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Homeostatic control with oral nutrient intake is a vital complex system involving
the orderly interactions between the external and internal senses, behavioral control,
reward learning, and decision-making. Sodium appetite is a representative system
and has been intensively investigated in animal models of homeostatic systems and
oral nutrient intake. However, the system-level mechanisms for regulating sodium
intake behavior and homeostatic control remain unclear. In the current study, we
attempted to provide a mechanistic understanding of sodium appetite behavior by
using a computational model, the homeostatic reinforcement learning model, in which
homeostatic behaviors are interpreted as reinforcement learning processes. Through
simulation experiments, we confirmed that our homeostatic reinforcement learning
model successfully reproduced homeostatic behaviors by regulating sodium appetite.
These behaviors include the approach and avoidance behaviors to sodium according
to the internal states of individuals. In addition, based on the assumption that the sense
of taste is a predictor of changes in the internal state, the homeostatic reinforcement
learning model successfully reproduced the previous paradoxical observations of the
intragastric infusion test, which cannot be explained by the classical drive reduction
theory. Moreover, we extended the homeostatic reinforcement learning model to
multimodal data, and successfully reproduced the behavioral tests in which water
and sodium appetite were mediated by each other. Finally, through an experimental
simulation of chemical manipulation in a specific neural population in the brain stem,
we proposed a testable hypothesis for the function of neural circuits involving sodium
appetite behavior. The study results support the idea that osmoregulation via sodium
appetitive behavior can be understood as a reinforcement learning process, and provide
a mechanistic explanation for the underlying neural mechanisms of decision-making
related to sodium appetite and homeostatic behavior.

Keywords: computational neuroscience, decision making, homeostasis, homeostatic reinforcement learning, salt
appetite
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INTRODUCTION

Homeostatic systems for the control of oral nutrient intake
are vital for sustaining life. These systems are quite complex,
involving orderly interactions among external and internal
senses, behavioral control, and reward learning (Cannon, 1929;
Keramati and Gutkin, 2014). Failure to properly develop or
maintain these systems with precision has been associated
with several disorders, such as the homeostatic breakdown
and nutrient disorders in patients with impairments in
taste (Steinbach et al., 2009; Sánchez-Lara et al., 2010;
Feng et al., 2014).

Sodium appetite is a representative system that has been
intensively investigated in animal models of the homeostatic
systems that coordinate oral nutrient intake (Richter, 1936;
Watanabe et al., 2000; Tindell et al., 2009; Oka et al., 2013;
Matsuda et al., 2017; Lee et al., 2019; Augustine et al., 2020). For
example, at the behavioral level, it is known that preference for
salty taste changes depending on the internal sodium state. Early
studies revealed that, when an animal is sodium-depleted after
adrenalectomy (Catalanotto and Sweeney, 1978), administration
of furosemide, or low-sodium food, it exhibits a positive sodium
appetite, which means that sodium intake serves as a reward.
On the other hand, when an animal is not deficient in sodium,
it will exhibit a negative sodium appetite, and sodium intake
serves as a punishment (Galaverna et al., 1993; Chandrashekar
et al., 2010). This property is not only related to avoidance of
harmful foods or the consumption of essential nutrients. Rather,
it is a complex phenomenon involving multiple factors, in which
the reward value of a taste fluctuates, thereby reflecting the
animal’s internal state.

At the physiological level, multiple hormones are involved
in the control of sodium appetite. For instance, stimulation
of osmoreceptors in the hypothalamus regulates release of
hormones such as vasopressin and modulates the osmotic
environment through kidney function (Melmed et al.,
2019). Adrenalectomized rats, which have difficulty secreting
aldosterone, exhibit increased sodium appetite (Richter,
1936). Sodium deficiency increases the level of angiotensin
II and stimulates the secretion of aldosterone (Eaton et al.,
2009). Furthermore, pacemaker-like firing of aldosterone-
sensing neurons in the nucleus of the solitary tract (NTSHSD2

neurons) has been observed in sodium-deficient animals
(Resch et al., 2017).

Several studies have identified neural substrates involved in
the control of sodium appetite, including the limbic system,
pons, and basal ganglia. For example, activation of dopaminergic
neurons in the ventral tegmental area (VTA), which exhibit
robust correlations with reward systems, decreases salt intake
(Sandhu et al., 2018). Recent evidence also indicates that
dopaminergic neurons in the midbrain may encode appetitive
properties of sodium (Verharen et al., 2019) and reward
prediction error (Cone et al., 2016), while some excitatory
neurons in the pre-locus coeruleus decrease sodium appetite
(Lee et al., 2019). Conversely, the activation of neurons in the
subfornical organ has been shown to increase sodium appetite
(Matsuda et al., 2017).

Despite these findings, the system-level mechanisms related
to the control of sodium appetite and osmoregulation remain
unestablished. Researchers have offered several theoretical
explanations to address this issue. For example, classical drive
reduction theory (Hull, 1943) assumes that the discrepancy from
the optimal state drives behavior to reduce the discrepancy,
while incentive salience theory (Zhang et al., 2009; Berridge,
2012) assumes that the “incentive” to consume sodium switches
depending on the internal sodium state. However, some aspects
of these theories have not been adequately considered or
explained, such as the effects of taste (Lee et al., 2019) and
multiple drives related to water and sodium (Matsuda et al.,
2017). In the current study, we developed a computational
homeostatic reinforcement learning (HRL) model to investigate
the mechanistic control of sodium appetite.

As an evolution of drive reduction theory, the HRL model
interprets homeostatic behaviors as reinforcement learning
processes (Keramati and Gutkin, 2014; Keramati et al., 2017;
Hulme et al., 2019). In the HRL model, reductions of drive
(physiological needs) are regarded as rewards, while increases
are regarded as punishments. Based on this idea, the values
of the optimal behavior for maintaining internal states are
acquired through an incremental learning process. In addition,
by treating the taste modality and the actual change in the
internal state separately, the HRL model provides explanations
regarding the mechanisms that integrate taste, behavior, and the
maintenance of the internal environment (Keramati and Gutkin,
2014; Keramati et al., 2017; Hulme et al., 2019; Petzschner et al.,
2021).

The HRL model was originally proposed to explain the
homeostatic control of body temperature, internal water balance
(Keramati and Gutkin, 2014), and pathological mechanisms
related to cocaine addiction (Keramati et al., 2017). This study
is the first attempt to use the HRL model to explain sodium
appetite behavior. In addition, although the HRL model can
handle multi-dimensional internal states, previous studies have
utilized it to examine one-dimensional changes in internal states
(Keramati and Gutkin, 2014; Keramati et al., 2017; Hulme et al.,
2019). However, sodium appetite is a complex process that
involves interactions between the homeostatic balance and the
preferences for water and sodium. Therefore, in the current
study, we introduced a multi-dimensional version of the HRL
model incorporating the internal states of both water and sodium
balance, to provide a mechanistic understanding of previous
findings. Finally, in our simulation experiment, we manipulated
neural activity in a particular brain nucleus known to be
involved in sodium appetitive behavior, allowing us to provide
a hypothesis regarding the role of this population in the control
of sodium appetite.

MATERIALS AND METHODS

Sodium Homeostasis
In the current study, sodium appetitive behavior was modeled
using the HRL model. This model is based on the assumption
that homeostasis is an RL process, in which the minimization
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of deviations in internal states from an optimal level (i.e.,
homeostasis) is treated as a computation for maximizing the
sum of rewards. In the HRL model, a multi-dimensional metric
space in which each dimension represents an internal state (such
as body temperature, blood glucose density, water balance, and
sodium level) is defined as the “homeostatic space.” In this
homeostatic space, the drive function D(Ht) is defined as the
distance between the internal state of the i-th component (e.g.,
water or sodium) at time t, Hi

t , and the ideal internal state H
∗i:

D (Ht) =
m

√
N∑
i=1

∣∣H∗i −Hi
t
∣∣n (1)

where m and n are free parameters that define the distance, and N
is the total number of dimensions for internal states (e.g., water,
sodium, etc.). When the internal state approaches the ideal state,
the value of the drive function should be reduced. Based on this
drive function, the reward rt is determined as a change in the
values of the drive function from time t to time t + 1. Specifically,
to implement nutrient intake, the internal state at time t + 1
should contain the amount of nutrient intake at time t, defined
as Kt :

r (Ht, Kt) = D (Ht)− D (Ht+1) = D (Ht)− D (Ht + Kt) (2)

As described later, in the HRL model, the intake of taste stimuli
(K̂t) can be modeled as a predictor of the actual nutrient intake
(Kt). Under this assumption, the reward was calculated as follows:

r
(
Ht, K̂t

)
= D (Ht)− D

(
Ht + K̂t

)
(3)

The Rescorla–Wagner model was used to model the RL
process. In this model, the values of action at (e.g., sodium
intake, do nothing. . .) and Qt(a) are updated based on the reward
prediction error:

Qt+1 (a) = Qt (a)+ αQ (rt − Qt(a)) (4)

where αQ is the learning rate for Qt(a). To investigate the
applicability of the HRL model to sodium appetite behavior, we
performed a sodium intake test (Simulation 1). The computation
algorithm is illustrated in Figure 1A. In this simulation, only
the internal state of sodium was considered. An external state
(S0) and two actions, do nothing (a0) and intake (a1), were
assessed (Figures 1B,C). Action selection depends on the relative
magnitudes of the values of each action (Q-value), following the
soft-max function:

Pt
(
akt
)
=

exp(β·Qt

(
akt
)
)∑

j exp(β·Qt

(
ajt
)
)

(5)

where Pt(ak) is the probability of an action ak to be selected at
time t, and β is the inverse temperature, a parameter controlling
the randomness of an action. In Simulation 1, the Q-values
of both actions were set to 0. Therefore, the first action was
randomly chosen. When intake behavior was performed, the
internal sodium state increased with Kt , a constant parameter
defining the amount of sodium intake. When nothing was
chosen, Kt was set to 0. At t = 0, to represent sodium depletion,

the first internal state (H0 = 0) was far lower than the ideal
state (H∗ = 50). At this stage, the value of the drive function
was large because the drive function corresponds to a type of
distance from the internal state of time t (Ht) to the ideal state
(H∗ = 50) (Equation 1). If an agent performed the intake behavior
at this moment, the internal state increased and the drive function
became smaller, resulting in a positive reward (Equation 2).

In addition, the natural decrease in sodium balance was
implemented as follows using the temporal decay constant τ

(Equation 6).

Ht+1 =
(
1− 1

τ

)
Ht (6)

As a result, the calculation of the reward value was determined
as follows (Equation 7):

r (Ht, Kt)

= D (Ht)− D(Ht+1)= D (Ht)− D
((

1− 1
τ

)
Ht + Kt

)
(7)

To update Q-values based on the reward value, we used a
conventional Rescorla–Wagner model (Sutton and Barto, 2018),
where i indicates each action, αQ is the learning rate, and
rt—Qt(a) represents the reward prediction error. After this
update of the Q-values, the agent chooses the next action.
The detailed values of the simulation parameters are listed in
Supplementary Table 1.

As mentioned, the HRL theory assumes that K̂a
t , the cognition

of the stimulus based on the reward from the action at , is renewed
through learning. In the present study, the following equation
was used to update K̂a

t :

K̂a
t+1 = K̂a

t + αK̂(Ka
t − K̂a

t ) (8)

In addition, concentration of sodium was defined as
the amount of nutrient intake at time t (defined as Kt),
namely, a smaller value of Kt for low-density saltwater.
Concrete parameters used in the simulations are represented in
Supplementary Table 1.

Oral Sense as a Predictor of Changes in
Internal States
In the previous HRL model, the sense of taste was hypothesized
to predict changes in the internal state. As such, we introduced
oral sense K̂t , which represents the prediction of changes in the
internal state, in Simulations 2–4. The definition of the reward
(Equation 3) was also updated as follows:

r
(
Ht, K̂t

)
= D (Ht)− D

((
1− 1

τ

)
Ht + K̂t

)
(9)

Thus, the reward was defined as changes in internal states,
and the taste input was used as a predictor for changes in
internal states. The other functions were the same as those
in Simulation 1.

The details of the behavioral experiment used to investigate
intragastric infusion are shown in Figures 2A,B. The animals
were separated into three groups: control, intragastric, and oral
stimulation. Control animals underwent sodium depletion only.
In addition to sodium depletion, animals in the intragastric
(IG) infusion group underwent insertion of an intragastric
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FIGURE 1 | Homeostatic behavior according to the homeostatic reinforcement learning (HRL) model. (A) Schematic drawing of the computational process of the
HRL model. (B) In an assumed animal behavior, sodium-depleted mice were able to lick saltwater. (C) Definition of a state and two actions in Simulations 1 and 2.
(D) Example of homeostatic behavior. Changes in internal sodium state (H), the value of each action (Q-value), selected actions (a), probability of sodium intake
[P(Intake)], and magnitude of reward (R) over time are plotted. The solid lines represent the results of a trial, and the light-colored error ranges represent the
mean ± 2 SD of 100 trials. The dotted line in the panel of the internal state indicates the ideal point (H

∗

= 50) of sodium taste. In the panel related to actions (a),
action 1 represents “Intake behavior,” and action 0 indicates “do nothing.” At the beginning of the simulation, the internal sodium state and Q-values for each action
were set to 0. After several random selections of action, the Q-value of sodium intake was increased, and the internal sodium state quickly reached the ideal point,
maintaining homeostatic regulation of behavior. (E) In assumed animal behaviors, a group of sodium-repleted mice was able to lick high-density saltwater, and the
other licked low-density. (F) The number of licks of high-density saltwater was fewer than that of low-density. (G) Transitions of each variable over time.

cannula into the gut, through which saltwater was directly
infused prior to the intake test. In the oral stimulation group,
the animals were stimulated with a strong salty stimulus
during the intake test. To model the IG-infusion group, we
hypothesized that the internal state of sodium was set to the
level of half-satisfaction at the beginning of the intake test. To
model the oral stimulation group, a salty taste was supplied,
regardless of the selected actions. The definitions of states and
actions were the same as in Simulation 1 (Figure 1C). The
algorithm including taste input as a predictor of changes in
the internal state is illustrated in Figure 2A. The detailed
values of the parameters used in this simulation are shown in
Supplementary Table 2.

Two-Bottle Preference Test
For the simulation of the two-bottle preference test in Simulation
3, we set two internal states corresponding to water and sodium
states. Thus, in Equation 1, the number of dimensions of internal
state N was set to 2. Each internal state updates as follows:

Hi
t+1 =

(
1− 1

τi

)
Hi

t (10)

where i represents each dimension of internal state, i.e.,
water or sodium.

The detailed parameters were partially different from those
of Simulation 2. The detailed values of the parameters used for
Simulation 3 are shown in Supplementary Table 3.

Designer Receptors Exclusively
Activated by Designer Drugs Experiment
In the simulated designer receptors exclusively activated by
designer drugs (DREADD) experiment, we assumed that
LPBNHtr2c neurons provided tonic suppression of sodium
appetite as implemented by a tonic negative bias in the selection
of sodium intake action. That is, the LPBN-amygdala projection
provides a negative bias of action selections and has no direct
contribution to the learning of the Q-value, as follows:

Control : Q
′s
= Qs

− LPBN (11)

where Qs is Q-value for saltwater intake, and LPBN is a
positive constant value corresponding to the negative bias of the
LPBNHtr2c neuron. Note that Q’ is used only for action selections,
and Q-values are updated with previous Q-values and the reward,
regardless of Q’ and the tonic bias (Equation 11).

DREADD treatment was implemented as the cancelation of
this negative bias by adding the positive value of drd as follows:

DREADD : Q
′s
= Qs

− LPBN + drd (12)
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FIGURE 2 | Intragastric and oral stimulation tests were explained using the sense of taste as a predictor of changes in the internal state. (A) Schematic illustration of
Simulations 2 and 3: Taste perception (Kˆ) was a predictor of an increase in the internal state. (B) Three groups for the behavioral tests. (C) The results of the
behavioral experiment (Lee et al., 2019). *P < 0.05. (D) The results of the computational model. Intragastric infusion did not change the level of sodium intake, while
oral stimulation decreased intake. (E–G) Transitions of the simulation. (E) The control group exhibited an increased Q-value for intake. (F) A congenial increase in the
Q-value was observed in the IG-infusion group. (G) The values of “do nothing” and “intake” were reinforced in the oral-stimulation group. (E–G) The solid lines
represent the results of a trial, and the light-colored error ranges represent the mean ± 2 SD of 100 simulated agents.

In the current simulation, the values of LPBN and drd were
set to be the same. At the beginning of the saltwater intake
test, the initial Q-value for salt intake behavior was set to LPBN,
corresponding to the state, where Q’ for both actions was 0 (i.e.,
the probabilities for salt intake and do-nothing were 0.5). The
initial water state was set to 0 for the dehydration group, and the
initial sodium state was set to 0 for the sodium-depleted group.
The detailed values of the parameters for Simulation 3 are shown
in Supplementary Table 4.

RESULTS

Simulation 1: Sodium Homeostasis
According to the Homeostatic
Reinforcement Learning Model
First, we confirmed that the homeostatic control of the internal
sodium state can be replicated using the framework of the
HRL model. In this simulation, mice were able to choose to
either perform saltwater intake or do nothing (Figures 1B,C).
The action values of intake and do nothing were both

set to 0. Therefore, the initial action selection was random
[P(intake) = 0.5] (Figure 1D). After several random choices of
sodium intake, the action value of intake was reinforced, and
the internal state approached the ideal state. After approximately
20 trials, P(intake) was nearly 1, and the internal state rapidly
reached the ideal state. When the internal state exceeded the
ideal state after approximately 80 trials, sodium intake became a
punishment, and the action value of do nothing increased. After
several trials of do nothing, at around trial number 140, due to
the decay assumed to be a natural loss of internal sodium (see
section “Materials and Methods” for more details), the internal
state became lower than the ideal state. Therefore, the action
value of sodium intake increased again. Through repetitions of
this cycle, the model successfully achieved homeostatic control
of the internal sodium state (Figure 1D). Additionally, we tested
the dose-dependent changes in preference to saltwater in HRL
mode, namely repleted mice preferred low-density saltwater
(∼ 100 mM NaCl) (Oka et al., 2013). In this simulation with the
state definition the same as in Figure 1C, two groups of subjects
were set: one can lick high-density saltwater and the other can
lick low-density saltwater, represented with a small amount of
sodium in an intake (Figure 1E). As a result, the low-density
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group showed high preference toward saltwater (Figures 1F,G)
consistent with the biological observation.

Simulation 2: Sense of Taste as a
Predictor of Changes in Internal States
The sense of taste may play an important role in the homeostatic
control of sodium balance and in the monitoring of internal
states. In the HRL model, this assumption can be tested by
implementing taste as a predictor of changes in the internal
states induced by nutrient intake (Keramati and Gutkin, 2014).
In this study, we simulated an intragastric infusion test (Lee
et al., 2019) using three groups of animals: (1) a control
group of sodium-depleted mice, (2) an IG-infusion group of
sodium-depleted animals treated with an intragastric infusion
of saltwater before the test, and (3) an oral-stimulation group
of sodium-depleted mice stimulated with sodium (salty taste)
during the test (Figure 2B). The definitions of the states and
actions were the same as in the previous simulation (Figure 1C).
At the beginning of the intragastric infusion test, the internal
states for the control group and oral-stimulation group were
set to Ht = 0, while it was set to Ht = H∗/2 for the IG-
infusion group, corresponding to sodium partially supplied
through a gastric infusion. Each animal model was tested

in 100 trials, with a total duration of 600 s in the actual
experiments. During the 100 trials, the model animals of the
oral-stimulation group were assumed to have constant salty taste
stimulation (Figure 2B).

In this simulation, there were no significant differences in
the total number of NaCl intake steps between the control
and IG-infusion groups (Figure 2D). However, the total intake
of the oral-stimulation group was clearly lower than that
of the control and IG-infusion groups. These trends were
similar to those observed in animal experiments (Lee et al.,
2019; Figure 2C).

To provide a mechanistic overview of these results, the
transitions of each variable during the simulation are plotted in
Figures 2E–G. In the IG-infusion group, even though sodium
was partly supplied through gastric infusion, an increase in the
action value of sodium intake led to an increase in sodium intake
behavior (Figure 2F), resulting in the number of intakes not
changing significantly when compared with the control group
(Figure 2D). In the oral-stimulation group, the action value of
do nothing was reinforced (Figure 2G) based on the expectation
of an increase in the internal sodium state (K̂t) due to the
continuous application of the salty stimulus (sodium) during the
test. There were no clear differences between the action values
of salt intake and do nothing (Figure 2G), and the number of

FIGURE 3 | Multi-dimensional homeostatic reinforcement learning (HRL) model as a suitable explanation of findings in the two-bottle preference test. (A) Definition of
a state and three actions in Simulations 3 and 4. (B) Schematic drawing of Simulation 3 (two-bottle preference test). (C) Comparison of behavioral data (Matsuda
et al., 2017) and simulated data in the control (all-satisfied) and water/sodium-depleted groups. Control groups exhibited minor intake, and both depleted groups
demonstrated copious volumes of intake in both sets of data. (C–E) Data averaged over 100 simulated agents. **P < 0.01. (D) In the sodium-depleted group, water
intake was slight, while saltwater intake was increased. (E) The water-deficient groups exhibited abundant water intake and non-negligible saltwater intake. (F–I)
Transitions of the HRL models. (F) The water/sodium-deficient HRL model exhibited strong increases in the values of water and saltwater intake. (G) The action
value for sodium intake soared in the sodium-depleted model. (H) The water-depleted model exhibited increased values for water and saltwater intake. (I) The
control model refused both intakes. (F–I) The solid lines represent the results of a trial, and the light-colored error ranges represent the mean ± 2 SD of 100
simulated agents.
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intakes of the group that received NaCl as drinking water was
lower than that of the control group (Figure 2D).

Simulation 3: Multi-Dimensional
Homeostatic Reinforcement Learning
In this simulation, in order to describe the dynamic interaction
between the internal states of water and sodium, we extended the
HRL model to multiple dimensions based on the idea proposed
in a previous study (Keramati and Gutkin, 2014). The HRL
model with multi-dimensional internal states (water and sodium
states) was assessed via a two-bottle preference test, which is a
behavioral procedure used to compare the preference toward the
contents of two bottles (Figure 3B). In the two-bottle preference
test, the model mice were able to either perform “saltwater
intake,” “water intake,” or “do nothing” (Figure 3A). In this
experiment, there were four groups of animals: a control group
with initially fulfilled internal states, a sodium-depleted group, a
water-depleted group, and a water/salt-depleted group.

The results of the simulations revealed that the control group
with the initially fulfilled internal states exhibited continuously
decreased action values of both water intake and saltwater
intake, and the individuals in this group mostly chose to
perform the do-nothing behavior. As a result, both internal states
remained flat in the ideal state (Figure 3I). Accumulating these
intakes, consumption from water bottles and saltwater bottles
was low-keyed (Figures 3C–E). In contrast, in the water/salt-
depleted group, the action values of both water intake and
saltwater intake rapidly increased. Reflecting these increases,
both the water and sodium states also increased (Figure 3F).
The accumulation of these consumptions was evidently larger
in the depleted group than in the control group (Figure 3C).
In other circumstances, the sodium-depleted group, which was
provided with large amounts of water, exhibited an increased
action value for saltwater intake, resulting in an increased sodium
state (Figure 3G). The total intake of water was slight, whereas
saltwater intake was dominant (Figure 3D). The water-deficient
group exhibited notable behaviors. First, both the action values of
water intake and salt intake increased, although the action value
of water intake was larger than that of saltwater intake. Saltwater
intake slightly increased (Figure 3H). These trends were similar
to those observed in the actual animals assessed using the two-
bottle preference test (Matsuda et al., 2017; Figure 3C).

Simulation 4: Simulated Chemogenetic
Neural Manipulation in the Sodium
Appetite Network
Neurons in the lateral parabrachial nucleus (LPBNHtr2c neurons)
are assumed to play a role in suppressing sodium appetite, as
previous studies have indicated that artificial inhibition of these
neurons via chemogenetic neural manipulation (e.g., DREADD)
increases sodium appetite (Park et al., 2020). LPBNHtr2c neurons
project to the central amygdala (CeA). Based on these previous
findings, in this simulation, we hypothesized that LPBNHtr2c

neurons inflict a negative bias on the action value of sodium
appetitive behavior. The hypothesis was implemented as an
account of action values in the HRL model, as Equation 11.

Additionally, the inhibition of LPBNHtr2c neurons by DREADD
was represented by the cancelation of the negative bias (i.e.,
LPBN in Equation 11 was set to 0). With this implementation,
we tested our hypothesis regarding LPBN neurons by comparing
the simulation with the results observed in an actual animal
experiment (Figure 4A; Park et al., 2020).

This experiment involved a two-bottle preference test using
water and saltwater (Park et al., 2020). There were four groups
of mice based on the depletion of water/salt and application
of DREADD, namely water-depleted/control (no DREADD),
sodium-depleted/control, water-depleted/DREADD, and
sodium-depleted/DREADD. Both DREADD groups exhibited
greater intake of saltwater than the control group. However,
no clear differences were observed between the no-DREADD
groups. Among sodium-depleted animals, water intake was
slight in both the no-DREADD and DREADD groups. In both
groups, saltwater intake rapidly increased, although the intake of
the DREADD group was higher than that of the no-DREADD
group. Water intake increased sharply in the dehydration
groups. There was no clear difference between the DREADD
and no-DREADD groups. The control (no-DREADD) model
exhibited maintenance of homeostasis (Figure 4B). Saltwater
intake was slight in the dehydration groups, although intake was
much higher in the DREADD group than in the no-DREADD
group. These trends successfully replicated those observed in the
actual animal experiments (Figures 4C,D).

DISCUSSION

In this study, we attempted to provide a mechanistic
understanding of sodium appetite behavior using the HRL
model. In Simulation 1, we confirmed that the HRL model
successfully reproduced homeostasis-like behaviors by regulating
sodium appetite in concentration-depending manner, (i.e.,
approach and avoidance behavior to sodium). In addition, based
on the assumption that the sense of taste is a predictor of changes
in internal states, the HRL model successfully reproduced the
previous observations of the intragastric infusion test that cannot
be explained by classical drive reduction theory (Hull, 1943).
These results support the idea that sodium appetitive behavior
can be understood as an RL process.

This idea is consistent with previous findings that the reward
learning system is involved in sodium appetite behaviors. For
instance, the activity of dopaminergic neurons in the VTA,
which is thought to exhibit a robust relationship with the RL
process in the brain (Nakanishi et al., 2014; Schultz, 2015),
increases when sodium-depleted mice lick saltwater. In contrast,
pharmacological inactivation of neural projections from the VTA
to the nucleus accumbens decreases sodium intake (Verharen
et al., 2019). In addition, recent studies have indicated that
optogenetic excitation of VTA dopaminergic neurons suppresses
sodium intake in sodium-depleted mice (Sandhu et al., 2018).
As described later, the HRL model may aid in integrating these
previous findings.

However, there also exists a theoretical model explaining
changes in sodium appetite from a different perspective.
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FIGURE 4 | Simulation of designer receptors exclusively activated by designer drugs (DREADD), which involved tonic neuronal suppression of sodium appetite.
(A) Schematic illustration of Simulation 4: DREADD. (B) Transitions in the control (no-DREADD) models. Sodium intake values were subtracted from these plots by a
negative bias toward sodium appetite. The solid lines represent the results of a trial, and the light-colored error ranges represent the mean ± 2 SD of 100 simulated
agents. (C) DREADD experiments increased sodium intake (Park et al., 2020). **P < 0.01, ***P < 0.001, and ****P < 0.0001. (D) Homeostatic reinforcement models
demonstrated equivalent behaviors. The data are averaged over 100 simulated agents.

Incentive salience theory argues that the incentive for sodium is
determined based on the animal’s internal states and is naturally
independent from the learning process (Zhang et al., 2009;
Berridge, 2012). Indeed, this model successfully reproduces not
only approach and avoidance behavior to sodium, but also
explains the puzzling observation that a negatively conditioned
stimulus can be immediately switched to a preferred stimulus
without learning (Zhang et al., 2009; Berridge, 2012). In the
HRL model, switching of preference takes some time due to the
involvement of the learning process. Therefore, an additional
mechanism may be necessary for the HRL to integrate this aspect
of sodium appetite. We discuss this point in the later section.

In the HRL model, the sense of taste was hypothesized to
predict changes in the internal state. The latter means that the
salty stimulus represents an immediate inducer of reinforcement,
but this was not the case for the actual changes in the internal
state. Nevertheless, only actual intake may result in the satiation
of internal states. This assumption is consistent with the fact that
gastric infusion of water does not act as a reinforcer, in contrast
to oral intake of water, which can indeed act as a reinforcer
(McFarland, 1969; Keramati and Gutkin, 2014). In addition,
artificial sweeteners, including saccharine and sucralose, can
function as reinforcers (Hughes, 1957; Collier and Siskel, 1959;

Fernandes et al., 2020), although their effects are relatively weaker
than those of sucrose, which induces substantial changes in the
internal state. From the perspective of computational theory,
this assumption of the HRL model corresponds to predictive
processing (also referred to as predictive coding or active
inference) theory, in the sense that homeostasis is understood as
the prediction of interoceptive sensory states and minimization
of prediction error (Friston, 2010). As such, homeostasis and
sodium appetite behavior may provide an ideal research setting
for unifying these computational theories.

Therefore, in Simulation 3, we extended the HRL model
to multi-modal data, successfully reproducing the results of
behavioral tests in which water and sodium appetite regulated
one another. As the simplest attempt of the current study, the
internal states of sodium and water were assumed to contribute
equally. However, in an actual biological system, the homeostatic
maintenance of water and sodium may not be exactly equal. As
described later, the effects of an intragastric infusion of water
and saltwater on the respective appetite for each may occur over
different timescales (Matsuda et al., 2017; Augustine et al., 2020).
A more detailed implementation of such differences in water and
sodium appetite may provide novel insights for understanding
the system-level mechanisms underlying sodium appetite.
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In Simulation 4, we successfully replicated the characteristic
features of LPBNHtr2c suppression experiments using DREADD.
In the proposed model, the LPBN-amygdala projection provides
a negative bias of action selections and has no direct contribution
to the learning of the Q-value. This assumption is consistent
with previous findings that an immediate increase in sodium
craving via sodium depletion may not be mediated by learning
processes (Tindell et al., 2006). As such, this assumption of the
tonic negative bias toward sodium appetite may help to integrate
the incentive salience model into the HRL.

In Simulation 2, the oral-stimulation group had large
behavioral variations. This is because in the oral-stimulation
group, strong salty taste was given not only during saltwater
intake, but also during do-nothing, with the result that the
behavioral value of intake and do nothing was less pronounced.
As such, the choice of actions was more likely to be varied (large
variation). This observation in the simulation is consistent with a
previous animal experiment (Lee et al., 2019), in which the range
of error appeared to be large in the NaCl-oral group.

In addition, this assumption is consistent with the previous
findings in the sense that the CeA is an essential region
for both hedonic and aversive intakes. For example, CeA
pre-pronociceptin-expressing neurons are activated by hedonic
intake and promote palatable food consumption (Hardaway et al.,
2019). In contrast, activation of PKC-δ + neurons in the lateral
subdivision of the CeA inhibits feeding (Cai et al., 2014). Further
investigation of the neural connections from the LPBN to the
CeA, together with the HRL model, may provide fundamental
information for the development of more precise algorithms.

Here, we discuss the significance of constructing a
computational model for sodium appetite. To understand
complex systems such as the brain, investigations from three
levels are essential, namely computational theory, representations
and algorithms, and hardware implementation (Marr, 2010). In
this study, we provided a mechanistic explanation of sodium
appetite behavior by bridging previous findings related to these
three levels. Although the model behaviors were evaluated
only for their quantitative similarities with the actual animal
experiments, the model can also provide quantitative predictions
of unobservable latent variables, such as reward prediction
error, action values (motivation toward nutrient intake), and
predicted internal states. Investigating the neural correlates of
such latent variables may provide a deeper understanding of the
neural mechanisms underlying sodium appetite and homeostatic
behavior. For example, as reported in Cone et al. (2016), reward
prediction error of sodium appetite corresponds to dopaminergic
activity. Incorporating these findings into the HRL model may
be among the promising directions for future research.

Notably, the current study had several other limitations. For
example, the m and n parameters in Equation 1 which control
the shape of homeostatic space were transferred from Keramati
and Gutkin (2014), but were not fully investigated in this
study. Regarding the assumptions for chemical acts, Simulation
4 assumed that the DREADD manipulation perfectly deactivated
the target neuron, i.e., ignored the degree of inhibition, effects
of clozapine N-oxide (CNO) metabolites, and backpropagation
effects. In addition, the implementation of “internal state” in

the current model was not sufficient to represent diverse time
constants, i.e., it could not represent different timescales for taste,
gut, blood concentration, etc. (Ichiki et al., 2022). Moreover,
although this study only replicated existing animal studies, it
would be useful to propose a working hypothesis for actual
animal experiments, for example, by using the combination of
operant conditioning learning tasks and optogenetics method.
Finally, osmotic homeostasis seems to have a higher priority than
the homeostasis of water and sodium (Bourque, 2008). However,
such hierarchy is beyond the scope of the current study. To
implement this ranking relationship, future studies may wish to
construct each homeostatic process in a hierarchical manner (e.g.,
active inference model or the free energy principle) (Pezzulo et al.,
2015; Stephan et al., 2016).
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