure 3b,d. The reverse
current density increased with device temperature, while the forward current density decreased.
At increasing temperatures, the forward current decreased, owing to the thermionic emission (TE) of
the SBDs with series resistance (Rs). The J-V-T characteristics of the diodes were evaluated according
to the TE model [17,18] given by

J = Js

[
exp

(
q(V − IRs)

ηkT

)
− 1

]
(1)

where q is the electron charge, IRs is the voltage drop across Rs, T is the measurement temperature, η is
the ideality factor, k is Boltzmann’s constant, and Js is the saturation current density. Js is the intercept
at zero bias of the extrapolated straight-line region of the forward bias current. It is given by

Js = A∗T2 exp
(
−

qφB

kT

)
(2)

φB is the barrier height, and A∗ is the effective Richardson constant (~57.6 Acm−2K−2 for AlN) [16].
The temperature effect on Ion/Ioff ratio of the fabricated device is shown in Figure 3e, where Ioff, Ion is
the diode current measured at −5V and +5V bias respectively. The on/off ratios of the as-deposited
devices and the annealed devices were calculated to be ~4.9 × 105 and ~5.6 × 106 at room temperature,
respectively. The on/off ratio of the annealed device was an order of magnitude (~10 times) higher than
the on/off ratio of the as-deposited device over the entire temperature range. Although the off-current
increased as the measuring temperature increased, the annealed SBD exhibited a high temperature
switching capability with a high on/off ratio of about ~105. After the thermal annealing process at
673 K, the leakage current density of the AlN SBDs increased in reverse bias. However, the Schottky
barrier height of the annealed device was lowered in forward bias and the rectifying characteristic was
improved. This characteristic is useful to apply to sensor applications. The temperature dependences
of the ideality factor and barrier height are shown in Figure 4a. The relationship between barrier height
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(φB) and ideality factor (η) is determined as the slope of the linear region of the curve depicting the
forward bias ln(J)-V characteristics in accordance with

η =
q

kT

[
dV

d(lnJ)

]
(3)

φB = −
kT
q

ln
( Js

A∗T2

)
(4)
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From Figure 3a,c, the Schottky barrier height φB and the ideality factor η of the manufactured
diodes were extracted. The determined values as a function of temperature are shown in Figure 4a,b.
The “as-deposited” device had a Schottky barrier height φB = 0.91 eV and an ideality factor of η = 5.49
at room temperature. By contrast, after annealing of the contact at 673 K, a decrease in the barrier
height to 0.68 eV was observed, while the ideality factor η increased to 7.61. Figure 4b displays a linear
relationship between barrier height and the ideality factor. As Figure 4b shows, the lower the ideality
factor, the greater the barrier height. The behavior of the barrier height and the ideality factor with
increasing temperature is a common feature of Schottky barriers. It is likely to stem from the lack of
homogeneity of the metal–semiconductor contact. Inhomogeneity results from a multitude of sources,
including varying densities of surface defects, as well as the nature of deposition and surface cleaning
processes [19,20]. We assume that the inhomogeneity of the Nickel-AlN contact was reinforced by the
RTA process.

The results from AES measurements are shown in Figure 5a. In both devices, the atomic
concentration of aluminum was higher than that of nitrogen, from the surface to a depth of ~200 nm
into the AlN film layers. During the fabrication of AlN films by the RF sputtering system, the presence
of oxidized materials in deep position has been reported [21,22]. Figure 5b shows the SEM micrographs
of AlN films on SiC following the As-dep and annealing temperatures. The films exhibited good surface
coverage and particles were significantly decreased for the annealed sample [23]. From the aspect of
thermo-dynamical data, it can be inferred that Al–O bonds are likely to have formed. This is because
∆G(Al2O3) = −1480 KJ/mol and ∆G(AlN) = −253 KJ/mol [24]. During the film fabrication, residual
oxygen gas in the chamber can react easily with aluminum, forming AlXOY compounds. After the
RTA process at 673 K, it was shown that the concentration of aluminum (Al) remained almost the
same (~46%), whereas that of oxygen decreased from 36% to 24%. There was an obvious change in the
oxygen distribution in AlN SBDs, indicating oxygen loss in the annealed device. It has been reported
that, as a result of annealing in a nitrogen atmosphere, the atoms in the film layer may acquire enough
kinetic energy to allow them to occupy positions that minimize the number of micro-voids and hence
the lattice strain, resulting in improved crystallinity of AlN films [25]. In addition, the unintentionally
generated vacancies can be cured by the incorporation of nitrogen atoms [26]. Oxygen is typically
observed as a defect in AlN films, which may occupy nitrogen sites and cause aluminum vacancies to
equalize the electric charge. It leads to strain misfits and thereby increased phonon scattering, leading
to reduced conductivity [27–31]. Consequently, the decreasing atomic concentration of oxygen in the
annealed device resulted in a higher electrical conductivity than in the as-deposited device. It was
shown that after the RTA process, AlN SBDs had improved electrical conduction properties.
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The results shown in Figure 4, together with those in Figure 3, show that rapid thermal annealing
treatment of AlN/SiC structures may be important for modifying the behavior of devices by controlling
the barrier height and on/off ratio.

4. Conclusions

In summary, electrical characteristics and AES were used to investigate the effect of RTA on
oxygenated-AlN SBDs. We measured and analyzed the electrical characteristics of an AlN SBD before
and after RTA. After the RTA process, the atomic concentration of oxygen in the AlN thin film decreased
from ~36% to ~24% and the barrier height decreased from ~0.91 to ~0.68 eV, respectively. The barrier
height decreases with improved conductivity, resulting in higher current density values, which in turn
results in an improved on/off ratio in the annealed devices. As a result, the RTA process improves the
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