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Abstract: Fibromyalgia is a chronic syndrome characterized by widespread musculoskeletal pain
and an extensive array of other symptoms including disordered sleep, fatigue, depression and
anxiety. Important factors involved in the pathogenic process of fibromyalgia are inflammation
and oxidative stress, suggesting that ant-inflammatory and/or antioxidant supplementation might
be effective in the management and modulation of this syndrome. Recent evidence suggests that
melatonin may be suitable for this purpose due to its well known ant-inflammatory, antioxidant and
analgesic effects. Thus, in the current study, the effects of the oral supplementation of melatonin
against fibromyalgia-related skeletal muscle alterations were evaluated. In detail, 90 Sprague Dawley
rats were randomly treated with reserpine, to reproduce the pathogenic process of fibromyalgia
and thereafter they received melatonin. The animals treated with reserpine showed moderate
alterations at hind limb skeletal muscles level and had difficulty in moving, together with significant
morphological and ultrastructural alterations and expression of inflammatory and oxidative stress
markers in the gastrocnemius muscle. Interestingly, melatonin, dose and/or time dependently,
reduced the difficulties in spontaneous motor activity and the musculoskeletal morphostructural,
inflammatory, and oxidative stress alterations. This study suggests that melatonin in vivo may be an
effective tool in the management of fibromyalgia-related musculoskeletal morphofunctional damage.
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1. Introduction

Fibromyalgia (FM) is a multifactorial chronic syndrome [1,2] that occurs in up to 6% of the
population [3,4]; it is one of the most common pathological conditions seen in primary health
care [2,5]. FM is a musculoskeletal condition characterized by chronic pain and tenderness (generalized
allodynia/hyperalgesia) accompanied by other somatic and psychological symptoms including fatigue,
sleep disturbances, irritable bowel, restless leg, tension or migraine headaches, dysmenorrhea and
cognitive difficulties including memory problems, concentration difficulties and psychological and
emotional distress [6,7].

Despite significant developments in understanding its pathophysiology, the etiology of FM is
still unknown [8]. Liptan [9] underlined the role of a generalized inflammation of the muscle fascia
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leading to widespread pain and central sensitization and proposed that the fascial dysfunction in FM
could be caused by inadequate deep sleep and insufficient growth hormone release. Furthermore, a
possible peripheral pathogenic factor involved in FM etiopathogenesis is an imbalance between pro-
and anti-inflammatory cytokines [10,11], as this derangement seems, in turn, to play an important role
in induction and maintenance of chronic pain [8], fatigue [12] and muscle stiffness [13]. Sprott and
colleagues [14] demonstrated that patients with FM are characterized by abnormalities in muscle tissue
that include increased DNA fragmentation, impaired expression of constitutive enzymes and changes
in the number and size of mitochondria. Regarding this hypothesis, cyclooxygenase-1 (COX-1) seems
to be a key enzyme. COX-1 is a constitutive enzymatic isoform involved, at skeletal muscle level, in
the regulation of microcirculation, basal turnover and in various stages of myogenesis [15] and so
it may also be involved in fibromyalgic pathogenesis. Furthermore, the decrease in mitochondrial
mass and the rise in production of mitochondria derived radical oxygen species (ROS) have recently
been proposed as relevant events in the fibromyalgia-related alterations [16]. Many studies have
noted a correlation between the increase of ROS and the reduction of endogenous antioxidant
defenses, including superoxide dismutase (SOD), catalase (CAT) and glutathione, is strictly linked
with the symptoms of FM [17]. Recently, nucleotide oligomerization domain like receptor 3 (NLRP3)
inflammasomes was found to be related to mitochondrial oxidative stress. ROS production is induced
by many NLRP3 inflammasome stimulators and, at the same time, elevated ROS are essential for
inflammasome activation [18]. Interestingly, in fibromyalgia patients, after ROS-mediated activation,
NLRP3 promotes the production of pro-inflammatory cytokines [19].

The association of FM with inflammation and oxidative stress suggest that ant-inflammatory
and/or antioxidant therapy might be important in FM management and modulation. The degree of
improvement achieved by many drugs prescribed for FM is modest at best; in fact, 40–60% of patients
do not respond to drug therapy [20] and most fibromyalgia patients are sensitive to the side effects of
these medications [21]. Consequently, efforts to identify and promote new therapeutic strategies for
fibromyalgia patients are still under consideration.

Recent evidence suggests that melatonin may be suitable and useful because of its multitasking
properties as shown in several clinical studies [22–24]. Melatonin is a small, highly conserved
indoleamine with important chronobiological features [25]. In addition to its chronobiological role,
additional beneficial effects of melatonin have been reported including antioxidant, ant-inflammatory,
antidepressant, sedative and analgesic activities [26–30]. It is a pleiotropic agent that has been proven
safe and remarkably well tolerated in human and animal models over a wide range of doses [31].

Data supporting the claim that melatonin may have efficacy as a FM treatment are slight. Herein,
we used a validated fibromyalgia animal model, the reserpine-induced myalgia rat (RIM), to obtain
data related to this issue. We initially investigated motor activity, morphological, ultrastructural
and oxidative stress and inflammatory changes at skeletal muscle level to document the basis of
fibromyalgia etiopathogenesis and we studied in detail the involvement of NLRP3 inflammosome in
the model of this disease. We also evaluated the effects of melatonin and its mechanism(s) of action to
better understand the pathogenesis of this disorder.

The results provide evidence that melatonin, dose and duration of treatment dependently,
reduced significantly the difficulties in spontaneous motor activity, alterations in musculoskeletal
cytoarchitecture and induction of inflammatory and oxidative stress processes. Regarding the effect
of melatonin on the inflammosome NLRP3, we report that its expression is significantly attenuated.
Thus, we suggest that melatonin may be useful for minimizing the pathological processes related to
FM disease.
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2. Results

2.1. Body Weight Time-Course

All animals survived the treatments. During the interval of reserpine administration (from its first
administration until the first day post-reserpine injection), the animals exhibited a significant reduction
in food intake (analysis of variance: ANOVA, p ≤ 0.05); this adverse event was closely link to reserpine
treatment and its severity decreased progressively after the last dose with food intake returning to
control levels. There were no significant changes in food consumption among all the experimental
groups following reserpine treatment.

A progressive increase in body weight was observed in animals of all experiment groups during
the treatment period. The RIM animals, however, showed a significantly slower rate of body weight
gain during the period of reserpine treatment, an effect directly associated with the significant reduction
of food intake in these animals. This lower rate of weight gain progressively diminished up to one
month after treatment with reserpine. The melatonin-treated RIM rats, without differences between
the doses of melatonin administration, did not suffer the slower body weight gain observed in RIM
rats. Moreover, the animals treated only with 0.5% glacial acetic acid (vehicle for reserpine) or 1%
ethanol dissolved in drinking water for up to 60 days (vehicles for melatonin) showed no significant
differences in food intake and body weight gain compared to untreated controls.

2.2. Voluntary Motor Activity

We confirmed that treatment with reserpine duplicated some of the FM symptoms since the
motor activity of these rats was significantly reduced compared with controls (ANOVA, p ≤ 0.05).
Furthermore, we observed that treatment with melatonin, at both doses tested (2.5 mg/kg and 5 mg/kg)
and at 30 and 60 days after reserpine administration, led to an improvement in number of spontaneous
accesses to the wheel and in running distance traveled, compared RIM animals not given melatonin.
In detail, the improvement is significantly higher after the melatonin treatment at the dose of 5 mg/kg
and duration two months (ANOVA, p ≤ 0.05). It is also important to underline that rats treated
with reserpine and then not given melatonin, but only tap water for 30 or 60 days, also exhibited a
progressive, but not significant, improvement in bout/hours of voluntary running activity, as observed
in rats given melatonin continually. The experimental animals treated only with 0.5% glacial acetic
acid (vehicle for reserpine) and with 1% ethanol dissolved in drinking water (vehicle for melatonin)
showed no significant differences compared control rats (Figure 1).

For the reported analyses (food intake, body weight and motor activity), the experimental animals
treated only with melatonin or reserpine vehicles showed no significant difference compared with
age-related untreated controls. For this reason, these experimental groups will be considered in the
subsequent analyses as a single group defined generically as “control”. In addition, in the previous
reported evaluations, melatonin had no beneficial effects when administered with reserpine (four days);
thus, for the analyses of muscle atrophy, inflammatory and oxidative stress markers the experimental
groups treated with melatonin for three days were not reported.
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Figure 1. Voluntary locomotor activity. The graphs summarize: the number of spontaneous bouts (A); 
and the distance travelled expressed in meters (B) of all experimental groups, evaluated during 1 h of 
spontaneous locomotor activity. ANOVA, two-way analysis of variance; * p ≤ 0.05 vs. Reserpine four 
days; # p ≤ 0.05 vs. Reserpine plus tap water; + p ≤ 0.05 vs. Reserpine plus melatonin 5 mg/kg/day for 
2 months and ° p ≤ 0.05 vs. Controls. H2O: tap water; MEL: melatonin; Res: reserpine. 

2.3. Morphological Evaluations on Gastrocnemius 

Treatment with reserpine caused a significant gastrocnemius weight reduction compared with 
age-related control groups (ANOVA, p ≤ 0.05), as expected from RIM experimental animals. 
Furthermore, treatment with melatonin, at both doses and duration of treatments, caused a 
significant increment in gastrocnemius weight compared with the RIM group (ANOVA, p ≤ 0.05); 
this improvement is significantly higher at the melatonin dose of 5 mg/kg after both treatment for 
one month and two months (ANOVA, p ≤ 0.05), so it appeared to be mainly dose-dependent. Even 
rats treated with reserpine and then with only tap water showed some recovery from muscle atrophy, 
but not significant in respect to melatonin treatment at both doses and duration of treatments (Figure 
2A). At the light microscopic level another skeletal muscle atrophy marker, the myotube diameter, 
was examined. This analyses showed the same trend observed for gastrocnemius weight, briefly, the 
Feret’s diameter of gastrocnemius myotubes decrease significantly in the experimental group treated 
with reserpine compared with controls (ANOVA, p ≤ 0.05); in contrast, treatment with melatonin had 
significant beneficial effects, especially when administered at the dose of 5 mg/kg for two months, 
with respect to RIM experimental group and also with respect to experimental groups treated with 
reserpine and then only with tap water (Figure 2B). 

Figure 1. Voluntary locomotor activity. The graphs summarize: the number of spontaneous bouts (A);
and the distance travelled expressed in meters (B) of all experimental groups, evaluated during 1 h
of spontaneous locomotor activity. ANOVA, two-way analysis of variance; * p ≤ 0.05 vs. Reserpine
four days; # p≤ 0.05 vs. Reserpine plus tap water; + p≤ 0.05 vs. Reserpine plus melatonin 5 mg/kg/day
for 2 months and ◦ p ≤ 0.05 vs. Controls. H2O: tap water; MEL: melatonin; Res: reserpine.

2.3. Morphological Evaluations on Gastrocnemius

Treatment with reserpine caused a significant gastrocnemius weight reduction compared
with age-related control groups (ANOVA, p ≤ 0.05), as expected from RIM experimental animals.
Furthermore, treatment with melatonin, at both doses and duration of treatments, caused a significant
increment in gastrocnemius weight compared with the RIM group (ANOVA, p ≤ 0.05); this
improvement is significantly higher at the melatonin dose of 5 mg/kg after both treatment for one
month and two months (ANOVA, p ≤ 0.05), so it appeared to be mainly dose-dependent. Even rats
treated with reserpine and then with only tap water showed some recovery from muscle atrophy, but
not significant in respect to melatonin treatment at both doses and duration of treatments (Figure 2A).
At the light microscopic level another skeletal muscle atrophy marker, the myotube diameter, was
examined. This analyses showed the same trend observed for gastrocnemius weight, briefly, the Feret’s
diameter of gastrocnemius myotubes decrease significantly in the experimental group treated with
reserpine compared with controls (ANOVA, p ≤ 0.05); in contrast, treatment with melatonin had
significant beneficial effects, especially when administered at the dose of 5 mg/kg for two months,
with respect to RIM experimental group and also with respect to experimental groups treated with
reserpine and then only with tap water (Figure 2B).



Int. J. Mol. Sci. 2017, 18, 1389 5 of 17
Int. J. Mol. Sci. 2017, 18, 1389  5 of 17 
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normalized to body weight, expressed in grams (A); and the Feret’s myotube diameter of 
gastrocnemius skeletal muscle, expressed in µm (B). ANOVA, two-way analysis of variance; * p ≤ 0.05 
vs. Reserpine four days; # p ≤ 0.05 vs. Reserpine plus tap water; + p ≤ 0.05 vs. Reserpine plus melatonin 
5 mg/kg/day for 2 months and ° p ≤ 0.05 vs. Controls. H2O: tap water; MEL: melatonin; Res: reserpine. 

2.4. Ultrastructural Evaluation of Gastrocnemius Muscle 

The ultrastructural evaluation of RIM gastrocnemius muscles showed different sarcomeric 
lengths, heterogeneous and altered interfibrillar and subsarcolemmal mitochondria, and dilated and 
deformed sarcoplasmic reticulum that appeared associated to mitochondria (Figure 3A,B). Control 
muscle cells showed normal nuclei with active nucleoli, regular mitochondria distribution and 
sarcoplasmic reticulum (data not shown). Rats treated with reserpine and then with only tap water 
for either one or two months of treatment had a weak, but not significant, recovery of the 
gastrocnemius ultrastructure (Figure 3B,C). However, under melatonin, at both doses and duration 
of treatments, we observed regular satellite cell nucleus and sarcomeric structure, enhanced 
mitochondria development and significant reduction of abnormal cristae of both interfibrillar and 
subsarcollemal mitochondria. In detail, the ultrastructural recovery is significant and evident after 
melatonin treatment at the dose of 5 mg/kg and two months of duration (ANOVA, p ≤ 0.05). Figure 
3D,E shows the gastrocnemius muscle of the RIM treated with melatonin at the dose of 5 mg/kg/day 
for two months, illustrating the main melatonin beneficial effects at ultrastructural level. 

Figure 2. Skeletal muscle atrophy. The graphs summarize: the gastrocnemius muscle weight,
normalized to body weight, expressed in grams (A); and the Feret’s myotube diameter of gastrocnemius
skeletal muscle, expressed in µm (B). ANOVA, two-way analysis of variance; * p ≤ 0.05 vs. Reserpine
four days; # p≤ 0.05 vs. Reserpine plus tap water; + p≤ 0.05 vs. Reserpine plus melatonin 5 mg/kg/day
for 2 months and ◦ p ≤ 0.05 vs. Controls. H2O: tap water; MEL: melatonin; Res: reserpine.

2.4. Ultrastructural Evaluation of Gastrocnemius Muscle

The ultrastructural evaluation of RIM gastrocnemius muscles showed different sarcomeric lengths,
heterogeneous and altered interfibrillar and subsarcolemmal mitochondria, and dilated and deformed
sarcoplasmic reticulum that appeared associated to mitochondria (Figure 3A,B). Control muscle
cells showed normal nuclei with active nucleoli, regular mitochondria distribution and sarcoplasmic
reticulum (data not shown). Rats treated with reserpine and then with only tap water for either
one or two months of treatment had a weak, but not significant, recovery of the gastrocnemius
ultrastructure (Figure 3B,C). However, under melatonin, at both doses and duration of treatments, we
observed regular satellite cell nucleus and sarcomeric structure, enhanced mitochondria development
and significant reduction of abnormal cristae of both interfibrillar and subsarcollemal mitochondria.
In detail, the ultrastructural recovery is significant and evident after melatonin treatment at the dose
of 5 mg/kg and two months of duration (ANOVA, p ≤ 0.05). Figure 3D,E shows the gastrocnemius
muscle of the RIM treated with melatonin at the dose of 5 mg/kg/day for two months, illustrating the
main melatonin beneficial effects at ultrastructural level.
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Figure 3. Skeletal muscle ultrastructure. Transmission electron microscopy photomicrographs of: 
reserpine-induced myalgia rats (A,B); rats treated with reserpine and then with only tap water for 
two months (C,D); and rats treated with reserpine and then with melatonin at the dose of 5 mg/kg/day 
for two months (E,F). Scale bar: 1 µm. (m) identifies the mitochondria. 

2.5. TSH Level Assessment 

RIM experimental animals showed significantly lower gastrocnemius TSH level compared to 
controls (ANOVA, p ≤ 0.05). We observed also that treatment with melatonin, at both doses and 
duration of treatments (without significant differences among dose or duration of melatonin 
treatment), increased significantly the levels of TSH in the gastrocnemius muscle compared rats 
treated only with reserpine (ANOVA, p ≤ 0.05). Interestingly, the TSH levels observed in the 
experimental group treated with reserpine and melatonin, at both doses and duration of treatment, 
were significantly higher than the values observed in age-related controls (ANOVA, p ≤ 0.05). 
Probably, this increment of TSH level depends on the activation of compensatory mechanism(s) 
against FM—induced oxidative stress. The increment of TSH level in skeletal muscle was observed 
also in the experimental groups treated with reserpine, but significantly lower relative to melatonin 
treatments (ANOVA, p ≤ 0.05). Control rats after two months showed significantly lower levels of 
TSH than the control group at one month (ANOVA, p ≤ 0.05), which may be related to physiological 
aging and oxidative stress. In Figure 4, the TSH gastrocnemius levels of all experimental groups are 
summarized. 
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Figure 3. Skeletal muscle ultrastructure. Transmission electron microscopy photomicrographs of:
reserpine-induced myalgia rats (A,B); rats treated with reserpine and then with only tap water for two
months (C,D); and rats treated with reserpine and then with melatonin at the dose of 5 mg/kg/day for
two months (E,F). Scale bar: 1 µm. (m) identifies the mitochondria.

2.5. TSH Level Assessment

RIM experimental animals showed significantly lower gastrocnemius TSH level compared to
controls (ANOVA, p ≤ 0.05). We observed also that treatment with melatonin, at both doses and
duration of treatments (without significant differences among dose or duration of melatonin treatment),
increased significantly the levels of TSH in the gastrocnemius muscle compared rats treated only with
reserpine (ANOVA, p ≤ 0.05). Interestingly, the TSH levels observed in the experimental group treated
with reserpine and melatonin, at both doses and duration of treatment, were significantly higher
than the values observed in age-related controls (ANOVA, p ≤ 0.05). Probably, this increment of
TSH level depends on the activation of compensatory mechanism(s) against FM—induced oxidative
stress. The increment of TSH level in skeletal muscle was observed also in the experimental groups
treated with reserpine, but significantly lower relative to melatonin treatments (ANOVA, p ≤ 0.05).
Control rats after two months showed significantly lower levels of TSH than the control group at
one month (ANOVA, p ≤ 0.05), which may be related to physiological aging and oxidative stress.
In Figure 4, the TSH gastrocnemius levels of all experimental groups are summarized.
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Figure 4. Total thiols. The graph summarizes the gastrocnemius total thiol levels of all experimental
groups, expressed as µmol/grams. ANOVA, two-way analysis of variance; * p≤ 0.05 vs. Reserpine four
days; # p≤ 0.05 vs. Reserpine plus tap water; + p≤ 0.05 vs. Reserpine plus melatonin 5 mg/kg/day for
2 months and ◦ p ≤ 0.05 vs. Controls. H2O: tap water; MEL: melatonin; Res: reserpine; TSH: total thiol.
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2.6. Inflammatory and Oxidative Stress Markers Analyses

At the gastrocnemius level, we observed that the RIM experimental rats had significantly
decreased expression of endogenous antioxidant enzymes (SOD1 and CAT) and of constitutive
molecules, also involved in inflammatory, oxidative stress, aging and myogenesis processes (COX-1
and SIRT3) (ANOVA, p ≤ 0.05). Treatment with melatonin induced a significant increase of SOD1
expression (red staining) (ANOVA, p ≤ 0.05) and this significant enhancement was observed also after
treatment with reserpine and tap water (ANOVA, p ≤ 0.05); however, treatment with 2.5 mg/kg/day
of melatonin for one month did not show significant differences compared with age-related animals
treated with reserpine and tap water (Figure 5A–E). The analysis of immunopositivity for CAT
(red staining) showed a trend similar to that observed for SOD1, even though the melatonin beneficial
effects is significantly higher after two months of treatment (ANOVA, p ≤ 0.05), but not showed
difference due to the duration of treatment. Moreover, the experimental rats treated with reserpine
and tap water showed a significantly lower immunopositivity compared with the animals treated
with melatonin (ANOVA, p ≤ 0.05); only the rats of two months showed a significantly higher
immunopositivity than the RIM experimental animals (ANOVA, p ≤ 0.05) (Figure 5F–L).
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We also analyzed COX-1 (red staining) and observed that in RIM animals it was significantly 
reduced, while its expression after treatment with melatonin is significantly higher after melatonin 
treatment at the dose of 5 mg/kg and duration of two months (ANOVA, p ≤ 0.05), reaching a level 
comparable to that in the age-related control animals. It is important to underline also that the 
melatonin treatment with 2.5 mg/kg/day showed similar COX-1 immunopositivity compared with 
the experimental groups treated with reserpine (Figure 5M–Q). We analyzed also the constitutive 
molecule SIRT3 (red staining) and we observed that the trend of its immunopositivity is similar to 

Figure 5. Skeletal muscle oxidative stress and constitutive markers expression. Immunofluorescence
photomicrographs of: gastrocnem us skeletal muscle superoxide dismutase 1 (A–E); catalase (F–L);
cyclooxygenase-1 (M–Q); and sirtuin 3 (R–V) expression of: reserpine-induced myalgia rats (A,F,M,R);
controls (B,G,N,S); rats treated with reserpine for two months (C,H,O,T); rats treated with reserpine
and then with melatonin at the dose of 2.5 mg/kg/day for two months (D,I,P,U); and rats treated with
reserpine and then with melatonin at the dose of 5 mg/kg/day for two months (E,L,Q,V). Nuclei were
stained with DAPI (blue). Scale Bar: 20 µm. The quantitative measurement of the immunopositivity
of both antioxidant enzymes and constitutive molecules of all experimental animals are shown in
Figure 6A–D.

We also analyzed COX-1 (red staining) and observed that in RIM animals it was significantly
reduced, while its expression after treatment with melatonin is significantly higher after melatonin
treatment at the dose of 5 mg/kg and duration of two months (ANOVA, p ≤ 0.05), reaching a level
comparable to that in the age-related control animals. It is important to underline also that the
melatonin treatment with 2.5 mg/kg/day showed similar COX-1 immunopositivity compared with
the experimental groups treated with reserpine (Figure 5M–Q). We analyzed also the constitutive
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molecule SIRT3 (red staining) and we observed that the trend of its immunopositivity is similar to
COX-1 expression, although the control group two months showed significant lower levels compared
with the control rats at one month (ANOVA, p ≤ 0.05). This decrease may be related to physiological
aging process. As for COX-1, the main effect of melatonin treatment is observed at the dose of 5
mg/kg administered for two months and the treatment with melatonin at the dose of 2.5 mg/kg/day
showed similar levels of immunopositivity compared with age-related group treated with reserpine
(Figure 5R–V). Figure 5A–V shows only the immunofluorescence data of gastrocnemius muscle of the
experimental animals treated for two months.
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this inflammasome (ANOVA, p ≤ 0.05). The experimental rats treated with reserpine and then with 
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animals two months is greater compared with the expression in rats at one month (Figure 7A–F). 

Figure 6. Skeletal muscle oxidative stress and constitutive markers quantitative analyses. The graphs
summarize the histomorphometrical analyses expressed in arbitrary units (AU) of: superoxide
dismutase 1 (SOD1) (A); catalase (CAT) (B); cyclooxygenase-1 (COX-1) (C); and sirtuin 3 (SIRT3)
(D) immunopositivity at gastrocnemius skeletal muscle level. ANOVA, two-way analysis of variance;
* p≤ 0.05 vs. Reserpine four days; # p≤ 0.05 vs. Reserpine plus tap water; + p≤ 0.05 vs. Reserpine plus
melatonin 5 mg/kg/day for 2 months and ◦ p ≤ 0.05 vs. Controls. H2O: tap water; MEL: melatonin;
Res: reserpine.

Finally, we estimated that NLRP3 (green staining) is significantly expressed in rats treated with
reserpine compared with the controls (ANOVA, p ≤ 0.05); moreover, treatment with melatonin at both
doses and duration of melatonin treatments induced a significant reduction of the expression of this
inflammasome (ANOVA, p ≤ 0.05). The experimental rats treated with reserpine and then with tap
water showed a significant decrease of the expression of NLRP3 respect RIM (ANOVA, p ≤ 0.05); this
decrease was significantly less compared with the groups treated with melatonin (ANOVA, p ≤ 0.05).
Furthermore, we observed that there are no significant differences between the melatonin treatment
at 2.5 mg/kg and 5 mg/kg for two months and that the expression of NLRP3 in control animals two
months is greater compared with the expression in rats at one month (Figure 7A–F).
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to long-lasting muscular mechanical hyperalgesia, tactile allodynia and tenderness, but also to 
depression characteristic of FM pathogenesis [34]. Moreover, Blasco-Serra and colleagues [35] 
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the underlying mechanisms of these alterations could be inflammation and oxidative stress processes 
characteristic of FM and also in the RIM model. In particular, our data provide information on the 
possible mechanisms showing an increase in morphological damage caused by ROS and a reduction 
in endogenous antioxidants, including SOD and CAT, in gastrocnemius. We also evaluated COX-1, 
a constitutive marker of myogenesis in different muscles including cardiomyocytes [15]. In particular, 
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Figure 7. Skeletal muscle inflammatory markers. Immunofluorescence photomicrographs of
gastrocnemius muscle inflammosome NLRP3 expression of: reserpine-induced myalgia rats (A);
controls (B); rats treated with reserpine for two months (C); rats treated with reserpine plus melatonin
at the dose of 2.5 mg/kg/day for two months (D); and rats treated with reserpine and then with
melatonin at the dose of 5 mg/kg/day for two months (E). Nuclei were stained with DAPI (blue).
Scale Bar: 20 µm. The graph summarizes the histomorphometrical analyses, expressed in arbitrary units
(AU), of inflammosomeNLRP3. ANOVA, two-way analysis of variance; * p ≤ 0.05 vs. Reserpine four
days; # p ≤ 0.05 vs. Reserpine plus tap water; + p ≤ 0.05 vs. Reserpine plus melatonin 5 mg/kg/day
for 2 months and ◦ p ≤ 0.05 vs. Controls. H2O: tap water; MEL: melatonin; Res: reserpine.

3. Discussion

Herein, we showed that the reserpine treated animals presented: (1) a significant decrease in
number of spontaneous bouts and running distance traveled; (2) skeletal muscle atrophy due to the
alteration of the gastrocnemius weight and diameter of myotubes and significant musculoskeletal
ultrastructural alterations; (3) significant rise of TSH and, interestingly, also NLRP3 expressions
in skeletal muscle levels; and (4) significant reduction of expression of endogenous antioxidant
enzymes (SOD1 and CAT) and of constitutive molecules involved in inflammation, oxidative stress
and myogenesis processes (COX-1 and SIRT3). Similar results have also been recorded in previous
studies [1,32,33] in which reserpine treatment causes a reduction in locomotor activity that could
be related to long-lasting muscular mechanical hyperalgesia, tactile allodynia and tenderness, but
also to depression characteristic of FM pathogenesis [34]. Moreover, Blasco-Serra and colleagues [35]
documented the depressive-like symptoms in RIM group; they observed the rats had significant
aversion to eating in a novel environment. In our study, rats treated with reserpine showed a clear
decrease in food consumption and consequently in body weight. In addition, the atrophy of muscle
fiber described by Bonaterra et al. [32] is consistent with our results. According other authors [19,36],
the underlying mechanisms of these alterations could be inflammation and oxidative stress processes
characteristic of FM and also in the RIM model. In particular, our data provide information on the
possible mechanisms showing an increase in morphological damage caused by ROS and a reduction
in endogenous antioxidants, including SOD and CAT, in gastrocnemius. We also evaluated COX-1, a
constitutive marker of myogenesis in different muscles including cardiomyocytes [15]. In particular,
we showed that COX-1 was decreased in RIM animals, as already reported by De Almeida and
colleagues [37]. Therefore, we suggest that COX-1 has an important musculoskeletal protective role.
Moreover, we studied SIRT3 expression and we demonstrated it to be highly expressed in RIM rats.
Considering its role in redox regulation by deacetylating mitochondrial proteins like acetyl-coenzyme
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A synthetase 2, glutamate dehydrogenase and SOD [38], we propose that it has important protective
effects against oxidative stress also in FM syndrome [39]. Related to this finding, we noted that the
levels of SOD1 and SIRT3 of the control rats at two months were lower compared with control group
at one month and, in agreement with other authors [40], we considered this reduction to be a result of
physiological aging and oxidative stress process.

After obtaining these data and, in particular, considering the morphological and ultrastructural
alterations of mitochondria, we analyzed the expression of NLRP3, which is a prominent marker of
mitochondrial ROS generation and inflammation processes [19]. Interestingly, NLRP3 is increased in
rats treated with reserpine but not in the control animals at two months, due to age-related alterations.
It is known that NLRP3 promotes inflammation, oxidative stress and cell death through the activation
of inflammatory caspase 1 and caspase 5 [41]. Our findings suggest that NLRP3 is important for
progression of fibromyalgic disease as well as in diabetic cardiopathy [42] and renal dysfunction [43].

However, in addition to an adequate fibromyalgic-animal model that is needed for the
identification of markers related to pathogenesis, it is also very important to study appropriate
treatments and pharmacological therapies against FM. Thus, the present study also evaluated the
potential beneficial effects of melatonin administration against the alterations induced in the RIM
model. In accordance with several previous studies conducted with fibromyalgic patients [4,24,44–46],
our results showed that melatonin reduces significantly the damage induce by FM pathogenic process.
In fact, we observed that the treatment with melatonin improved the in volountary motor activity
compared with the RIM experimental group and with the group treated with reserpine and then with
only tap water. Probably, melatonin treatment causes an improvement in rat’s spontaneous running
activity because of its antioxidants and ant-inflammatory mechanisms of action, well known melatonin
properties [47–51]. Although these beneficial effects are potentially related also to analgesic [30,52–55]
melatonin properties, experimental studies as well as clinical trials in humans have demonstrated
that melatonin has an analgesic properties in chronic, acute, inflammatory and neuropathic pain
conditions, including fibromyalgia [44,56–58]. Importantly, these effects seem MT2 receptor-mediated,
as shown by the group of Granados-Soto describing that selective MT2 receptor partial agonists have
analgesic properties through modulation of brainstem descending anti-nociceptive pathways [28,59,60].
Furthermore, in our study, we evaluated the effects of melatonin treatment on skeletal muscle cell
atrophy induced by reserpine observing that melatonin causes a significant increment in muscle
weight and in myotubes diameter compared with RIM experimental group and the animals treated
with reserpine and then only with tap water. In addition previous studies reported that melatonin
reduces skeletal muscle atrophy and oxidative stress [49,61,62]. In order to confirm the antioxidant,
ant-inflammatory and protective roles of melatonin, we evaluated the skeletal muscle expression
of endogenous antioxidant and of constitutive molecules and we found that melatonin modulates
muscoloskletal ultrastructure, increases expression of SOD1, CAT, COX-1 and SIRT3 and decreaes
NLRP3 compared with RIM experimental group and also with the groups treated reserpine and then
only with tap water.

In summary, we suggest that melatonin thought its important inhibiting effect against NLRP3
activation together with its known antioxidant, ant-inflammatory and analgesic properties may block
the fibromyalgic pathological processes (Figure 8).

However, further studies on this topic are mandatory to better assess the potential melatonin
mechanism(s) of action.
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was injected subcutaneously into the back of rats once a day for 3 consecutive days at a final dose of 
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4. Materials and Methods

4.1. Animal Treatment

90 Sprague Dawley male rats (4–5 weeks old) were housed in standard cages located in a
temperature-controlled animal facility (+20 ◦C) with a 12-h/12-h light-dark cycle for a period up
to 3 months. Before the beginning of the treatment with reserpine or melatonin, rats were left housed
in the animal facility for at least 1 week. The RIM animal model is based on the hypothesis that
dysfunction of biogenic amine-mediated control in the central nervous system (CNS) leads to a disease
condition mimicking FM [34,63,64]. In fact, reserpine is an indole alkaloid that depletes catecholamine
and so blocks irreversibly the vesicular monoamine transport, causing a marked reduction in the
amount of dopamine, norepinephrine and serotonin in various brain regions inducing, in turn, muscle
hyperalgesia and tactile allodynia which persist for one week or longer and increases immobility time,
an indicator of pain and depression [65]. In the present study, reserpine was injected subcutaneously
into the back of rats once a day for 3 consecutive days at a final dose of 1 mg/kg body weight; it
was dissolved in 0.5% glacial acetic acid [63,64,66]. Since reserpine treatment may cause a significant
decrease in food consumption, during the treatment food pellets was placed directly in the cages, so
the RIM experimental animals could feed with less difficulty.

The treatment with melatonin (Melapure™ kindly provided by Flamma S.p.A., Chignolo d’Isola,
Italy), in combination or not with reserpine, was administered in two different dosages and three
different duration of treatments: melatonin was administrated orally for three days (simultaneously
to the treatment of reserpine), or for one month or for two months at a final dose of 2.5 mg/kg body
weight for day [67] or at a final dose of 5 mg/kg body weight for day [68]. Powdered pure melatonin
was given after being dissolved in 1% of ethanol and then in drinking tap water. In addition to the
groups identified above, in the current study were also assessed rats without any treatment (control),
rats treated with reserpine and then with only tap water for one month or two months, rats treated for
three days with subcutaneous injection of 0.5% glacial acetic acid (vehicle of treatment with reserpine)
and rats treated orally with 1% ethanol dissolved in drinking water for one month or two months
(vehicles of treatment with melatonin).

The animals of all experimental groups were monitored for weight gain, food consumption
and spontaneous motor activity. At the end of treatments period, the animals were killed by
decapitation and both gastrocnemius muscles were carefully removed, weight (normalized to
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body weight) and processed for morphometric, ultrastructural, sulfydryl group (SH) level and
immunofluorescence analyses.

4.2. Assessment of Volountary Locomotor Activity

The present study used a non-reflexive measures of locomotor activity that require voluntary
decision and integrations of multiple CNS centers. The running wheel is of particular interest as
a motor test in experimental animals because the locomotion is not forced and potentially reflects
whether the activity is painful [69,70]. Voluntary locomotor activity was assessed in polycarbonate
cages with free access to stainless steel activity wheels (Bioseb, In Vivo Research Instruments, Vitrolles,
France). The wheel (diameter 23 cm; width 5 cm) could be turned in both direction and it is connected
to an analyzer that automatically recorded the running activity. The animals had food and water
available ad libitum. In this study we evaluated the distance travelled (expressed in meters) and
the number of spontaneous accesses to the wheel during 1 h of evaluation session for each animal.
No experimenters were present in the room during the recording period. Rats were habituated in an
individual activity cage for three sessions over at least three days [33]. A baseline measurement was
recorded one day after the last habituation. The rats that refused to run in the wheel during the baseline
measurement were discarded from further evaluation (representing 2–4% of the animals tested).

All the protocols were approved by the Animal Care and Use Committee (OPBA) of the University
of Brescia (Brescia, Italy) and by the Italian Ministry of Health (558/2015-PR-22/06/2015) and comply
the commonly-accepted “2Rs” indication.

4.3. Total Thiol Evaluation

The total thiol (TSH) levels of gastrocnemius samples were evaluated as previously described by
Oliveira and colleagues [71,72]. Briefly, 200 µL of proteic supernatant fraction were precipitated with
200 µL of 4% trichloroacetic acid (v/v) by centrifugation (1050× g for 10 min). Then, the colorimetric
analyses were carried out in 1 M phosphate-buffered, pH 7.4. A curve using glutathione as standard
was constructed to calculate the total TSH of each sample.

4.4. Morphometrical Analysis

Gastrocnemius samples were fixed in 4% buffered paraformaldehyde for 24 h, dehydrated
in progressive ethanol solutions, xylene and embedded in paraffin wax, following the standard
procedures. Subsequently, 7 mm-thick paraffin sections were cut with a microtome and so the serial
paraffin sections were dewaxed in xylene, rehydrated through decreasing scale of ethanol and stained
with haematoxylin-eosin, following standard protocol. Then the sections were observed with an optical
light microscope (Olympus, Deutschland, Germany) at the final magnification of 200×. Digital images
of gastrocnemius were captured and the Feret’s diameter (expressed in µm) of 50 myotubes for each
animal muscle was determined using an image analyser (Image Pro Premier 9.1, Media Cybernetics,
Rockville, MD, USA) by two observers blinded to the treatment, whose evaluation was assumed to be
correct if the values were not significantly different. In case of dispute concerning interpretation, the
case was reconsidered to reach an agreement [73,74].

4.5. Ultrastructural Transmission Electron Microscopy Evaluation

A piece of gastrocnemius muscle of each rat was treated for ultrastructural analysis [74]. Briefly
skeletal muscle tissue was fixed by immersion in 2.5% glutaraldehyde in cacodilate buffer 0.1 M
(pH 7.4) for 3 h at +4 ◦C and postfixed in 2% osmium tetroxide in cacodilate buffer for 1 h at
+4 ◦C. Dehydration process was performed in increasing ethanol concentrations and propylene
oxide, then the samples were embedded in Araldite-Epon resin. Semithin sections (1 µm-thick)
were collected at an UltraCut E ultramicrotome stained by toluidine blue and observed at a light
microscope (Olympus, Deutschland, Germany) to assess the morphological structure of the skeletal
muscle. Subsequently, from representative blocks, 70–80 nm-thick ultrathin sections were obtained
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using a diamond knife, collected on formvar coated copper grids, double stained with uranyl acetate
and lead citrate and observed under a transmission electron microscopy (Tecnai G2 Spirit) at 80 kV.

4.6. Immunofluorescence Evaluations

Serial paraffin sections were dewaxed in xylene, rehydrated through decreasing scale of ethanol
and then washed with phosphate buffer solution 1× (PBS 1×). The blocking step was performed by
incubating gastrocnemius sections with specific serum (diluted 1:50 in PBS 1×) for 1 h in a humid
chamber. Subsequently, the sections were incubated 1 h at room temperature and then overnight at
4 ◦C in a humid chamber with the following primary antibodies: rabbit polyclonal antibody against
superoxide dismutase 1 (SOD1, diluted 1:300, Santa Cruz Biotechnology Inc., Dallas, TX, USA), goat
polyclonal antibody against catalase (CAT, diluted 1:200, Santa Cruz Biotechnology Inc., Dallas, TX,
USA), rabbit polyclonal antibody against sirtuin3 (SIRT3, diluted 1:200, Santa Cruz Biotechnology
Inc., Dallas, TX, USA), mouse monoclonal antibody against cyclooxygenase 1 (COX-1, diluted 1:100;
Cayman Chemical, Ann Arbor, MI, USA) and rabbit polyclonal antibody against Nod-like receptor
protein 3 antibody against (NLRP3, diluted 1:650, Novus Biologicals, Milano, Italy). Sections were
then washed in PBS 1× and labelled using specific conjugated secondary antibodies (diluted 1:200
in PBS 1×; Invitrogen, Paisley, UK): goat anti-rabbit Alexa Fluor-488, goat anti-rabbit Alexa Fluor
546, rabbit anti-goat Alexa Fluor 546 and goat anti-mouse Alexa Fluor 546. Finally, the samples
were counterstained with 4′,6-diamidino-2-phenylindole (DAPI) for 8 min [75,76]. The samples were
mounted with fluorescent medium and observed with a fluorescent microscope (i50 Eclipse, Nikon,
Düsseldorf, Germany) at final magnification of 400× [71]. Sections without primary antibody and in
the presence of isotype-matched IgG served as negative immunofluorescent controls.

Twenty random fields, each with an area of 0.04 mm2, from a total of five sections for each rat’s
gastrocnemius were analyzed and the immunostaining for each primary antibody were calculated
using an image analyzer (Image Pro Premier 9.1, MediaCybernetics, Rockville, MD, USA). Two blinded
investigators, whose evaluation was assumed to be correct if the values were not significantly different,
made the evaluation of positive immunostaining. In the case of dispute concerning interpretation, the
case was reconsidered to reach an agreement [73,74].

4.7. Statistical Analysis

The data obtained in the current study were presented as means ± SD. Statistical analyses were
performed using a two-way analysis of variance test corrected by Bonferroni, evaluating both dose and
duration of treatments as different variable. Differences among groups were considered statistically
significant at p ≤ 0.05.
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