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Abstract

Estimating cropland latent heat flux (LE) from continental to global scales is vital to modeling

crop production and managing water resources. Over the past several decades, numerous

LE models were developed, such as the moderate resolution imaging spectroradiometer LE

(MOD16) algorithm, revised remote sensing-based Penman–Monteith LE algorithm (RRS),

the Priestley–Taylor LE algorithm of the Jet Propulsion Laboratory (PT-JPL) and the modi-

fied satellite-based Priestley-Taylor LE algorithm (MS-PT). However, these LE models have

not been directly compared over the global cropland ecosystem using various algorithms. In

this study, we evaluated the performances of these four LE models using 34 eddy covari-

ance (EC) sites. The results showed that mean annual LE for cropland varied from 33.49 to

58.97 W/m2 among the four models. The interannual LE slightly increased during 1982–

2009 across the global cropland ecosystem. All models had acceptable performances with

the coefficient of determination (R2) ranging from 0.4 to 0.7 and a root mean squared error

(RMSE) of approximately 35 W/m2. MS-PT had good overall performance across the crop-

land ecosystem with the highest R2, lowest RMSE and a relatively low bias. The reduced

performances of MOD16 and RRS, with R2 ranging from 0.4 to 0.6 and RMSEs from 30 to

39 W/m2, might be attributed to empirical parameters in the structure algorithms and cali-

brated coefficients.

Introduction

Latent heat flux (LE) plays a key role in the energy and water cycles in agricultural ecosystems

[1, 2]. a large number of studies have shown that LE is a vital variable for developing precise

irrigation scheduling and enhancing water use efficiency in agricultural production due to the

close relationship between soil water depletion and the rate of evapotranspiration (equivalent
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to LE) [3–6]. Quantifying water flux and energy exchange is vital for identifying cropland soil

water, estimating crop factors and modeling crop production[7].

Numerous models for estimating LE have been developed, ranging from relatively simple

and empirical models to move complex process level mechanistic models. The models can be

grouped into the following three classes.

(1) Empirical models; Empirical models for which extensive efforts were made to seek the

relationships between the LE and environmental control factors. Based on long-term observa-

tions of the global LE, Wang et al., 2007 [8] used the structure pattern of the Penman equation

to develop an empirical model with the inputs of surface incident solar radiation, aerodynamic

air temperature and surface skin temperature. Similar empirical correlations could also be

found in crop coefficient methods, which link LE to potential LE, with empirical parameters

based on vegetation conditions. Gordon et al. (2005) [9] used crop coefficient methods to esti-

mate the global monthly vapor flow of different vegetation types.

(2) Mechanistic models; Mechanistic models describes the physical process of LE from soil

surface and vegetative surface to atmosphere such as the Penman-Monteith (P-M) equation

[10]. The MODIS LE product algorithm [11, 12] is an example of P-M-based model. Based on

the Penman equation, many empirical or mechanistic methods were developed in the past

decades. Priestley et al. (2009) [13] presented a simplified version method for when surface

areas are generally wet. Fisher et al. (2008) [14] used this equation with atmospheric (RH and

saturation vapor pressure deficit (VPD)) and eco-physiological (FPAR and LAI) to actual ET

(ET, equivalent to LE).

(3) Fusion methods, which include multiple models based on assimilation or fusion meth-

ods. Liu et al. (2013) [15] used data assimilation schemes with the Ensemble Kalman Filter

algorithm to improve the sensible and latent heat flux prediction of the community land

model (CLM). Pipunic et al. (2008) [16] found that the extended Kalman assimilation filter

could improve LE estimation. Yao et al. (2014) [17] used the Bayesian average model to inte-

grate five LE models using ground observation and satellite data. Although these methods

were widely used to estimate regional or global LE, the results might differ substantially due to

different model structures and empirical input parameters.

Previous studies mainly concentrated on evaluating cropland LE at the regional scale, with

few ground observations. Yang et al. (2014) [18] calculated the latent heat flux of the semi-arid

farmland in the Loess Plateau. The results showed that the diurnal variation of LE had a peak

value in August (151.4 W/m2) and that radiation is the leading control factor of farmland LE

in the Loess Plateau. Ding et al. (2015) [19] developed a semi-empirical method-based Priest-

ley-Taylor model with leaf area, soil moisture, mulching fraction and leaf senescence to esti-

mate the crop coefficient and evapotranspiration in an irrigated maize field with mulching in

Northwest China. Allen et al. (2000) [20] used the FAO-56 “dual” crop coefficient method to

calculate daily ET at a cotton field site and a farm site in Turkey. Ershadi et al. (2014) [21] com-

pared four LE models, including the Surface Energy Balance System model (SEBS), single-

source Penman-Monteith model (P-M), advection-aridity model (AA) and Priestly-Taylor

model, over a cropland ecosystem based on FLUXNET sites. Byun et al. (2014) [22] compared

SEBS and modified SEBS at a rice paddy cropland site. Singh and Senay (2015) [23] compared

Mapping Evapotranspiration at high Resolution with Internalized Calibration (MERTIC), the

Surface Energy Balance Algorithm for Land (SEBAL), SEBS, and the Operational Simplified

Surface Energy Balance (SSEBop) model for three AmeriFlux cropland sites in Mead,

Nebraska. Complex land surface condition such as surface topography, changes of regional

environment, model structures and lack of local data calibration often limited the comparison

of LE models at the global scale. However, accurate global estimation of LE is essential for

quantification of the water balance for water resources management and optimizing crop
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production [22]. Therefore, long-term spatial distributions and trends of LE based on different

LE models in cropland ecosystems at the global scale under various climatic conditions are still

needed.

In the present study, we evaluated four LE models, including MODIS Algorithm (MOD16),

Revised Remote Sensing-Based Penman–Monteith LE Algorithm (RRS), Priestley–Taylor

Algorithm (PT-JPL) and Modified Satellite-Based Priestley–Taylor Algorithm (MS-PT), using

the LE measurements from thirty-four eddy covariance sites over cropland ecosystems, and

results from temporal trend and spatial distribution of the estimated cropland LE by satellite-

based observations. The objectives of this study were as follows: (1) compare LE algorithm per-

formances over cropland ecosystems based on 34 flux tower sites provided by the EC towers

network and (2) analyze the differences in the temporal and spatial patterns of LE over the

global cropland ecosystem during 1982~2010.

Datasets

2.1. Ground EC data

Ground data collected from 34 EC towers of FLUXNET, Asiaflux, Ameriflux were used for the

analysis. We used the FLUXNET data provided by FLUXNET community (http://fluxnet.

fluxdata.org/data/la-thuile-dataset/). The radiation data included continuous series of half-

hourly incident solar radiation (Rs, W/m2), surface net radiation (Rn, W/m2), sensible heat

flux (H, W/m2), latent heat flux (LE, W/m2) and ground heat flux (G, W/m2). The meteorolog-

ical data included continuous series of half-hourly incident relative humidity (RH), air temper-

ature (Ta, K), diurnal air temperature range (ΔT, K), wind speed (Ws, m/s) and vapor pressure

(e, Pa). The meteorological data and radiation data provided input variables, while ground-

measured LE were used as the validation [24, 25]. We converted the half-hourly data into daily

data. Quality control and gap-filling techniques were utilized to strengthen the quality of the

data sets. The tower sites covered main cropland ecosystems over Europe, Asia and America.

The data were selected to cover the period of 2000–2009, with at least one year of data available

(Table 1).

Although it is ideal to measure LE using the EC technique, the sum of H and LE was overall

less than the available energy. EC sites underestimated LE, and an H flux was generally

observed over most EC sites in Europe and North America [25]. Twine et al. (2000) [26] also

reported the energy closure problem based on the Southern Great Plains 1997 Hydrology

Experiment; the closure issue became more significant upon consideration of the long-term

water balance. Therefore, we used the method provided by Twine et al. to eliminate the effect

of the unclosed energy problem.

LEc ¼
ðRn � GÞ
ðLEo þ HoÞ

� LEo ð1Þ

where LEc is the corrected LE flux; Ho and LEo are the uncorrected sensible heat flux and LE

flux, respectively.

NDVI and FPAR values for the EC sites were derived from AVHRR products. The AVHRR

NDVI data were downloaded using the ftp link (http://ecocast.arc.nasa.gov/data/pub/gimms/).

LAI values were obtained from the GLASS product. GIMMS NDVI data at a 0.833-degree spa-

tial resolution were used for model verification at the EC sites. FPAR data were calculated

using the method proposed by Myneni and Williams (1994) [27]; this method was verified in

various ecosystems [28]. The GLASS data can be found on the web site.
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2.2. Satellite and reanalysis datasets

When estimating LE at regional scale for the physically based LE algorithms, we obtained

AVHRR products, including bimonthly GIMMS NDVI and UMD Land Cover data with 1 km

spatial resolution. We used the MODIS products with 0.05-degree spatial resolution, including

annual land-cover type (MCD12C1). We also used the monthly LAI product (GLASS01B01),

with 0.05-degree spatial resolution, from the GLASS datasets. The digital elevation model

(DEM) product was obtained from the SRTM30 dataset. The DEM data can be found on the

web site (https://dds.cr.usgs.gov/srtm/version2_1/SRTM30/). We used MERRA datasets for

1982–2010 to obtain daily radiation and meteorological data, including Rs, Rn, RH, Ta, ΔT

and Ws. The MERRA dataset is a NASA reanalysis for the satellite era that uses a new version

Table 1. Characteristics of validation data at the EC sites.

Site Name country lata lona year

BE-Lon Belgium 50.55 4.74 2004–2006

CH-Oe2 Switzerland 47.29 7.73 2005

CN-Du1 China 42.05 116.67 2006

CW China 35.25 107.68 2008–2009

DE-Geb Germany 51.10 10.91 2004–2006

DE-Kli Germany 50.89 13.52 2004–2006

DK-Fou Denmark 56.48 9.59 2005

DK-Ris Denmark 55.53 12.10 2004–2005

ES-ES2 Spain 39.28 -0.32 2004–2006

FR-Aur France 43.55 1.11 2005

FR-Gri France 48.84 1.95 2005–2006

FR-Lam France 43.50 1.24 2005

GT china 36.52 115.13 2009

HFK Korea 34.55 126.57 2004–2006

IE-Ca1 Ireland 52.86 -6.92 2004–2006

IT-BCi Italy 40.52 14.96 2004–2006

IT-Cas Italy 45.07 8.72 2006

KR-Hnm Korea 34.55 126.57 2004–2006

MSE Japan 36.05 140.03 2001–2003

MY China 40.63 117.32 2008–2009

NL-Lan Netherlands 51.95 4.90 2005–2006

NL-Lut Netherlands 53.40 6.36 2006

SX China 32.56 116.78 2005

TC China 35.08 109.07 2008–2009

TW-Tar China 24.03 120.69 2006–2007

UK-ESa United Kingdom 55.91 -2.86 2003–2005

UK-Her United Kingdom 51.78 -0.48 2006

US-ARM United States 36.61 -97.49 2003–2006

US-Bo1 United States 40.01 -88.29 2000–2007

US-Bo2 United States 40.01 -88.29 2004–2006

US-IB1 United States 41.86 -88.22 2005–2007

US-Ne1 United States 41.17 -96.48 2001–2005

US-Ne2 United States 41.16 -96.47 2001–2005

US-Ne3 United States 41.18 -96.44 2001–2005

a Lat is latitude and lon is longtitude.

https://doi.org/10.1371/journal.pone.0183771.t001
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of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). It has

been reported that the MERRA dataset produced comparable results for global and energy

cycle research [29]. We obtained MERRA data from the Goddard Earth Science Data and

Information Services Center web site (https://gmao.gsfc.nasa.gov/reanalysis/MERRA/).

Considering the different temporal and spatial resolutions of the input data, including daily

MERRA (½ degree latitude × degree longitude spatial resolution), bimonthly GIMMS NDVI

(0.833-degree spatial resolution), UMD Land Cover data (1-km spatial resolution), and

monthly MODIS (0.05 degrees), we averaged the daily MERRA data and bimonthly GIMMS

NDVI to yield monthly data sets. For the land cover classification, we used the UMD Land

Cover data before 2001 and MCD12C1 after that. We spatially interpolated coarse resolution

MERRA data and GIMMS NDVI to the resolution of 0.05 degrees using a spatial linear inter-

polation scheme. Adjustments were made to ensure all inputs parameters in LE models had

consistent temporal and spatial resolutions.

Methods

3.1. LE algorithms

3.1.1. MODIS algorithm (MOD16). The MOD16 algorithm developed by Mu et al.

(2007) [11] was based on the Cleugh et al. (2007) [30] version using the Penman–Monteith

model. Several improvements were made by Mu et al. (2011) [12] as follows: (1) improving the

calculation of the vegetation cover fraction with FPAR; (2) modifying the estimation of aero-

dynamic, boundary-layer, and canopy resistance; (3) calculating the soil heat flux using avail-

able energy; (4) calculating LE based on daytime and nighttime LE; (5) calculating evaporation

from the wet canopy surface and transpiration from the dry surface; (6) calculating evapora-

tion from the saturated soil surface and evaporation from the moist soil surface. Previous vali-

dation results showed that the MOD16 algorithm successfully improved LE estimation using

46 AmeriFlux sites [31]. The MOD16 algorithm was applied to produce MODIS terrestrial LE

using the MODIS products and GMAO daily meteorological dataset.

3.1.2. Revised remote sensing-based Penman–Monteith LE algorithm (RRS). Previous

studies showed that high air temperature significantly decreases leaf stomata, causing struc-

tural defects [32]. Therefore, Yuan et al. (2010) [33] revised the equations dealing with the tem-

perature constraint by accounting for stomata conductance and energy allocation between the

vegetation canopy and soil surface [34]. The Beer–Lambert law was also used to exponentially

partition the net radiation between the canopy and soil surface. Model parameters across dif-

ferent vegetation types were set to be consistent to reduce the effects of misclassification. Vali-

dation results based on 23 EC flux tower sites in China provided by Chen et al. (2014) [35]

showed that the RRS algorithm improved LE estimation compared to the MOD16 algorithm.

3.1.3. Priestley–Taylor algorithm (PT-JPL). Priestley et al. (2009) [13] modified the PM

equation by reducing the complexity of the aerodynamic and surface resistance and adding

empirical parameters to develop a simple LE algorithm. On this basis, Fisher et al. (2008) [14]

created a bio-meteorological method to calculate actual ET (ET, equivalent to LE). The inputs

of this model included net radiation (Rn), normalized difference vegetation index (NDVI), soil

adjusted vegetation index (SAVI), maximum air temperature (Tmax), and water vapor pres-

sure (ea). The total ET includes the canopy transpiration and evaporation from soil and rain

water intercepted by the canopy. Each component flux is determined by eco-physiological fac-

tors or conditions to reduce potential LE to actual LE using the Priestley–Taylor equation.

3.1.4. Modified satellite-based Priestley–Taylor algorithm (MS-PT). To overcome the

computational complexities of aerodynamic resistance parameters, Yao et al. (2013) [36]

revised the Priestley and Taylor equation using an index of soil water deficit calculated using
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the apparent thermal inertia and diurnal temperature range to constrain soil evaporation and

using the revised linear two-source model (N95) to calculate vegetation transpiration. For can-

opy interception, the relative surface wetness index was modified to the fourth power of the

soil moisture constraint. The model only required four inputs, including Rn, Ta, DT, and

NDVI. Validation by Yao et al. (2015) [37] showed that the MS-PT algorithm had good perfor-

mance over global forest biomes. Feng et al. (2015) [38] found that the MS-PT algorithm

improved LE estimation over global grassland, shrubland and savanna.

3.2. Statistical analysis

We compared these models at the global scale using the modern-era retrospective analysis for

research and applications (MERRA) dataset, the Normalized Difference Vegetation Index

(NDVI) and Fractional Photosynthetically Active Radiation (FPAR) from the moderate resolu-

tion imaging spectroradiometer (MODIS) products, the leaf area index (LAI) from the global

land surface satellite (GLASS) products, and the digital elevation model (DEM) from the shut-

tle radar topography mission (SRTM30) dataset to generate LE at the regional scale during

1982~2010.

The four models were first validated at 34 EC towers. We calculated the daily LE using the

meteorological variables collected from EC sites and the NDVI and LAI from the satellite data

(GIMMS NDVI and GLASS01A01). The vegetation index at the EC sites was calculated by

computing the average of the surrounding pixels. Before the comparison, we calculated the

coefficient of determination (R2), RMSE (root mean square error), and average bias for esti-

mated LE to evaluate the model performances. We used Taylor diagrams [39] to analyze the

performance of the four LE models. The Taylor diagrams provided a summary of how well

patterns matched observations in terms of statistical indexes. These statistical indexes included

standard deviations, centered root mean square error and their correlation. The radial distance

from the origin indicated the standard deviations; the cosine of the azimuth angle showed cor-

relation. The standard deviation of simulated patterns is shown to be proportional to the radial

distance from the observed point to the patterns.

For regional estimates of LE, we applied simple spatially interpolated method to the

MERRA data and AVHRR data to match the MODIS spatial resolution. Daily MERRA data

and half monthly AVHRR NDVI data were combined to yield monthly data. After the interpo-

lation process, we calculated LE over a cropland biome from 1982 to 2010 based on four mod-

els. The bias computed by the LE values based on one model minus that of the others was also

calculated.

To estimate the long trend variability of LE, we calculated annual LE using four models and

applied a linear trend analysis [40] using a linear model (y = ax + b), where t, a and b are the

time, slope and intercept of the regression line, respectively. Student’s t-test was used to ana-

lyze and classify the significance of the trend at the 1% and 5% level.

Results

4.1. Models evaluation

All four models explained 50%~76% of the LE variability over all sites (Fig 1). The MS-PT

showed the highest R2 (0.76). The averaged bias for all four models ranged from -14.9 to 2.38

W/m2. Generally, MOD16 showed a slight positive bias and the remaining methods had nega-

tive biases. RRS had the highest negative bias (14.43 W/m2) compared with the other models.

The RMSEs for the four models ranged from 23 to 35 W/m2. The MS-PT showed the lowest

RMSE (23.74 W/m2) compared with the other methods.
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Generally, MS-PT had good overall performance for cropland (Fig 2). This result was consis-

tent with the previous study[36]. In Fig 2, field observation had a standard deviation of 45.95

W/m2. The MS-PT lied close to the origin (field observation) and had a standard deviation of

40.04 W/m2. The correlation coefficient between the observation and MS-PT was 0.87, and the

centered pattern RMS difference between the MS-PT and field observation was 22.44 W/m2.

4.2 Spatial patterns of LE

All models generally correlated well with ground observations of daily LE at most sites [17],

with R2 ranging from 0.4 to 0.9, biases ranging from 15 to 50 W/m2, and RMSE ranging from

Fig 1. LE observed at the EC sites and predicted by the MOD16, RRS, PT-JPL and MS-PT algorithms

during the period of 2000–2009.

https://doi.org/10.1371/journal.pone.0183771.g001

Fig 2. Taylor diagram for LE estimates using four LE algorithms driven by EC sites data. Six points

were plotted on the semi-polar-style graph, with the circle representing the four models and field observation.

https://doi.org/10.1371/journal.pone.0183771.g002
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20 to 50 W/m2 (Fig 3). LE estimates by the four models showed high correlations with ground

observations in humid mild regions such as east of Asia and central Europe, whereas low in

arid and cold regions such the Mediterranean region and west of Asia. Compared with other

methods, PT-JPL and MS-PT were more identical with ground observations [36, 38], espe-

cially at East Asia sites. RRS, PT-JPL and MS-PT had negative bias ranging from 10 to 20 W/

m2 at most sites. MOD16 produced slight positive bias (about 10W/m2) at most sites. MS-PT

had low RMSE ranging from 10 to 40 W/m2 compared with other models.

Generally, the four models showed similar spatial patterns of LE, with high LE in warm and

humid areas and low LE in arid and cold areas (Fig 4). However, some substantial differences

in LE estimates existed among the models. The average annual LE from MS-PT was 36.26 W/

m2, higher than RRS (33.49 W/m2) and MOD16 (35.63 W/m2) and lower than PT-JPL (39.73

W/m2). East of the Ural Mountains near Chelyabinsk, all models showed low LE estimates

ranging from 20~50 W/m2 (Fig 5). In the northwest part of India, the LE was relatively low

(30~40 W/m2), but in the southeast part, the LE was approximately 50~80 W/m2. This might

be attributed to the spatial heterogeneity of available energy and humidity. The largest differ-

ence in LE estimates occurred between the eastern and western parts of Europe. The LE values

in the western part of Europe (40~60 W/m2) were relatively higher than those in the eastern

part (20~40 W/m2). This was likely because the water availability with large-scale atmospheric

circulation influenced LE distribution. All models showed a low LE estimate (20~40 W/m2) in

the northern part of North America and high LE estimate (40~70 W/m2) in the southern part.

We further analyzed the spatial variability of magnitude of inter-model differences in the

LE estimates in different parts of the world (Fig 6). MOD16 showed higher LE than MS-PT in

the northwest part of North America (approximately 0~10 W/m2). However, MOD16

Fig 3. Spatial distribution of the correlation coefficients, RMSE and Bias for estimated daily LE

calculated by MOD16, RRS, PT-JPL and MS-PT over the period of 2000–2009 (S1 File).

https://doi.org/10.1371/journal.pone.0183771.g003
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generated lower LE than MS-PT in the southeast part of North America (approximately 0~10

W/m2). MOD16 showed higher LE values than MS-PT (approximately 0~10 W/m2) in West-

ern Europe. On the contrary, LE estimates by MOD16 were lower than those by MS-PT in

Eastern Europe. LE estimates by MOD16 were lower than those by MS-PT in Asia, except in

Eastern China. Small discrepancies in LE (-10~10 W/m2) were produced by MOD16 and

MS-PT in South America. MOD16 produced higher LE estimates than RRS (10~30 W/m2) in

all regions. Compared with MOD16, PT-JPL showed higher LE estimates (10~30 W/m2), espe-

cially in central North America. However, the LE estimates by PT-JPL were lower than those by

MOD16 (10~30 W/m2) in North India. MS-PT predicted lower LE than PT-JPL (approximately

10~30 W/m2) in all regions, except the northern part of India. Compared with RRS, MS-PT

showed lower LE estimates than RRS in Europe and the eastern part of China. On the contrary,

Fig 4. Estimated annual global terrestrial LE for cropland, averaged for 1982~2010 at a spatial

resolution of 0.05˚, from the four models, driven by MERRA data.

https://doi.org/10.1371/journal.pone.0183771.g004

Fig 5. Estimated annual LE for cropland, averaged for 1982~2010 at different regions, with a spatial resolution of 0.05˚,

from the four models, driven by MERRA data.

https://doi.org/10.1371/journal.pone.0183771.g005
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in Northern India, the LE estimates by MS-PT were higher than those by RRS, with the differ-

ence ranging from 30 to 70 W/m2. These results indicated that the differences of four LE models

are not spatial homogeneous. This might be attributed to different sensitivity of input parame-

ters of LE models in different climatic regimes [41].

4.3 Annual mean and long-term trends

All models showed strong seasonality in LE, and they captured the magnitudes and seasonal

variations of LE (Fig 7). The results indicated that the LE produced by the four models had

similar monthly patterns, with maxima in the summer (62~85 W/m2) and minima in the

winter (11~42 W/m2). However, there were also substantial differences among models. The

PT-JPL predicted the highest LE compared with the other models in spring and summer. The

difference between MS-PT and PT-JPL mainly occurred in spring, when the temperature

changed significantly (Fig 8). MOD16 and RRS almost showed similar magnitudes, with a

slight difference occurring during summer months.

Fig 6. The differences between the four models, averaged during 1982~2010 at a spatial resolution of

0.05˚ from the algorithms, driven by MERRA meteorology data.

https://doi.org/10.1371/journal.pone.0183771.g006

Fig 7. Comparison between the seasonal patterns of LE (W/m2) obtained by MOD16, RRS, PT-JPL and

MS-PT.

https://doi.org/10.1371/journal.pone.0183771.g007
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Similar slightly annual increasing trends in LE estimates from 1982 to 2010 were produced

by the four models (Fig 9). The LE estimates predicated by MOD16, RRS, MS-PT and PT-JPL

were in the range of 31~42 W/m2.

The long-term changes in LE differed among the four models and had different spatial pat-

terns among the four models (Fig 10). All models showed strongly increasing LE in Asia. Spe-

cifically, approximately 46, 49 and 50% of area in Asia were dominated by the increasing trend

in RRS, MOD16 and MS-PT, respectively. However, only 29% of the area was dominated by

the increasing trend in PT-JPL. Generally, all models showed an increasing trend in Northern

India (Fig 11). However, in the northeast part of China and east of the Ural Mountains, MOD16,

RRS and MS-PT showed an increasing trend, while the opposite was found for PT-JPL, with a

slightly decreasing trend. In the Far East Areas of Russia, MOD16, RRS, and PT-JPL simulated

strongly positive LE trends; however, MS-PT showed negative LE trends. In Europe, increasing

trends in LE accounted for approximately 61, 66 and 74%, according to MOD16 and MS-PT.

However, only 45% and 14% of the area was dominated by the increasing trends in RRS and

PT-JPL. Consistent LE increasing trends were found among the four models for Western

Europe. PT-JPL simulated a slightly decreasing trend in Eastern Europe, while increasing ET

trends were indicated by the other four models. In North America, increasing trends in LE

accounted for approximately 16, 27, 33 and 44%, according to the PT-JPL, RRS, MOD16 and

MS-PT, respectively. In the central south of Canada, all models showed an increasing trend. In

Iowa, RRS and PT-JPL showed a decreasing trend. In Australia, no substantial changes were

found by the four models. In South America, only MOD16 showed increasing trends in LE,

which covers approximately 47% of the total area in South America. There is an obvious

Fig 8. Seasonal cropland average LE during 1982~2010. DJF represents December, January, and

February. MAM represents March, April, and May. JJA represents June, July, and August. SON represents

September, October, and November.

https://doi.org/10.1371/journal.pone.0183771.g008

Fig 9. Interannual variations of average LE over the cropland ecosystem during 1982–2010 predicted

by the four models.

https://doi.org/10.1371/journal.pone.0183771.g009
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difference of annual trend between PT-JPL and the other three models. These differences have

connection with climate regime and local climate condition via meteorological parameters such

as relative humidity and diurnal temperature range. These meteorological parameters have

closely relationship with constraint parameters in these algorithms. The MOD16 and RRS gener-

ally adopt these meteorological parameters to calculate canopy resistance and soil resistance but

PT-JPL and MS-PT adopt these parameters to calculate scale factors to downscale potential LE to

actual LE. Relative humidity is used as input in PT-JPL but no used in MS-PT. So the variations

of meteorological parameters related to climate regime cause the difference of annual trend

cause the difference of annual trend among the models.

Discussion

5.1. Model performance

Ground measurements and estimated LE were in good agreement over cropland sites, suggest-

ing that it can be considered as a suitable method for evaluating the cropland LE over a variety

Fig 10. Different weight of long-term cropland LE trends of four models from 1982 to 2010.

https://doi.org/10.1371/journal.pone.0183771.g010

Fig 11. Spatial patterns of long-term cropland LE trends of four models from 1982 to 2010.

https://doi.org/10.1371/journal.pone.0183771.g011
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of climate conditions. The reason might be reduced the number of input parameters, which

only included net radiation, NDVI, air temperature and diurnal temperature range. The fewer

input parameters eliminated the effect caused by input uncertainties. The MS-PT also avoided

the complex calculations of aerodynamic and surface resistance. The good performance of

MS-PT was similar to that of our previous studies [36–38]. Yao et al. (2014) [42] also found

that the MS-PT model improved the LE estimation compared with the 40 EC sites data.

Both MS-PT and PT-JPL were developed based on a simple LE equation for radiation-

and temperature-based equilibrium by Priestley and Taylor [13]. However, the different

performances of the two models might be caused by the different calculations of the

ecophysiological constraint functions. Fisher et al. (2008) [14] calculated relative surface

wetness by squaring relative humidity (RH) twice. However, for MS-PT, the relative surface

wetness was the fourth power of the soil moisture constraint. The soil moisture constraint

in MS-PT was the exponential algorithm of the Apparent Thermal Inertia (ATI). The ATI

was simply estimated as the inverted diurnal temperature range. For PT-JPL, the soil mois-

ture constraint was the exponential algorithm of RH and saturation VPD. Therefore, appre-

ciable differences might occur due to the calculation of actual soil surface evaporation and

actual vegetation transpiration.

The results of MOD16 were generally concordant with the results of RRS. However, there

were small discrepancies in the LE estimates by the two models. This difference might be

attributed to the difference in model structures related to the calculations of surface resistance.

Both LE models used the same controlling factors from VPD and minimum temperature

(Tmin) on stomatal conductance. Mu et al. (2011) [12] calibrated VPD and Tmin for each

biome. However, these variables were different in RRS. Both models used different ways to

partition the net radiation between the canopy and soil surface. For MOD16, the fraction of

absorbed photosynthetically active radiation was a proxy of the vegetation cover fraction.

However, Fc was calculated using the Beer–Lambert law with LAI. All these factors led to dif-

ferent results of LE predicted by the two models.

5.2. Spatial and temproal differences

The satellite estimates of LE predicted by these LE models generally displayed a similar distribu-

tion, with large values at low latitudes but smaller values at high latitudes. This was probably

due to uneven distribution of the solar radiation. In North America, LE values in the northern

part were lower than those in the southern part. A similar pattern occurred in East Asia and

North India. Vinukollu et al. (2011) [43] calculated LE using three models, including the Surface

Energy Balance System (SEBS), MOD16 and a modified Priestley–Taylor approach (PT-JPL),

and found a similar distribution pattern. Zhang et al. (2010) [44] quantified global terrestrial ET

using the modified Penman-Monteith approach from 1983 to 2006 and found strong regional

variations and latitudinal gradients corresponding to global climate patterns. The results also

showed that coastal areas had higher LE than land areas, such as Europe and South Australia.

Inter-model differences generally ranged from -30 to 10 W/m2 based on MERRA data

for 1982~2010. Although these LE models were developed based on a physical mechanistic

equation, different results might be attributed to the model structure and sensitivity of input

variables, which were related to the regional climatic environment. Previous studies also sup-

ported our conclusion and highlighted the model structure and the uncertainty of input data.

Behrangi et al. (2014) [45] compared MOD16 and PT-JPL and found that PT-JPL values were

larger than MOD16 values. Vinukollua et al. (2011) [43] reported higher EC tower LE values

of PT-JPL than MOD16 by estimating terrestrial latent heat flux using a single-source energy

budget model, MOD16 and PT-JPL.
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In this study, global decadal cropland LE was calculated using four process-based LE

models. We found an increasing trend of global average annual LE and different variations of

LE in specific regions over the cropland ecosystem. Numerous studies showed increasing tran-

spiration due to the increase of the growing seasons in recent decades [46–50]. The increasing

trend of cropland LE might be attributed to increasing irrigation water diversions. McLaughlin

et al. found an increasing trend of irrigation water from 1960 to 2010. The regional long-term

trend of LE generally varied with changes of anthropogenic activities and regional climate.

Sacks et al. (2011) [51] analyzed corn and soybean data over the US corn belt from 1981~2005

and found that the annual-average LE increase was 0.50 W/m2, or 6.3 mm/year, over the 25

years. Riediger et al. (2014) [52] used a framework of the comprehensive research cluster

Nachhaltiges Land management in Norddeutschen Tiefland and predicted increasing scenar-

ios in ET at Uelzen in Germany.

5.3. Uncertianties analysis

Uncertainties in predicting LE were considered to be largely induced by the forcing data [53–

55]. Liu et al. (2015) [54] analyzed the impact of input data uncertainties on (ET) using the Cli-

mate Research Unit (CRU) TS3.1 data, the European Centre for Medium-Range Weather

Forecasts (ECMWF) ERA-Interim Reanalysis, the National Centers for Environmental Predic-

tion/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data, the Global

Meteorological Forcing Data set for land surface modeling from Princeton University, and

MERRA data for 1979–2008 in Northern China. They found that MERRA displays the lowest

correlation with measurements for temperature, wind and relative humidity. These uncertain-

ties might affect the accuracy of the final calculation. Zhao et al. (2013) [56] also reported that

MERRA surface solar radiation has an average bias error of +20.2 W/m2 at different time scales

based on American FLUXNET sites. NDVI or LAI were often used as a surrogate of vegetation

moisture and for the calculation of vegetation coverage. However, the uncertainties in NDVI

or LAI led to erroneous subsequent calculation of canopy conductance.

In addition to the uncertainties in forcing data, another source of uncertainty might stem

from the scale mismatch between the remote sensing data and the EC observations. McCabe

et al. (2006) [57] used three different remote sensing data from Landsat (60 m), ASTER (90

m), and MODIS (1020 m) to study the effects of sensor resolution on land surface flux esti-

mates. These scholars found that MODIS-based flux retrievals could not effectively character-

ize the different latent heat flux patterns between soybean and corn. Kustas et al. (2004) [58]

also found a lack of spatial variability in the coarse resolution data-based LE retrievals com-

pared with different pixel resolutions of remote sensing inputs.

Conclusions

In this study, four LE satellite-based LE algorithms, including MOD16, RRS, PT-JPL and

MS-PT, were evaluated over a cropland ecosystem based on 34 EC flux towers sites. We com-

pared these LE model performances with ground LE measurements and satellite forcing data.

All models had different assumptions, data requirements, empirical model parameters and

model structures ranging from complex Penman-Monteith and energy balance schemes to

simpler Priestley–Taylor approaches. The results showed that all the LE models produced

acceptable results for cropland ecosystems. MS-PT produced the best performance with

respect to LE prediction, with a higher R2, a lower bias and a lower RMSE. MOD16 and RRS

showed the lowest LE retrievals compared with the other models.

All algorithms had high LE at low latitudes and low LE at high latitudes. The results showed

that the magnitudes and seasonal variations of LE were well characterized by the four models.
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A slightly increasing trend in the annual average LE from 1982 to 2010 was also observed.

Considering that uncertainties still existed, the limitations associated with the model compari-

son, as analyzed above, might also cause modeling errors. Intercomparison of models over a

range of diverse bioclimates and longer periods are recommended for future studies.

Supporting information

S1 File. The site statistics of four models. The estimated daily LE calculated by MOD16, RRS,

PT-JPL and MS-PT over the period of 2000–2009 were contained in the site_stat2.rar. The

model validation results were in each Excel tables (.XLSX)
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