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SUMMARY

Both BRCA1 and CREBBP are tumor suppressor genes that are important for hematopoiesis. We have

previously shown that mouse Brca1 is essential for hematopoietic stem cell (HSC) viability. In contrast

to Brca1 deficiency, which results in pancytopenia, we report here that Crebbp deficiency results in

myeloproliferation associated with an increase of splenic HSCs as well as a lethal systemic inflamma-

tory disorder (LD50 = 86 days). To investigate the interaction of these two proteins in hematopoiesis,

we generated double Crebbp/Brca1 knockout mice (DKOs). To our surprise, DKOs had accelerated

bonemarrow failure comparedwith Brca1-deficient mice and this was associatedwith an even shorter

lifespan (LD50 = 88.5 versus 33 days). Furthermore, Crebbp or Brca1 heterozygosity influenced the

hematopoietic phenotype associated with complete deficiency of Brca1 or Crebbp, respectively.

We also observed lower BRCA1 protein levels in hematopoietic tissues when CREBBP is absent.

Collectively, these data suggest Crebbp and Brca1 functionally interact to maintain normal hemato-

poiesis.

INTRODUCTION

BRCA1 and CREB-Binding protein (CREBBP or CBP) are tumor suppressor genes that are important in normal

development. Homozygous germline mutations in either of these genes are embryonic lethal in humans and

mice. In humans, heterozygous germline CREBBP mutations cause Rubenstein-Taybi Syndrome, a develop-

mental disorder (short stature, intellectual disability, etc.) that includes a predisposition to leukemia (Miller

and Rubinstein, 1995; Schorry et al., 2008). Unlike CREBBPmutations, BRCA1mutations do not predispose hu-

mans to hematopoietic neoplasia but do predispose to other solid tumors, such as pancreatic and prostate can-

cers, in addition to breast and ovarian cancers (Futreal et al., 1994; Miki et al., 1994).

Mice haploinsufficient forCrebbp developmyeloproliferative disorders andmyelodysplastic syndromes by

1 year of age, which can progress to full-blown malignancies (Kung et al., 2000; Zhou et al., 2016; Zimmer

et al., 2012). Complete deletion of Crebbp in hematopoietic stem cells (HSCs) impairs T and B cell devel-

opment (Kasper et al., 2006; Xu et al., 2006) and increases differentiation to granulocytic and monocytic lin-

eages (Chan et al., 2011). In addition, either mono- or biallelic loss of Crebbp in bonemarrow is reported to

impair the self-renewing capacity of HSCs (Chan et al., 2011; Rebel et al., 2002).

Although BRCA1 mutations do not predispose mice to leukemia, mice conditionally deficient for Brca1 in

embryonic HSCs develop a severe pancytopenia and die within 3 months of age (Mgbemena et al., 2017).

This is quite different from mice conditionally deficient for Brca1 in adult HSCs and progenitors using Mx1-

Cre activation, which leads to a modest reduction in HSCs and mild bone marrow dysfunction (Vasantha-

kumar et al., 2016).

Although Crebbp and Brca1 are both required to preserve normal HSC pools in bone marrow, their indi-

vidual deficiencies result in distinct consequences (Chan et al., 2011; Kung et al., 2000; Mgbemena et al.,

2017; Vasanthakumar et al., 2016; Zimmer et al., 2012). To investigate functional interactions of Brca1 and

Crebbp in hematopoiesis, we co-deleted both genes in HSCs and progenitors using the hematopoietic

system-specific Vav1-iCre (Georgiades et al., 2002). Unexpectedly, we found that Crebbp-deficiency phe-

notypes are dependent on the presence or absence of Brca1. Crebbp deficiency in the background of

normal Brca1 led to leukocytosis and neutrophilia, whereas co-deletion of Crebbp with Brca1 led to a

more severe pancytopenia than that found for Brca1 deficiency alone. We also show that, in contrast to pre-

vious studies (Chan et al., 2011; Zimmer et al., 2011, 2012), hematopoietic loss ofCrebbp alone resulted in a

shift in the balance of HSCs where the decrease in the bone marrow was made up for in an increase in the

spleen, rather than an overall shortage of HSCs. Furthermore, Crebbp heterozygosity showed enhanced
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hematopoietic defects in young mice with Brca1-deleted bone marrow, whereas Brca1 heterozygosity

showed mild attenuation of pathogenic consequences in Crebbp-deficient mice. Further support for a

functional interaction between BRCA1 and CREBBP was found where BRCA1 levels were altered in

Crebbp-deficient thymus and bone marrow-derived macrophages (BMDMs), adding support that these

two genes cooperate in vivo.
RESULTS

Deficiency of Crebbp in Mouse Hematopoietic Tissue Leads to an Inflammatory Disorder

We, andothers, havediscovered that deletionofBrca1 inHSCs results in either hematopoietic failure by1month

of agewhendeleted in embryonicHSCsor amoderate reduction inbonemarrow functionwhendeleted in adult

HSCs (Mgbemena et al., 2017; Vasanthakumar et al., 2016).Crebbp has also been shown to contribute to main-

tenance of normal levels of early progenitors (Kung et al., 2000). Since Brca1 andCrebbp are important in hema-

topoiesis, we tested the functional interaction of these genes in knockout mice. Specifically, we conditionally

deleted Crebbp alone or with Brca1 using the early hematopoietic system-specific Vav1-iCre (Georgiades

et al., 2002) and compared them with previously described Vav1-iCre;Brca1F/F mice (Mgbemena et al., 2017).

Vav1-iCre;CrebbpF/F mice survived a median 86 days (Figure 1A), and their mortality was associated with an un-

expected severe skin phenotype (Figure 1B). This included skin flaking that began at 4–5 weeks of age with al-

opecia in the tail, eyelids, and ears. This progressed to widespread alopecia, flaking, and ulceration by 3–

4 months of age. Once severe dermatitis developed, mice became moribund and were euthanized. Similar to

age-matched controls (Figure 1C), skin from young pre-symptomatic Vav1-iCre;CrebbpF/F mice showed normal

epidermal structure (Figure 1D, left). However, higher magnification showed abnormal granulocyte infiltration

(black arrows) in the dermal layers (Figure 1D, right). Compared with normal skin structure in adult mice (Fig-

ure 1E), diseasedVav1-iCre;CrebbpF/F adultmice showed significant epidermal hyper-proliferation and a fibrotic

dermal layer (Figure 1F, left) with granulocytes (black arrows) andmast cells (white arrow) (Figure 1F, right). Unlike

biallelicCrebbp-deficient mice, heterozygous Vav1-iCre;CrebbpF/+ mice showed long-term survival and did not

have skin abnormalities during their lifespan (data not shown).

Young Vav1-iCre;CrebbpF/F mice also showed lung inflammation (Figure 1H, left). Higher magnification (Fig-

ure 1H, right) showed localized plasma cell accumulations (hatched arrow) and pockets of foamy macrophages

(white arrow) that accompanied granulocyte infiltration (black arrows). Immune cell infiltration persisted in lungs

of older diseased Vav1-iCre;CrebbpF/F mice (Figure 1J, left), with frequent Immunoglobulin-rich Russell bodies

(orange arrows) in plasma cell-dense regions (hatched arrow) of the lungs (Figure 1J, right). Representative WT

lungs from young (Figure 1G) and adult (Figure 1I) mice are shown for comparison.

Similar to otherCrebbp-deficiency studies (Kung et al., 2000; Zhou et al., 2016; Zimmer et al., 2012), Vav1-iCre;

CrebbpF/Fmicedeveloped splenomegaly (Figure 2A). Comparedwith controlsCrebbp-deficient spleenswere

enlarged as early as 1 month of age (1.2% of body weight versus 0.5% body weight in control, p < 0.0001) (Fig-

ure 2A, left) and by adulthood (Figure 2A, right) had �6-fold greater spleen weight than littermate controls

(2.7%of bodyweight inCrebbp-deficientmice comparedwith 0.5% in controls, p < 0.01). In contrast to spleno-

megaly, bone marrow cellularity in Vav1-iCre;CrebbpF/F mice was similar to controls (Figure S1A).

Compared with age-matched controls (Figures 2B and 2C), H&E stains from young and adult Vav1-iCre;

CrebbpF/F mice (Figures 2D and 2E) showed age-related progression of extramedullary hematopoiesis

in red pulp with concomitant depletion of lymphoid structure in white pulp.

In parallel with the inflammatory phenotype, Vav1-iCre;CrebbpF/F mice had leukocytosis. Elevated white

blood cells (WBCs) (Figure 2F) were present in young Crebbp-deficient mice (4–8 weeks) and persisted

throughout adulthood (8–24 weeks) (gray circles). The WBC differential showed Vav1-iCre;CrebbpF/F

mice had neutrophilia, monocytosis, and eosinophilia, with neutrophils increasing with age (Figures

2G–2I). Lymphocyte counts were normal (Figure 2J). In contrast to the previous reports of Mx1-Cre-medi-

ated deletion of Crebbp in adulthood (Chan et al., 2011), we did not observe thrombocytopenia in Va-

v1-iCre;CrebbpF/F mice (Figure S1B). Both young and adult Crebbp-deficient mice were anemic

(Figures 2K–2M).

HSC frequencies (CD150+CD48�Lineage-Sca-1+ckit+;CD150+CD48�LSK) (Kiel et al., 2005) in bone marrow

from 4- to 8-week-old Vav1-iCre;CrebbpF/F mice were lower compared with age-matched littermate
810 iScience 19, 809–820, September 27, 2019
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Figure 1. Deficiency of Crebbp in Mouse Hematopoietic Tissue Leads to an Inflammatory Disorder

(A and B) (A) Kaplan-Meier curves show that mice with hematopoietic deletion of Crebbp (Vav1-iCre;CrebbpF/F)

experienced early lethality (LD50 = 86 days, n = 14) that was associated with a systemic inflammatory disorder that

progressed to (B) severe ulcerative dermatitis by 3–4 months of age.

(C–I) (C) Representative H&E stains of skin cross sections from young (�6 weeks) (C) WT and (D) Vav1-iCre;CrebbpF/F and

adult (�4 months) (E) WT and (F) diseased Vav1-iCre;CrebbpF/F mice (left [low magnification] and right [high

magnification] panels). (D) Young Vav1-iCre;CrebbpF/F had dermal granulocyte infiltration (right panel, black arrow) with

normal epidermis. (F) Adult Crebbp-deficient mice had epidermal hyper-proliferation and immune infiltration of the

dermis including mast cells (right panel, white arrow) and granulocytes (right panel, black arrow). Compared with (G)

young and (I) adult WT lungs, (H) young Vav1-iCre;CrebbpF/F lungs had foamy macrophages (white arrow), granulocytes

(black arrow), and plasma cell accumulation (hatched arrow).

(J) Adult Vav1-iCre;CrebbpF/F had frequent Russell bodies (orange arrow) within plasma cell accumulations (right panel,

hatched arrow).

Abbreviations: WT, wild-type; CrebbpD/D, Vav1-iCre;CrebbpF/F.
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Figure 2. Early Hematopoietic Deletion of Crebbp Leads to Leukocytosis

(A–M) (A) Vav1-iCre;CrebbpF/F mice (gray circles) had enlarged spleens (% body weight) compared with controls (open circles, Vav1-iCre negative) at

4–8 weeks (young, p < 0.0001) and >8–24 weeks (adult p < 0.01). Representative H&E stains of spleens from (B) young and (C) adult control mice compared

with (D) young and (E) adult Vav1-iCre;CrebbpF/F mice had white pulp (WP) depletion and progressive extramedullary expansion in red pulp (RP) of Crebbp-

deficient mice. Peripheral blood analyses of (F) white blood cells (WBC), (G) neutrophils (NE), (H) monocytes (MO), (I) eosinophils (EO), (J) lymphocytes (LY),

(K) red blood cells (RBC), (L) hemoglobin (Hb), and (M) hematocrit (HCT) for young (4–8 weeks, n = 16) and adult (>8–24 weeks, n = 22) mice with

hematopoietic deletion of Crebbp (gray circles, Vav1-iCre;CrebbpF/F), compared with young (n = 68) and adult (n = 48) matched controls (open circles)

showed a myeloid leukocytosis.

(N–U) Flow cytometric analysis of bonemarrow (left) and splenic (right) (N) HSCs, (O) CMPs, (P) GMPs, (Q) GMs, (R) B cell progenitors, (S) T cell progenitors, (T)MEPs,

and (U) erythroid progenitors for 4- to 8-week-oldCrebbp-deficient mice (Vav1-iCre;CrebbpF/F, n = 4–6) (filled gray circles), compared with age-matched littermate

controls (clear circles, n = 15). Spleen weight numbers: Vav1-iCre control: young n = 17, adult n = 7; Vav1-iCre:CrebbpF/F: young n = 7, adult n = 21.

Values represent means G SEM. Statistical significance was assessed using a two-tailed Student’s t test (*p < 0.05, **p < 0.01, ***p < 0.001,****p < 0.0001).
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controls (Figure 2N, left). Although this finding is consistent with previous reports (Chan et al., 2011),

we also noted an increase in splenic HSCs (Figure 2N, right). Both spleen and bone marrow

from 4 to 8 week-old Crebbp-deficient mice showed higher levels of common myeloid progenitors

(CMP, CD34+CD16/32low CD127�Sca-1�LK), myeloid granulocyte/monocyte mid progenitors (GMP;

CD34+CD16/32high CD127�Sca-1�LK) (Akashi et al., 2000), and granulocyte/monocyte late progenitors

(Gr1+Mac1+; CD11b+Gr1+) (Figures 2O–2Q), as well as CD3+T cell progenitors (Figure 2S). In agreement

with previous reports identifying a role for CREBBP in B cell maturation (Xu et al., 2006; Zimmer et al.,

2011), loss of Crebbp in bone marrow resulted in significantly reduced ProB/PreB-cell frequencies

(CD43-B220hi/B220lo) in bone marrow (Figure 2R, left) with less of an effect in spleen (Figure 2R, right).

The inverse changes in T and B cell progenitor frequencies in Crebbp-null mice may explain the lack of

net changes in total lymphocyte counts (Figure 2J). Megakaryocyte/erythroid mid progenitors (MEPs;

CD34�CD16/32lowCD127�Sca-1�LK) (Akashi et al., 2000) were higher in Vav1-iCre;CrebbpF/F bone marrow

and spleen, but only splenic late erythroid progenitors were higher (Figures 2T and 2U).

This is the first report of the use of the Vav-Cre allele to achieve biallelic deletion ofCrebbp in adult and em-

bryonic HSCs. These robust phenotypic data (inflammatory disorder, myeloproliferation) complement prior

reports of Crebbp deficiency phenotypes. The other reports either studied heterozygous germline Crebbp

knockouts or used theMx1-Cre allele to achievebiallelic deletion ofCrebbp inHSCs. For comparison of pre-

vious results to the data presented here, we have included a table comparing phenotypes (Table S1).

Brca1 and Crebbp Co-deficiency in Hematopoietic Tissue Leads to IncreasedMortality due to

Severe Bone Marrow Failure

To investigate the functional interaction of Brca1 and Crebbp genes in hematopoietic tissue, we deleted

both genes in bone marrow and compared them with each of the single knockouts. To our surprise, Vav1-

iCre;Brca1F/F;CrebbpF/F (double Crebbp/Brca1 knockout mice [DKO]) mice died much earlier (LD50 =

33 days) than Vav1-iCre;CrebbpF/F (LD50 = 86 days) or our previously published Vav1-iCre;Brca1F/F mice

(LD50= 88.5 days) (Figure 3A; p < 0.001). The detrimental effect ofBrca1/Crebbp co-deletion was also apparent

in our ability to generate only eight DKOmice over 3 years, despite optimal breeding schemes. Crebbp loss in

the DKOmice did not result in skin abnormalities, possibly because these mice did not survive to an age where

severe skin phenotypes in Vav1-iCre;CrebbpF/F mice developed (3–4months of age). Histology of bonemarrow

from the DKO mice showed decreased cellularity (Figures 3B and 3C). Bone marrow cell numbers were 80%

lower in DKOs compared with control mice (Figure 3D). As expected, DKOs showed absence of bone marrow

HSCs (Figure 3E) and loss of most mid and late progenitors (Figure S2). DKOs (open diamonds), like Vav1-

iCre;Brca1F/F (downward triangles), developed pancytopenia that was even a more severe than age-matched

Vav1-iCre;Brca1F/F mice (Figures 3F–3L). Together, these data show thatCrebbp and Brca1 have distinct effects

on hematopoiesis, where Crebbp restrains aberrant leukocytosis and possible HSCmobilization and also com-

pensates for Brca1 loss to maintain HSCs/progenitors.

Brca1 and Crebbp Gene Dosage Impacts Hematopoiesis

Heterozygous CREBBP mutations in humans predispose patients with Rubenstein-Taybi Syndrome to he-

matopoietic neoplasia (Miller and Rubinstein, 1995; Schorry et al., 2008). Also, Brca1 heterozygosity has

been associated with increased frequency of febrile neutropenia after chemotherapy (Mgbemena et al.,

2017). Whether heterozygous mutations in either gene impact other phenotypes is not known. Here, we

tested whether the heterozygous states of either Crebbp or Brca1 affected the deficient phenotypes of

the other. Combined Brca1 and Crebbp heterozygosity (Vav1-iCre; Brca1F/+;CrebbpF/+) did not affect sur-

vival (Figure 4A, gray line) or CBCs (Figures 4B–4F, open circles versus open squares), except for a mild but

significant increase in monocytes (Figure 4E). Mice with Brca1 heterozygosity combined with

complete Crebbp deficiency (Vav1-iCre; Brca1F/+;CrebbpF/F) showed slightly longer survival than Vav1-

iCre;CrebbpF/F mice, but this change was not significant (LD50 = 107 versus 86 days, p = 0.069) (Figure 4A,

dotted versus solid line). However, young Vav1-iCre;Brca1F/+;CrebbpF/F mice displayed lower WBC counts

(p < 0.05) compared with Vav1-iCre;CrebbpF/F mice; individual counts for neutrophils (NE) (p = 0.073),

monocytes (MO) (p = 0.06), and eosinophils (EO) (p = 0.094), although lower, were not significant (Figures

4B–4E; gray triangles versus gray circles). Brca1 heterozygosity in Crebbp-deficient mice led to a decrease

of RBC counts (Figure 4G, open circles versus gray triangles).

Brca1 haploinsufficiency in Vav1-iCre; Brca1F/+;CrebbpF/F mice (gray triangles) normalized splenic HSCs

compared with Crebbp-deficient mice (Figure 4H, right; gray circles versus triangles) and attenuated
iScience 19, 809–820, September 27, 2019 813



Figure 3. Double Knockout of Brca1 and Crebbp in Hematopoietic Tissues Leads to Rapid Death Associated with Severe Bone Marrow Failure

(A–C) (A) Kaplan-Meier survival analysis shows hematopoietic co-deletion of Brca1 and Crebbp (Vav1-iCre Brca1F/F;CrebbpF/F, [DKO]) results in greater

lethality (LD50 = 33 days, n = 6) than loss of either Brca1 (Vav1-iCre;Brca1F/F, LD50 = 88.5 days, n = 8) or Crebbp (Vav1-iCre;CrebbpF/F, LD50 = 86, n = 12)

alone, compared with littermate control mice (Vav1-iCre negative, n = 9). H&E stains show comparison of (B) normal bone marrow and (C) ablated bone

marrow in DKO mice.

(D–L) (D) Quantification of bone marrow counts in long bones (2x femur and tibia) show 80% decrease in cellularity in DKOs (WT, n = 15; DKO, n = 4).

Early lethality in DKO mice correlates with (E) ablated HSCs (WT, n = 15; DKO, n = 4) and (F–L) more advanced pancytopenia compared with age-matched

(4–8 weeks) mice with only Brca1 deletion (Vav1-iCre;Brca1F/F). Peripheral (F) white blood cells (WBC), (G) neutrophils (NE), (H) monocytes (MO), (I)

lymphocytes (LY), (J) red blood cells (RBC), (K) hemoglobin (Hb), and (L) platelets (PLT) are shown from 4- to 8-week-old mice. Blood count numbers: Age-

matched litter mate control (Vav1-iCre negative) n = 92 (open circles); Vav1-iCre;CrebbpF/F n = 30 (gray circles); Vav1-iCre;Brca1F/F n = 6 (open downward

triangles); DKO n = 6, (open diamonds). Values represent meansG SEM. Statistical significance was assessed using a two-tailed Student’s t test except in (A)

where a long-rank test was used (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
most bone marrow myeloid progenitors. Except for late granulocyte/monocyte (Gr1+Mac1+) progenitors

spleen showed similar trends (Figures 4I–4K). In addition, Vav1-iCre;Brca1F/+; CrebbpF/F splenic T cells

were normalized toward wild-type (WT) frequencies (open circles) (Figure 4L, right). Brca1 heterozygosity

(gray triangles) did not significantly alter Crebbp-deficiency-associated ProB/PreB loss in bone marrow

(Figure 4M, left). Splenic early erythoid progenitors were unchanged (Figure 4N), whereas late erythroid

progenitors were elevated in Vav1-iCre; Brca1F/+;CrebbpF/F mice compared with controls (Figure 4O,

right), although RBCs were decreased with Brca1 heterozygosity (Figure 4G). We did observe a mild but

insignificant reduction in lifetime incidence of skin abnormalities in Vav1-iCre; Brca1F/+;CrebbpF/F

compared with Vav1-iCre;CrebbpF/F mice (Figure 4P; p = 0.083, Fisher’s exact test).

Hematopoietic abnormalities have been previously reported for Crebbp heterozygous mice that appear in

late adulthood (>1 year) (Kung et al., 2000). We tested whether a heterozygous Crebbp genetic back-

ground affected young mice that were Brca1-deficient. Although Crebbp heterozygosity did not alter life-

span of Brca1-deficient mice (Figure 4Q, Vav1-iCre;Brca1F/F;CrebbpF/+), WBC and neutrophil counts were

moderately reduced (Figures 4R and 4S) and RBC counts trended lower (Figure 4T). That Crebbp and Brca1

allele dosage influence the deficiency phenotype of the other is further evidence these two genes coop-

erate. However, it is not clear whether this cooperation is direct or indirect.

BRCA1 Protein Is Altered in CREBBP-Deficient Hematopoietic Tissues

Since previous data have shown that CREBBP regulates BRCA1 gene expression (Ogiwara and Kohno,

2012; Pao et al., 2000), we explored whether similar direct relationships were present in hematopoietic tis-

sue. We chose thymus as our model hematopoietic tissue for two reasons: (1) thymus has robust mRNA
814 iScience 19, 809–820, September 27, 2019



Figure 4. Heterozygosity of Brca1 and Crebbp Has Hematopoietic Effects when There Is Complete Deficiency of the Other

(A–Q) Brca1 heterozygosity in Crebbp-deficient bone marrow (A) results in slight, but insignificant increase in survival (Kaplan Meier, p = 0.069), attenuates

elevated peripheral (B) white blood cells (WBC), (C) neutrophils (NE), (D) eosinophils (EO), (E) monocytes (MO), and (G) red blood cells (RBC), but not (F)

lymphocytes (LY), (H–O) normalizes splenic HSCs, attenuates elevated myeloid progenitors in bone marrow and spleen as well as late T cell progenitors in

spleen, and (P) results in slight but insignificant decreased incidence of inflammatory skin disorder (filled versus clear bars). Crebbp heterozygosity (Q) does

not alter Brca1-deficiency survival.

(R–T) Progressive loss of Crebbp alleles in Brca1-deficient bone marrow results in intermediate decreases in WBCs, NE, and RBCs. Survival curve numbers:

Vav1-iCre; Brca1F/+;CrebbpF/+ n = 12, Vav1-iCre;CrebbpF/F n = 14, Vav1-iCre; Brca1F/+;CrebbpF/F n = 15, Vav1-iCre negative control n = 9, Vav1-iCre;

Brca1F/F n = 8, Vav1-iCre; Brca1F/F;CrebbpF/+ n = 20. Blood count numbers: Vav1-iCre negative control (WT) n = 92, Vav1-iCre; Brca1F/+;CrebbpF/+ n = 26,

Vav1-iCre;CrebbpF/F n = 30, Vav1-iCre; Brca1F/+;CrebbpF/F n = 20. Progenitor mouse numbers: Vav1-iCre negative control n = 17, Vav1-iCre;CrebbpF/F n = 5,

iScience 19, 809–820, September 27, 2019 815



Figure 4. Continued

Vav1-iCre; Brca1F/+;CrebbpF/F n = 6. Skin assessment numbers: Control mice (Vav1-iCre negative) n = 32, Vav1-iCre;CrebbpF/F n = 18, Vav1-iCre;

Brca1F/+;CrebbpF/F n = 15.

Values represent meansG SEM. Statistical significance was assessed using a two-tailed Student’s t test except in (A) where a long-rank test was used and (P)

where an Fisher’s exact test was used (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
signal for Brca1 (Gowen et al., 1996) and (2) it is a less heterogeneous, T cell-restricted tissue compared with

bone marrow and spleen.

Consistent with the prior report of transcriptional regulation of BRCA1 by CREBBP (Ogiwara and Kohno,

2012), Brca1 mRNA in the thymus of Vav-Cre;CrebbpF/F mice (Figure 5A) was lower compared with WT

BRCA1. Similarly, we found that Vav-Cre;CrebbpF/F BRCA1 protein in thymus was decreased, but to a

greater extent than mRNA (Figures 5C and 5D). The specific reactivity of the mouse BRCA1 antibody (Santa

Cruz SC287.17) was established in WT thymus using fully humanized BRCA1 mouse thymus as a negative

control (Figure S3). Compared to WT, Crebbp deficiency in thymic tissue from Vav1-iCre;CrebbpF/F mice

was confirmed by loss of mRNA (Figure 5B) and protein (Figure 5E). To evaluate heterogeneity of cell types

in the thymus, we performed flow cytometry on Crebbp-deficient thymic tissue. The data were consistent

with prior reports (Kasper et al., 2006; Xu et al., 2006) where Vav1-iCre;CrebbpF/F tissue showed a significant

decrease in CD4+/CD8+ double-positive cell frequencies with a shift toward a higher frequency of CD4-/

CD8- double-negative and CD8+ single-positive cells compared with WT (Figure S4). Because Brca1

expression may vary between CD4 and CD8 double-positive, single-positive, and double-negative

T cells, it remains possible that differences in BRCA1 protein detected between WT and Vav1-iCre;-

CrebbpF/F thymus arose from changes in T cell lineages with differing levels of BRCA1.

To address issues of cell-type heterogeneity present in intact hematopoietic tissue, we also compared Brca1

expression in primary bone marrow-derived macrophages (BMDMs) from WT and Vav1-iCre;

CrebbpF/F mice. qPCR showed that WT and Vav1-iCre;CrebbpF/F differentiated BMDM cultures had similar

expression levels ofmacrophage anddendritic cell markers F4/80 andCD11c, respectively, and suggests relative

homogeneity between these two genotypes (Figures S5A and S5B, respectively). Brca1 mRNA was not signifi-

cantly different in the knockout and WT BMDMs (Figure 5F), whereas BRCA1 protein from Crebbp-deficient

BMDMs was lower than in controls (Figures 5H and 5I). Compared to WT, Crebbp deficiency in BMDMs from

Vav1-iCre;CrebbpF/F mice was confirmed by loss of mRNA (Figure 5G) and protein (Figure 5J). To address

whether reduced levels of BRCA1 in Crebbp-deficient BMDMs were indirectly associated with altered prolifer-

ation rates compared with WT, we performed propidium iodide stain cell cycle analysis and found both geno-

types to have similar fraction of cells in G1, G2, and S phase (Figure S5C). This is the first report of BRCA1 detec-

tion inmacrophages and suggests that BRCA1protein changes inCrebbp-deficient BMDMs are independent of

proliferation rates and that CREBBP regulates BRCA1 using a post-transcriptional mechanism in BMDMs.
DISCUSSION

We show that mice deficient of Crebbp in the bone marrow present with a previously undescribed lethal

systemic immune disorder that manifests as a fully penetrant, severe dermatitis and alopecia. This is consis-

tent with a previous study that showed that a T-reg-specific double knockout of Crebbp and its paralog,

p300, results in an early-onset lethal autoimmune disease that includes dermatitis (Liu et al., 2014). In

the latter study, absence of Crebbp alone in T-reg cells did not result in severe autoimmunity, which sug-

gests that systemic inflammatory disease in the Vav1-iCre;CrebbpF/F mice herein involves Crebbp defi-

ciency in a broader set of immune cell types. It is clear from our studies, as well as earlier reports (Kasper

et al., 2006), that Crebbp deficiency disrupts T cell homeostasis beyond T-reg function as shown with in-

crease in CD8 single-positive cells in thymus. Whether this translates to elevation in CD8-positive autoreac-

tive and effector T-cells to mediate full-blown skin disease needs further investigation. A role for neutro-

phils in autoimmune disease has been reported (Nemeth and Mocsai, 2012). Therefore, presence of

granulocytes in the dermal layers prior to skin abnormalities may potentiate later phases of autoimmune

processes. Finally, it is also possible thatCrebbp-deficient mice display impaired wound healing responses

in the event that hematopoietic loss of Crebbp disrupts M2 macrophages differentiation or function.

Crebbp deficiency also led to a much earlier and more severe myeloproliferative phenotype compared

with previous reports in older haploinsufficient mice (Kung et al., 2000; Rebel et al., 2002; Zhou et al.,

2016; Zimmer et al., 2012). This further confirms the importance of Crebbp in hematopoiesis and
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Figure 5. Decreased BRCA1 Protein Levels in CREBBP-Deficient Tissue

(A–C) Crebbp-deficient thymus has decreased levels of (A) Brca1 mRNA and (C) BRCA1 protein. Crebbp-deficiency in Vav1-iCre; CrebbpF/F thymus was

verified by (B) qPCR and (C) western blot.

(D) and (E) show densitometry of western blot signal in thymus.

(F–H) (F) BMDMs harvested after 6 days of culture in granulocyte-macrophage colony stimulating factor (GM-CSF) (20 ng/mL) from Crebbp-deficient bone

marrow-derived macrophages (BMDMs) show similar Brca1mRNA in all genotypes but (H) lower BRCA1 protein. Crebbp deficiency in Vav1-iCre;CrebbpF/F

BMDMs was verified by (G) qPCR and (H) western blot.

(I) and (J) show densitometric analysis of BMDM western blot data. Thymus Brca1mRNA was measured in WT (n = 10) and Vav1-iCre; CrebbpF/F(n = 5) mice.

Thymic BRCA1 protein was measured in WT (n = 6) and Vav1-iCre; CrebbpF/F(n = 6) mice. BMDM Brca1 mRNA was measured in WT (n = 5) and Vav1-iCre;

CrebbpF/F(n = 5) mice. BMDM BRCA1 protein was measured in WT (n = 4) and Vav1-iCre;CrebbpF/F mice (n = 5).

Values represent means G SEM. Statistical significance was assessed using a two-tailed Student’s t test (***p < 0.001, ****p < 0.0001).
supports earlier studies that show that Crebbp acts as a key immune modulator of inflammatory cell ac-

tivity and differentiation in the bone marrow (Chan et al., 2011; Lennard Richard et al., 2016; Liu et al.,

2013, 2014). Our data suggest that loss of Crebbp results in HSC mobilization, evidenced by HSC pop-

ulation balance shifting from bone marrow to spleen, as well as a consistent granulocytosis. The neutro-

philia and monocytosis was a fully penetrant phenotype present before full-blown skin disease, suggest-

ing that leukocytosis in Crebbp-deficient mice is an inherent, rather than acquired (e.g., infection),

condition. Therefore, it is attractive to speculate that Crebbp is required to prevent inappropriate

HSC mobilization and that modulating Crebbp may be a mechanism to regulate hematopoiesis and

innate immune responses.

The abundance of splenic HSCs in our Crebbp-deficient mice show that Crebbp is not required to maintain

an adequate pool of HSCs per se. This differs from previous reports that Crebbp displays cell autonomous

and non-autonomous haploinsufficiency in bone marrow to maintain functional self-renewing HSCs (Rebel

et al., 2002; Zimmer et al., 2011). These conclusions were based on reduced secondary transplant efficiency

associated with lower LSK CD34-populations in the bonemarrow ofCrebbp heterozygousmice. Similarly, a

later study showed that deletion of Crebbp in adult HSC also resulted in a lower reconstitution capacity as
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well as decreased frequency of LSK CD34-Flt3- cells that was independent of mobilization to the spleen

(Chan et al., 2011). A possible reason for the discrepancy between our and earlier splenic HSC quantifica-

tion is that we confine our estimation to the LSK CD150+CD48- (Kiel et al., 2005) population that is more

enriched for self-renewing HSCs, rather than multipotent and early progenitors, used in earlier studies.

Owing to the mixed background of our mice in this study, we were unable to address the transplant repo-

pulation capacity of Crebbp-deficient HSCs.

We show that co-deletion of tumor suppressorsCrebbp and Brca1 in bonemarrow results in shortened life-

span compared with the already reduced survival of single knockouts. The advanced pancytopenia in DKOs

highlights an ability of Crebbp to compensate for Brca1 at an early stage of hematopoiesis. BRCA1 defi-

ciency in cells is often associated with DNA damage-induced apoptosis that arises from defects in multiple

pathways of DNA repair, including nuclear excision repair (Hartman and Ford, 2002), transcription-coupled

repair of oxidative DNA damage (Abbott et al., 1999), homologous recombinational repair (Moynahan

et al., 1999; Snouwaert et al., 1999), and non-homologous end-joining (Baldeyron et al., 2002; Zhong

et al., 2002a, 2002b). Since Crebbp has recently been shown to maintain genomic integrity during lineage

specification of hematopoietic cells (Horton et al., 2017), CREBBP may partially compensate for defective

DNA repair in Brca1-deficient HSCs and progenitors. We hypothesize that combined deletion of Brca1 and

Crebbp results in more severe global DNA damage than with Brca1 and Crebbp single knockouts and that

accelerated accumulation of genomic abnormalities leads to accelerated cell death rather than transforma-

tion. We therefore hypothesize that complete inhibition or loss of both tumor suppressors in blood cancers

may be synthetic lethal, and if it is, this concept could be exploited to develop therapeutic targets of each in

either Brca1- or Crebbp-deficient cancers.

Finally, we show that BRCA1 protein is altered in Crebbp-deficient hematopoietic tissue. In thymus,

decreased BRCA1 protein in Crebbp-deficient thymus correlates with decreased Brca1 mRNA, which is

consistent with prior reports that Brca1 is under transcriptional regulation by Crebbp (Ogiwara and Kohno,

2012). In contrast, Crebbp-deficient BMDMs have decreased BRCA1 protein with no significant decrease in

Brca1 mRNA, suggesting the possibility of post-transcriptional regulation of BRCA1 protein by CREBBP.

Although our data show that BRCA1 levels are decreased in CREBBP-deficient hematopoietic tissue, our

in vivo data do not support a simplistic hypothesis that Crebbp-deficient phenotypes arise owing to loss

of BRCA1 protein. It is interesting to speculate that reduced leukocytosis with Brca1 heterozygosity in

Crebbp-deficient mice (Figures 4B–4D) may reflect a reduction of BRCA1 protein below haploinsufficient

levels that occurs in WT mice.

The compensatory roles for Brca1 and Crebbp will lead us to further investigate how these tumor suppres-

sor genes cooperate in developmental systems and how heterozygosity of pathogenic mutations in each

gene contributes to tumorigenesis that results from the loss of the other.

Limitations of the Study

Key limitations of this study relate to the poor health of Crebbp/Brca1 DKOmice. The number of surviving

DKO mice was low, and this limited statistical power for more in depth in vivo analyses. For example, since

hematopoietic tissue was depleted we could not expand primary cells in culture or perform extensive

biochemical analyses. Inducible systems will circumvent early lethality and allow for the comparison of

the acute effects of co-deleting both genes in vivo as well as in culture. Another significant limitation

was our inability to assess HSC self-renewal capacities with transplantation experiments as the Crebbp

allele was obtained from a mixed background.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.08.031.
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Figure S1. Crebpp deficiency in bone marrow does not result in thrombocytopenia (Related 
Figure
A) No difference in bone marrow cellularity between control (WT) and F/F mice. B) Platelets were not 
different between WT (Vav1-iCre negative, open circles) and Vav1-iCre;CrebbpF/F mice (grey circles) 
at young (4-8 weeks) or adult (>8-24 weeks) age. Numbers are the same as in Figure 2 for other 
CBC parameters. Values represent mean ±SEM. Statistical significance was assessed using a two-
tailed Student’s t test (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).
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Figure S2. Crebbp/Brca1 DKO mice have decreased absolute bone marrow progenitor counts.  
A-G) Flow cytometric analysis of A) CMP, B) GMP, C) GM, D) B-cell progenitor, E) T-cell progenitor, 
F) MEP, and G) erythroid progenitor absolute counts from 4-8 week old Vav1-iCre Brca1F/F;CrebbpF/F 

DKOs (n=4) compared to age-matched littermate controls (n=15). Values represent mean ±SEM. 
Statistical significance was assessed using a two-tailed Student’s t test (*p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001).
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Figure S3. Validation of BRCA1 protein signal in mouse tissue. Specificity of 
BRCA1 western blot signal with mouse reactive anti-BRCA1 Santa Cruz antibody 
SC287-17 was verified using a humanized BRCA1 mouse model as a negative control. 
Conversely, presence of BRCA1 in thymus of humanized BRCA1 mice was detected 
with human reactive MS110.
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Figure S4. Flow cytometric analysis of Crebbp-deficient thymus shows abnormal T-cell 
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double negative cells in thymus of WT and Vav1-iCre; CrebbpF/F mice was compared using flow 
cytometry. Values represent mean ±SEM. Statistical significance was assessed using a two-tailed 
Student’s t test (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001) (n=5 for each genotype).
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Figure S5. Evaluation of cell type purity in WT and Crebbp-deficient bone marrow derived 
macrophages (BMDMs). Mature BMDMs from WT and Crebbp-deficient mice harvested after 6 days of 
culture in GM-CSF (20ng/ml) showed similar variation in real time QPCR detection of A) dendritic cell 
(CD11c) and B) macrophage-specific (F4/80) markers in both WT and Vav1-iCre; CrebbpF/F. C) Propridium
iodide stain and flow cytometric analysis of cell cycle of matured BMDMs from WT and Vav1-
iCre;CrebbpF/F mice showed similar fraction of cells in G1, G2 and S phases. Values represent mean 
±SEM. Statistical significance was assessed using a two-tailed Student’s t test (*p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001), (n=4-5).
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Pheno-
type 

germline 
or  
cre driver 

Crebbp 
allele 

  Previous studies 
Current study: Vav1-
iCre;CrebbpF/F, 4-8 weeks of 
age (unless otherwise noted) 

H
S

C
s

 

germline 
Heterozygous 
deletion 

(Rebel et 
al., 2002) 

Crebbp is necessary for HSC self-
renewal. Number of functional HSCs 
(LSK CD34-) was lower in >9 months 
mice and have reduced self-renewal 
capacity during serial transplantation.  

Crebbp is not required to maintain 
an adequate pool of HSCs per se. 
Reduced BM HSC frequencies 
(CD150+CD48-Lineage-Sca-
1+ckit+;CD150+CD48-LSK) was 
seen in 4-8 week old mice, with 
increased SP HSC frequencies 
suggesting HSC mobilization or 
extramedullary hematopoiesis 
(EMH). The discrepancy with 
previous reports may be because 
this HSC population is highly 
enriched for self-renewing HSCs, 
rather than multipotent and early 
progenitors (Kiel et al., 2005). 
Due to the mixed background of 
our mice in this study, we were 
unable to address the transplant 
repopulation capacity of Crebbp-
deficient HSCs.  

germline 
Heterozygous 
deletion 

(Zimmer 
et al., 
2012) 

Crebbp+/ 9-12 old mice showed 
decreased long-term HSCs (LSK 
CD34-). 

MX1-cre 
biallelic 
deletion 

(Chan et 
al., 2011) 

Ablation of Crebbp in hematopoietic 
tissues of adult mice reduced BM 
HSC (LSK CD34-Flt3-) frequencies, 
with no change in spleen HSC 
frequencies. Reduction of HSC-
enriched population led to exhaustion 
of HSCs upon serial transplantation 
and replicative stress. 

 

     

M
y
e
lo

p
ro

li
fe

ra
ti

o
n

 

germline 
Heterozygous 
deletion 

(Kung et 
al., 2000) 

Crebbp is important for maintaining 
normal levels of early progenitors of 
the myeloid lineage. Increased 
myeloid (Mac1+Gr+) and erythroid 
(TER119+) progenitors in the spleen 
in old (>12 months) mice with 
splenomegaly. These mice also 
showed decreased BM cellularity and 
modest but significant decreases in 
BM hematopoietic cell types and 
significant increase in myeloid cells in 
PB. No changes in BM cellularity 
observed at 8 weeks of age. 

Ablation of Crebbp leads to 
myeloproliferation. By 4-8 weeks 
of age, Vav1-iCre;CrebbpF/F mice 
show increased myeloid 
progenitors (CMP, GMP, 
gran/mono late) in both BM and 
SP. Also, increased MEPs in BM 
and SP. Increased late erythroid 
progenitors in BM. Leukocytosis 
seen at 4-8 weeks of age with 
increased WBCs (NE, MO, EO) in 
PB. However, lymphocyte counts 
were normal. 

germline 
Heterozygous 
deletion 

(Zimmer 
et al., 
2011) 

Crebbp is necessary for maintaining 
the normal BM microenvironment, 
and it's deficiency leads to 
myeloproliferation. Five months after 
transplantation, irradiated Crebbp+/- 
mice transplanted with WT BM show 
increased myelopoeisis (increased 
myeloid cells in BM). They already 
saw increased myeloid cells in PB, 8 
weeks after transplantation. 

MX1-cre 
biallelic 
deletion 

(Chan et 
al., 2011) 

Peripheral myeloid cells trended to 
increase at 4-weeks post pIpC 
treatment (6-10 week old mice were 
treated with pIpC for 10 days) and 
show a significant increase at 28 
weeks. Increase in myelpoid 
progenitor to LSK CD34-Flt3- ratio. 
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Pheno-
type 

germline 
or cre 
driver 

Crebbp 
allele 

  Previous studies 
Current study: Vav1-
iCre;CrebbpF/F, 4-8 weeks of 
age (unless otherwise noted) 

L
y
m

p
h

o
c
y
te

s
/T

h
y
m

u
s

 

CD19-cre 
biallelic 
deletion 

(Xu et al., 
2006) 

Impaired B-cell maturation. Loss of 
Crebbp at Pro-B cell stage lead to 
moderate decreases in B-cell number 
in PB and SP, with no changes in T-
cell number. Although no significant 
alteration in ProB and PreB ratios 
were seen in BM, there was a 
decrease in mature B cells. 

No change in lymphocyte counts 
in PB.  Increased CD3+ T-cell 
progenitors in BM and SP. 
Reduced ProB/PreB-cell 
frequencies (CD43-
B220hi/B220lo) in BM with less of 
an effect in spleen. In thymus 
significant decrease in 
CD4+/CD8+ double positive cell 
frequencies with a shift toward a 
higher frequency of CD4-/CD8- 
double negative and CD8+ single 
positive cells compared to WT. 

germline 
Heterozygous 
deletion 

(Zimmer 
et al., 
2011) 

Impaired B-cell maturation. When WT 
BM were transplanted into lethally 
irradiated Crebbp+/- mice, the 
frequency of BM B-cells (B220+) was 
found to be decreased 5 months after 
transplantation.  

Lck-Cre 
biallelic 
deletion 

(Kasper 
et al., 
2006) 

Deletion of Crebbp in CD4-/CD8- 
double negative thymocytes leads to 
defective B- and T-cell development 
in adult mice, specifically a decrease 
in CD4+/CD8+ double positive 
thymocytes and an increase in CD8+ 
single positive thymocytes. 

germline 
Heterozygous 
deletion 

(Kung et 
al., 2000) 

Reduced B cell counts in PB and 
modest but significant decrease in 
colony forming capacity of pre-B and 
myeloid progenitors. Reduced B and 
T progenitors in BM. Some B and T 
cell abnormalities were apparent by 3 
months of age. 

 

     

In
fl

a
m

m
a
to

ry
 

d
is

o
rd

e
r 

Foxp3-cre 
biallelic 
deletion 

(Liu et al., 
2014) 

Double knockout of Crebbp and its 
paralog p300 in T-reg cells results in 
an early-onset lethal autoimmune 
disease that includes dermatitis. 
Absence of Crebbp alone in T-reg 
cells did not result in autoimmunity.  

Lethal systemic immune disorder 
and associated severe dermatitis 
and alopecia seen by 4-5 weeks 
of age.  
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Pheno- 
type 

germline 
or cre 
driver 

Crebbp allele   Previous studies 
Current study: Vav1-
iCre;CrebbpF/F, 4-8 weeks of 
age (unless otherwise noted) 

H
e
m

a
to

p
o
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ti

c
 m

a
li
g

n
a
n

c
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s
 germline 

Heterozygous 
deletion 

(Kung et 
al., 2000) 

Hematologic neoplasias with advanced  
age; of Crebbp+/- mice between 10  
and 21 months of age, 39% either 
developed hematologic neoplasia with  
leukemia and tumors of hematopoietic 
origin or harbored tumorigenic cells.  Due to the sever skin phenotype, 

Vav1-iCre;CrebbpF/F mice had to 
be terminated at a young age 
(median survival 86 days). 
Neither Vav1-iCre;CrebbpF/F nor 
Vav1-iCre;CrebbpF/+ mice  
developed leukemias or other 
hematological neoplasias by 4-8 
weeks of age. 

CD19-cre 
biallelic 
deletion 

(Xu et al., 
2006) 

Loss of Crebbp at Pro-B cell stage 
does not result in B-cell lymphomas, 
although there was increased death 
due to unknown causes after 1 year 
of age. 

germline 
Heterozygous 
deletion 

(Zhou et 
al., 2016) 

Adult Crebbp+/- mice or WT mice 
transplanted with Crebbp+/- BM 
develop myelodysplasia, acute 
myeloid leukemia (AML), and 
myelodysplastic syndrome (MDS). 

germline 
Heterozygous 
deletion 

(Zimmer 
et al., 
2012) 

Adult Crebbp+/- mice (9-12 months) 
develop dysplastic features. 

T
h
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m

b
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c
y
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p
e

n
ia

 

MX1-cre 
biallelic 
deletion 

(Chan et 
al., 2011) 

Thrombocytopenia was seen in 
adulthood. 

No thrombocytopenia was seen in 
young (4-12 week) or adult (8-24 
weeks) mice. 

 
  



 
TRANSPARENT METHODS 

 

Transgenic Mice. The Brca1F22-24 (McCarthy et al., 2007), Crebbpf/f (Kang-Decker et al., 2004), Vav1-
iCre (Georgiades et al., 2002) Brca1BRCA1 (Mgbemena et al., 2017) alleles have been previously 
described and are distributed by Jackson Labs. Mice were housed in the Unit for Laboratory Animal 
Medicine at the University of Texas Southwestern Medical School under specific pathogen-free 
conditions. All mouse experiments were conducted after approval of the UT Southwestern Medical Center 
Committee on the Use and Care of Animals. 
 
Genotype analysis. Mice were genotyped from tail snips using Real-Time PCR assays designed by 
Transnetyx.  
 
Histology. Mice were necropsied and tissue fixed in 4% paraformaldehyde (PFA). Sections were stained 
with H&E (UT Southwestern Histo Pathology Core). 
 
Hematopoietic analysis. Complete blood cell count analysis was performed on peripheral blood using 
the Hemavet 950 with MULTI-TROL Mouse as an equilibration control (Drew Scientific). For flow 
cytometry bone marrow were isolated by flushing the long bones (femurs and tibias) in Ca2+ and Mg2+ free 
Hank’s buffered salt solution (Corning) supplemented with 3% heat-inactivated bovine serum (Gibco). 
Spleens and thymus were prepared by crushing tissue. All cells were filtered through a 40-μm cell strainer 
to obtain single cell suspensions. Single-cell suspensions of splenocytes and bone marrow cells, but not 
thymus, were depleted of mature red blood cells by hypotonic lysis with ACK lysis buffer (Thermo Fisher). 
Cell number was determined by manual counting on a hemocytometer. Flow cytometric analysis of 
specific hematopoietic progenitors was performed as previously described (Foley et al., 2013; Mgbemena 
et al., 2017).  Bone marrow and spleen cells were analyzed for lineage (CD3, B220, Mac-GR1, Ter119), 
progenitor (lin-,Sca-,c-kit+, CD16/32+), and HSC (lin−, Sca+, cKit+, CD48- CD150+) markers and thymus 
T-cell lineages were determined with CD4+ and CD8+ using the FACSCanto II  RUO flow cytometer (BD). 
Data was analyzed using FlowJo Software. BMDM purity was determined by real time QPCR using 
Taqman probes (Invitrogen) for macrophage marker F4/80 and dendritic cell marker CD11c.  
 
Cell culture and reagents. For BMDM cultures, bone marrow cells were isolated by spinning the long 
bones (femurs and tibias) cut at the ends at 8,000g for 2 mins. Cells were filtered through a 70-μm cell 
strainer to obtain single cell suspensions. Cell number was determined by manual counting on a 
hemocytometer. The bone marrow cells were suspended in RPMI-1640 (Gibco) containing 1% L-
glutamine, 1% Pen/Strep, 20% FBS and 20 ng/mL GM-CSF (Shenandoah Biotech). Cells were plated at 
0.5 x 106 cells per well in 6-well plates. Cells were incubated for 6 days at 37 °C and 5% CO2 with 
medium change on day 3. 
 
Cell cycle analysis. For cell cycle analysis, BMDMs were trypsinized, ethanol fixed, and stained with 80 
μg/mL propidium iodide (PI) (Sigma) for 20 mins at room temperature. Flow cytometry data were acquired 
on a FACS LSRFortessa SORP (Becton Dickinson) and were analyzed using FlowJo software. 
 
RNA isolation and quantitative real time PCR. RNA was isolated using TRIzol reagent (Invitrogen) 
according to manufacturer’s instructions. RNA concentrations were quantified with the Nanodrop 2000 
Spectrophotometer (Thermo Scientific). cDNA was generated from 1ug of total RNA using iScript Reverse 
Transcription Supermix (BIO RAD). Real-time PCR was run using Taqman probes (Invitrogen) in an ABI 
7300 real time PCR machine (Applied Biosystems). GAPDH was used as an internal control and the 
ΔΔcT method was used to calculate fold changes in expression. 
 
Total protein extraction and Western blotting. For total BMDM protein extraction, cells were rinsed 
once in cold 1X PBS, lysed in ice-cold lysis buffer (50mM Tris pH7.4, 250mM NaCl, 25mM EGTA, 100mM 
MgCl2, 1%Triton X-100, 10% glycerol) with protease inhibitors (Complete tablets, Roche) for 1hr, 

sonicated, and cleared of insoluble components by centrifugation at 16,000g at 4 C for 30 mins. Mouse 

thymic tissue was prepared in RIPA lysis buffer (Cell Signaling Technology) supplemented with 50mM 
NaF, 0.1% SDS, 1mg/ml Pefabloc, 1mM PMSF, and protease inhibitors (Complete tablets, Roche). 
Tissues were homogenized in cold lysis buffer with an electric homogenizer, sonicated, and spun at 4°C.  



Approximately 20-80 ug of protein was resolved by SDS-PAGE (6% or 10% Tris-glycine gels) and 
transferred to PVDF membrane (Perkin Elmer) using a wet electroblotting system (BIO RAD). Membranes 
were blocked in 5% (w/v) dry milk in PBS-Tween-20 (0.5% v/v) and probed with appropriate primary 
antibodies. Blots were incubated with horseradish peroxidase (HRP)-conjugated mouse or rabbit 
secondary antibodies (1:5,000; GE healthcare). Signals were detected using ECL (Pierce). HIP1, ACTIN, 
TUBULIN, or VINCULIN were used as loading controls. Western blot protein bands were quantified using 
ImageJ Software (NIH). 
 
Antibodies. All antibodies were used at 1:1000 dilution unless otherwise specified. Antibodies used 
were: mouse monoclonal anti-ACTIN (Cell Signaling), mouse monoclonal anti-human BRCA1 (16780 
[ms110], Abcam), mouse monoclonal anti-mouse BRCA1 (sc287.17, Santa Cruz Biotechnology, 1:350), 
rabbit polyclonal anti-CREBBP (sc-369 [A-22], Santa Cruz Biotechnology), mouse monoclonal anti-HA 
(2367 [6E2], Cell Signaling Technology), mouse monoclonal anti-HIP1 (Rao et al., 2002) ), rabbit 
polyclonal anti-TUBULIN (2144, Cell Signaling Technology, 1:5,000), rabbit polyclonal anti-VINCULIN 
(E1E9V, Cell Signaling Technology, 1:10,000). 
 
Statistical Analysis. All statistical analysis was made using GraphPad Prism 6 software (GraphPad 
Software, Inc.). All data represent mean ±SD or SEM. 
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