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ABSTRACT

In eukaryotes, protein-coding genes are transcribed
by RNA polymerase Il (pol ll) together with general
transcription factors (GTFs). TFIID, the largest
GTF composed of TATA element-binding protein
(TBP) and 14 TBP-associated factors (TAFs), plays
a critical role in transcription from TATA-less
promoters. In metazoans, several core pro-
moter elements other than the TATA element are
thought to be recognition sites for TFIID. However,
it is unclear whether functionally homologous
elements also exist in TATA-less promoters in
Saccharomyces cerevisiae. Here, we identify the
cis-elements required to support normal levels of
transcription and accurate initiation from sites
within the TATA-less and TFIlID-dependent RPS5
core promoter. Systematic mutational analyses
show that multiple AT-rich sequences are required
for these activities and appear to function as recog-
nition sites for TFIID. A single copy of these se-
quences can support accurate initiation from the
endogenous promoter, indicating that they carry
highly redundant functions. These results show a
novel architecture of yeast TATA-less promoters
and support a model in which pol Il scans DNA
downstream from a recruited site, while searching
for appropriate initiation site(s).

INTRODUCTION

In cukaryotes, transcription of protein-coding genes
is regulated by the concerted action of gene-specific

transcription factors, chromatin remodeling factors,
co-activators/co-repressors, mediator, general transcrip-
tion factors (GTFs) and RNA polymerase II (pol II)
(1-3). In principle, gene-specific transcription factors,
bound to regions upstream of the transcriptional initiation
site, regulate the activity of other factors, especially those of
the pre-initiation complex (PIC) assembled on the core
promoter surrounding the transcription initiation site.
The PIC assembly is initiated via binding of TFIID, the
largest GTF comprising TATA-binding protein (TBP)
and 14 TBP-associated factors (TAFs) (4), to the core
promoter and completed via incorporation of other
GTFs, mediator and pol II in a stepwise fashion (5-7).
TFIID binding is one of the most crucial rate-limiting
steps for transcriptional activation (8,9) and is a target
for many gene-specific transcription factors (2,10,11).
Recent studies show that most (~80%) pol II-driven
(class II) promoters do not have a TATA element, a rec-
ognition site for TBP, though TBP itself is still needed for
transcription of these TATA-less promoters (12-16).
Based on genome-wide expression studies, it is proposed
that, in yeast cells, TBP is delivered to TATA-containing
and TATA-less promoters by two distinct multi-protein
complexes, SAGA (Spt-Ada-GcenS acetyltransferase) and
TFIID, respectively (13,17). Notably, stress-responsive
(inducible) and housekeeping (constitutive) genes tend to
be regulated by TATA-containing or TATA-less pro-
moters, respectively (17), suggesting two fundamentally
different regulatory mechanisms for class Il genes. A
recent ChIP—chip study in yeast showed that in vivo
turnover rates of TBP are significantly faster on SAGA-
dependent and TATA-containing promoters than on
TFIID-dependent and TATA-less promoters (18).
Consistent with this, an in vitro study using HeLa
nuclear extracts shows that PIC is assembled rapidly on
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the TATA-containing p2/ core promoter but slowly on
the TATA-less Fas/APO1 core promoter (19). Once PIC
is assembled, it supports multiple rounds of transcription
on the latter promoter but permits only a few rounds of
transcription on the former (19). This suggests that the
TATA element accelerates the turnover rate of TBP on
the core promoter and may be critical for optimal regula-
tion of a particular set of genes.

In metazoans, several core promoter elements other
than the TATA element have been identified (BRE,
INR/sINR, DPE, MTE, the bridge element, DCE,
XCPEI1/2 and CpG islands) (20-26), and are specific to
a subset of class II promoters. Furthermore, each core
promoter contains some of these elements in different
combinations enabling a proper response to its inherent
gene-specific transcription factors. In fact, some activators
prefer TATA-dependent promoters, while others prefer
DPE-dependent promoters (27,28). Specifically, Caudal,
a key regulator of the Hox gene network, is a DPE-
specific activator (29). However, even a single regulator
activates different types of core promoters by different
mechanisms; for example, EKLF activates the DCE-
containing B-globin core promoter in a TAF9-dependent
manner, but it activates the DCE-less AHSP core
promoter in a TAF9-independent manner (30). Similar
functional compatibility between the upstream activating
sequence (UAS) and the core promoter and similar vari-
ations in factor-dependence in activation are commonly
observed in yeast (31-37). Hence, core promoter architec-
tures must play pivotal roles in the regulation of class II
genes in many eukaryotes.

Most of the core promoter elements described above
have not yet been identified in yeast. The TATA element
has been extensively characterized (13,32,38-40) but few
studies have focused on the initiator element (16,41-47).
This suggests that yeast initiator elements may differ func-
tionally from metazoan INR; the latter serves as a recog-
nition site for the TAF1-TAF2-TBP sub-complex of
TFIID (48), whereas the former represents the preferred
initiation sites for pol II (20,49). In addition, there are two
types of core promoter elements in metazoans, i.e. recog-
nition sites for TFIID (e.g. TATA, DPE, DCE, MTE, the
bridge element, INR) (26,50,51) and other factors (e.g.
BRE, XCPE1/2) (22,23). As TBP and TAFs are evolution-
ally conserved in eukaryotes, yeast core promoters should
contain certain as-yet unidentified recognition sites for
TFIID other than the TATA element. However, such
elements are largely unknown, except for a few potential
candidate sequences (39,52-55).

In this study, we determine the core promoter elements
within the TATA-less RPS5 promoter that are required
for gene expression and that may function potentially as
recognition sites for TFIID as this promoter is highly
TFIID-dependent (33,55) and is bound specifically by
purified TFIID (56). Since RPS5 has been extensively
characterized not only in vivo (33-36,55,57) but also
in vitro (56), it was chosen as a target out of many other
ribosomal protein genes (RPGs). More specifically, we
exploited an assay in which the core promoter activity of
a given fragment can be tested by examining initiation
site(s) created ectopically when the fragment is inserted

at a site further upstream than the original site in the
same promoter (42). This assay is more versatile than trad-
itional mutational approaches since it has the potential to
identify core promoter activity even when the target
promoter contains multiple and functionally redundant
cis-elements, as already observed in HIS3 (53). In
addition, the RPS5 promoter was integrated at the
VTCI locus to generate the reporter. The RPSS
promoter was subjected to mutagenesis, but the original
RPS5 promoter was left intact as normal expression of
this gene is critical for cell growth.

As a result, we show that multiple AT-rich sequences
function redundantly, not only in supporting transcription
from intrinsic transcriptional initiation sites, but also in
creating ectopic transcriptional initiation sites in a TFIID-
dependent manner when inserted upstream of the original
core promoter. Strikingly, a single copy of these sequences
is sufficient to support significant transcription from the
endogenous RPS5 promoter. The highly redundant and
cooperative features of these sequences may make the
turnover rate of TBP/TFIID slower and thereby enable
TATA-less promoters to be expressed constitutively.
These results are noticeably similar to those obtained pre-
viously for the HIS3 promoter containing two different
types of the TATA element, Tc and Tr (31,32,53,54).
Given that the T¢ element is a type of TATA-less
promoter, this study demonstrates that short AT-rich
stretches function redundantly as core promoter
elements in TATA-less promoters either containing a
typical TATA element adjacently (e.g. Tr HIS3) or not
at any site (e.g. RPS5). Our results also raise the possi-
bility that similar mechanisms may operate for other genes
regardless of whether they are driven by TATA-less
(e.g. RPL2B) or TATA-containing (e.g. SSBI, ADHI)
promoters.

MATERIALS AND METHODS
Yeast strains and media

Standard techniques were used for yeast growth and trans-
formation (58). The yeast strains used in this study are
listed in Supplementary Table S1. Oligonucleotide se-
quences used for the strain construction and transcription
analyses are listed in Supplementary Table S2.

All  strains were generated from  BY4741
(EUROSCAREF) or BY4742 (EUROSCAREF) by a fusion
PCR-based method (59,60), as described below. The en-
dogenous promoter spanning up to 100-bp upstream of
the translational initiation site (A of ATG as +1) of
VTCI of BY4741 was replaced with a PCR fragment
containing a given region of RPS5 recombined with or
without a certain portion of the RPL2B, SSBI, ADHI,
or HIS3 promoters, and His3M X6 as a selectable marker
(59). Details of PCR primers, templates and promoter
regions amplified for promoter construction are
summarized in Supplementary Table S3.

To examine the dependency of a subset of promoter
constructs on Taflp, TAFI in some strains was replaced
with the temperature-sensitive allele, zaf7-N5684 (61). For
this replacement, three PCR fragments were amplified



individually from pM1169 (62), pM1169 and pFAo6a-
kanMX6 (59) using the primer pairs TK3950/3955,
TK176/4012 and TK4011/TK3977, respectively, and
then fused together using the primer pair TK3950/3977.
The resulting long DNA fragment (~5.1kb) was used
to transform BY4742 to generate YTK6339. Similarly,
YTK10001, YTK10051, YTK10053, YTK10055, YTK
10057, YTK10059, YTK10061, YTK10063, YTK10065,
YTK10067, YTK10069, YTK10071, YTK10073, YTK
10075, YTK 10077, YTK 10079 and YTK 10081 were trans-
formed with a PCR fragment amplified from YTK6339
genomic DNA using the primer pair TK3950/3977 (con-
taining tafl-N5684 and kanMX6) to replace TAFI in
these strains with tafi1-N5684, generating YTK10002,
YTK10052, YTK10054, YTK10056, YTK10058, YTK
10060, YTK 10062, YTK10064, YTK 10066, YTK 10068,
YTK10070, YTK10072, YTK10074, YTK10076, YTK
10078, YTK 10080 and YTK 10082, respectively.

All gene or promoter replacements were confirmed by
PCR, Southern blot and genomic DNA sequencing.

Northern blotting

Northern blot analysis was performed as previously
described (61). To detect VTCI, a DNA fragment
encoding the open reading frame (390 bp) was amplified
from yeast genomic DNA using the primer pair TK2676/
TK2677, purified and **P-labeled by random priming with
Klenow fragment (TOYOBO). The PCR primers used for
detection of ADH1I have been previously described (61).

Primer extension analysis

Primer extension analysis was conducted as previously
described (63) with some modifications. Briefly, extension
reactions were conducted for 10 pug of total RNA in 25 pl
of buffer A (S0mM Tris—HCI [pH 8.0], S0mM KCI,
10mM MgCl,, 10mM dithiothreitol) containing four
dNTPs (0.2mM each, GE Healthcare), ribonuclease in-
hibitor (200 U, TaKaRa), AMYV reverse transcriptase XL
(25U, TaKaRa), and [y->*PJATP-labeled oligonucleotide
primers. The primers used were: TK8251 (+60 to +41 of
VTCI), TK9044 (+120 to +101 of V'TCI), TK9992 (+60
to +31 of ADH]I), and TK7616 (—300 to —280 of ADH1).
The cDNA products were analyzed on a 6% polyacryl-
amide DNA sequencing gel. Gels were exposed to imaging
plates (BAS2500, Fuji Film) for visualization.

RESULTS

Mapping of the cis-elements that activate transcription
and/or determine initiation sites within the
RPSS5 promoter

Most RPGs are activated by Raplp and its co-activators,
Fhllp and Ifhlp, which together bind to so-called
RPG-boxes (64-68). Only Raplp recognizes RPG-boxes
directly and recruits Fhllp-Ifhlp for activation (69,70).
Intriguingly, the RPS5 core promoter can be efficiently
activated by its own UAS, but not by ADHI UAS (36)
or GALI UAS (34). This suggests that the RPS5 core
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promoter may contain specific cis-element(s) that are
highly competent for the action of Raplp—Fhllp-Ifhlp.

To delineate the region(s) required for transcriptional
activation and accurate initiation from the RPSS
promoter, we performed systematic deletion analyses on
the fragment encompassing —631 to —1bp (A of ATG as
+1) integrated into the VTCI locus (Figure 1). VTCI
encodes a component of the polyphosphate polymerase
complex (71) and is used as a reporter gene measurable
by magnetic resonance (72). In this study, however, VTCI
mRNA was measured by northern blot and/or primer ex-
tension analyses; importantly, the initiation sites of this
reporter gene are the same as those of endogenous RPSS
(63). To confirm reproducibility, we conducted all experi-
ments at least three times (or more for some constructs) by
repeating the entire procedure from yeast cultivation to
RNA preparation and analysis, and only representative
results are shown below.

Serial deletions from the Send of this promoter
showed that the —500 to —40lbp and —400 to
—301 bp regions contain two distinct UAS (UASI and
UAS?2, respectively) required for activation (lanes 1-4,
Figure 1B). Specifically, UASI corresponds to the —483
to —444bp region containing two potential Raplp
binding sites (black rectangles, Figure 1A) (73-795)
because #8, lacking this particular region, had similar
activity to that of #2, lacking the entire region
upstream of —401bp (lanes 3 and 9, Figure 1B).
However, UAS2 is localized to the —400 to —339bp
region because #19, in which the —489 to —339bp
region was fused to that of —126 to —1bp, had similar
activity to the full-length (wild-type; WT) promoter
(lanes 1/13 and 12, Figure 1C). These results are consist-
ent with our previous observations using a plasmid
reporter system (33). In this 5-deletion assay, it was
impossible to determine the region that functions as a
core promoter since the activities of #3-7 were too
low to be discriminated from each other (lanes 4-8,
Figure 1B).

Conversely, serial deletions from —81bp to regions
upstream (i.e. up to —550bp; #18) of the promoter
showed that the —135 to —81Dbp region is required for
accurate initiation because #9, lacking this region,
showed weaker initiation at —37 bp but stronger initiation
at the more downstream —23 and —13 bp sites (compare
lanes 1 and 2, Figure 1C). Such downstream shifts are
consistent with a prevailing view showing that pol II
scans DNA downstream, searching for appropriate initi-
ation site(s) (47,76-78). A further upstream deletion, from
—136 to —174bp (#10), weakened initiation from —37 bp
but not from the —27, —23, —18, —13 and —9bp sites
(compare lanes 2 and 3, Figure 1C). However, several de-
letions between —349 and —175bp (#11-14) did not alter
the initiation profile of #10 (compare lanes 3 and 4-7,
Figure 1C), suggesting that the —174 to —136bp and
—80 to —1bp regions may support initiation from
distinct sites, i.e. —37bp and —27/—23/—18/—13/-9 bp.
As expected, further upstream deletions between —499
and —350bp (#15-17) gradually decreased the transcrip-
tional levels (lanes 810, Figure 1C), probably because
UAS2 (#15) and one (#16) or two (#17) potential Raplp
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Figure 1. Cis-element mapping of the RPS5 promoter. (A) Schematic diagram showing a series of promoter constructs with serial deletions from the
5'-end (top panel) or —81 bp (second panel) of the entire region between —631 and —1bp (A of ATG as +1) of the RPS5 promoter and with serial
deletions from the 5'-end (upper part in the fourth panel), the 3’-end (bottom panel), or internally (third panel and lower part of the fourth panel) of
the core promoter region between —174 and —1bp of the RPS5 promoter. These constructs were integrated into the V'7CI locus (dark grey
rectangle). The regions corresponding to the UAS containing two potential Rapl binding sites (black rectangles) and the core promoter (core)

Continued



binding sites within UASI, were removed sequentially
from the promoter. Intriguingly, #19 showed a similar
initiation profile to that of WT (lanes 12 and 13,
Figure 1C), indicating that the —174 to —136bp region
is not required for initiation from —37bp, at least when
the —174 to —81 bp region is present. Therefore, these two
regions (—174 to —136 and —126 to —81 bp) may function
redundantly, even if their roles are not identical (compare
lanes 2 and 12, Figure 1C).

Next, we sought to identify the core promoter
element(s) required for normal levels of transcription
and/or accurate initiation by deleting a series of small
segments from the region between —174 and —1bp
(Figure 1A) containing a putative RPSS5 core promoter
(33,55). In metazoans, TATA-less promoters occasionally
contain other core promoter elements like INR, MTE, the
bridge element, DPE, DCE and XCPE1/2 that overlap
with, or are located downstream of, the initiation site
(22,26). However, it is unclear whether such non-TATA-
type elements exist in yeast promoters, although INR-like
sequences have been identified in silico (16,79).

The results showed that deleting the small segment
ranging from 11 to 16 bp just upstream of the initiation
site (#20-24) only slightly affected transcriptional levels
and initiation profiles (compare lanes 1 and 2-6,
Figure 1D). Similarly, deleting the region just downstream
of the initiation site (=35 to —1 bp; #37-44) affected them
only slightly (compare lanes 1 and 2-9, Figure 1F). We
should note that the initiation profiles of the constructs
#37-44 were the same as those of WT, although they
appear rather different in Figure 1F because the distance
between the initiation and primer sites was reduced due to
the deletions. Remarkably, the 11-bp deletion encompass-
ing the major initiation site (#25) abolished initiation from
this site (—37bp), but not from more downstream sites
(—23/—18/—13/—9 bp; lane 7, Figure 1D). Given that ini-
tiation from the latter sites was stronger in this mutant, it
is likely that pol II scans DNA from upstream and starts
transcription at the nearest site that meets the require-
ments for productive initiation (45,49). In this model,
the initiation sites function passively in yeast (20), unlike
INR in metazoans that function more actively [including
as a recognition element for TFIID (48)]. The observation
that further upstream deletions from —37 to —55 bp (#45—
47) abolished initiation from the site corresponding to the
original position of —37bp (lanes 10-12, Figure 1F)
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supports this model and implies that there is nothing
within the region surrounding the initiation site to
suppress inappropriate initiation, at least in the RPSS
promoter.

Unexpectedly, when the region between —174 and
—50bp was serially deleted from the 5 (#2630 and #10)
or 3end (#31-36 and #22), we found that the initiation
sites shifted downstream, apparently in a manner propor-
tional to the length of this region and independently of the
particular sequences within it (Figure 1E). For instance,
#10 and #34 showed similar initiation profiles (lanes 4 and
11, Figure 1E) even though they share only the region
between —49 and —1 bp that, in itself, has no initiation
activity (#30; lane 7, Figure 1E). Given that #19 showed
similar activity to that of WT (lanes 12-13, Figure 1C),
such downstream shifts should not be caused simply
because the distance between the UAS and the initiation
site was reduced. We prefer another possibility that there
are multiple cis-elements within this region that function
redundantly as binding sites for GTFs (such as TFIID)
and that initiation profiles are determined by the distance
between each cis-element and the initiation site.

To simplify the interpretation of the results described
below, we should provisionally define two types of func-
tional core promoter element in yeast: the Core factor
binding Element (CE) and the Initiation Element (IE).
CE is a recognition site for certain core factors such as
free TBP, TFIID, or SAGA that bind directly to the core
promoter and nucleate PIC assembly. IE is a site that
allows the productive initiation of pol II that scans
DNA from a site neighboring CE. This classification is
consistent with a previous notion that the yeast INR is a
passive contributor to promoter activity and represents a
preferred initiation site for pol II (20,49). According to
this definition, metazoan INR should have a dual
function as CE and IE. Notably, CE and IE appear to
be physically separated in the RPS5 promoter, but
probably not in other yeast promoters (46).

Creation of the ectopic initiation sites by inserting
authentic or putative CE into the upstream region
of the RPSS5 core promoter

The results described above suggested that the region
between —174 and —50 bp may contain multiple CE, pre-
sumably serving as binding site(s) for TFIID (33,55). To
explore this possibility, we tested whether insertion of the

Figure 1. Continued

are white or pale grey rectangles, respectively. The number of each construct is shown on the right and the primer positions (+60 or +120) for
extension analyses are shown at the top. Note that the two specifically deleted constructs (#8 and #19) are also shown (top and second panels).
‘WT’ = a wild-type construct carrying the full length RPS5 promoter. Transcriptional initiation activities from the sites at —37, —27, —23, —18 and
—13bp (marked with a horizontal bracket above the “WT’) were examined in (B)—(F) and summarized schematically with vertical black bars in each
construct. (B) The effect of each deletion (#1 to #8) on the transcriptional activity of the RPS5 promoter. Northern blotting (upper panel) was done
to determine the expression levels of V'T'CI (reporter) and ADHI (control) in the strains bearing each construct (top). Total RNA (20 pg) was isolated
from each strain (cultured at 30°C in YPD media), blotted onto the membrane, and hybridized with the indicated gene-specific probes. Another
sample of total RNA (20 ng) was subjected to primer extension analysis (bottom panel) using primer +60 to determine the transcriptional initiation
site(s) of V'TC1. The positions of major (—37) or minor (—27, —23, —18 and —13) transcriptional initiation sites are indicated (right). (C). The effect
of each deletion (from #9 to #19) on the transcriptional activity of the RPS5 promoter. Northern blot and primer extension analyses were done as
described in (B). (D) The effect of each deletion (from #20 to #25) on the transcriptional activity of the RPS5 promoter. Northern blot and primer
extension analyses were done as described in (B). (E) The effect of each deletion (from #26 to #36, #10 and #22) on the transcriptional activity of the
RPS5 promoter. Northern blot and primer extension analyses were done as described in (B) except using primer +120. (F) The effect of each deletion
(#37-47) on the transcriptional activity of the RPS5 promoter. Northern blot and primer extension analyses were done as described in (E).
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TATA element, known as an authentic CE, at various
positions (—300, —250, —225, —213, —200, —183, —175,
—163, —140, —136, —101, —81 bp) created ectopic initi-
ation site(s) (Figure 2A, B and D). As expected (42), the
results clearly showed that more upstream insertion of the
TATA element creates more upstream ectopic initiation
site(s) without affecting the initiation sites of the original
RPS5 and endogenous ADHI promoters (Figure 2B).
Note that ectopic initiation sites were not distributed
randomly but localized specifically at several preferred
sites (—88 and —71 bp, Figure 2B), supporting the view
that pol II scans DNA from CE to initiate transcription
at specific IE. We also noticed that the distribution and
shifting profiles of ectopic initiation sites could be used as
a molecular ruler to assess the position of inserted CE as
described below.

Next, we inserted the —174 to —81 bp region at —175/
—174bp (Figure 2A) to test whether this region has
TATA-like CE activity. If it did, we determined where
such activity was localized within this region, and
whether it was TFIID-dependent. Primer extension
analyses showed that insertion of this region (#60)
created ectopic initiation sites similar to those in #56
(compare lanes 10 and 14, Figure 2B). This suggests that
the —174 to —81 bp region contains CE at a site corres-
ponding to the position “TATAAAAA’ in #56 (39-46 bp
apart from —175/—174bp). Remarkably, such a site in
#60 contained ‘CTAAAATA’ (corresponding to —126 to
—119 bp of the original promoter), regarded as an atypical
TATA element (underlined above) (33,55). We should
note that, even if the —174 to —81 bp region contains
multiple CE, only the most upstream one was detected
in this assay due to the polar effect of pol II scanning.

We then tested whether CE within the —174 to —81 bp
region is TFIID-dependent by comparing ectopic initi-
ation activities from —160/—133/—88/—71bp in TAFI
and raf1-N5684 strains (Figure 2C and D). Importantly,
these activities were specifically affected in the tafl1-N5684
strain in the same way as the intrinsic initiation sites at
—37/—27/—23 bp when the strains were incubated at 37°C
(lanes 4 and 8, Figure 2C) (33,55), indicating that CE
within this region is TFIID-dependent. Unexpectedly,
however, we also noticed that one of the two initiation
sites of the ADHI promoter was partially
TFIID-dependent, since the ratio of the transcript from
—28bp to that from —38bp was always lower in the
taf1-N5684 strain than in the TAFI strain when the
strains were incubated at 37°C (Figure 2C, E and 3A).
Previous studies show that transcription from these two
initiation sites occurs dependently on the same TATA
element located at —128 to —121bp (Figure 2E) (80)
and on SAGA (81,82), but not on TFIID (83,84).
Although the reason for the weak TFIID-dependence
seen in our study is unclear, it may be due to differences
in the rafl alleles or genetic backgrounds of the yeast
strains used.

It was shown that the RPSS core promoter is activated
very poorly by the ADHI UAS (36). This suggests that the
RPS5 CE may not function efficiently in the context of the
ADH 1 promoter. To confirm this, we inserted the —174 to
—81bp region of the RPS5 promoter upstream (#62) or

downstream (#63) of the TATA element in the ADHI
promoter and tested whether ectopic initiation could be
induced in a TFIID-dependent manner (Figure 2E).
Similar to the initiation sites in the endogenous ADHI
promoter, only the initiation site located more down-
stream (—28bp) of the reporter construct had weak
TFIID-dependence when the insert was absent or
present upstream of the TATA element (lanes 6-13).
However, insertion downstream of the TATA element
induced ectopic initiation in an apparently TFIID-
independent manner, whereas the original initiation sites
at —38/—28bp became more TFIID-dependent (lanes
15-18). Interestingly, substitution of ‘TATA’ with
‘GAGA’ decreased transcription from both the original
and ectopic initiation sites whenever the insert was
absent (lanes 19-20), or present upstream (lanes 10 and
21) or downstream (lanes 15 and 22) of the TATA
element. This suggests that the TATA element in #63
still allows effective transcription from both the original
and ectopic initiation sites despite its position far
upstream, and also that ectopic initiation is not induced
by the RPS5 CE. It is unclear why initiation at —38/
—28bp was more TFIID-dependent in #63, even if the
ectopic initiation sites were not TFIID-dependent. This
may occur for the same reason that only the downstream
site (i.e. —28 bp) of the two initiation sites in the original
ADHI promoter (—38/—28bp) is TFIID-dependent.
Therefore, we conclude that the RPS5 CE does not
function efficiently within the ADHI promoter.

The results described above show that the RPS5 CE
functions efficiently in the RPS5 promoter, but not in
the ADH1 promoter, although the TATA element func-
tions well in both. Thus, we next examined whether
the TATA element could induce ectopic initiation sites
in the RPS5 promoter in a TFIID-dependent manner
(Figure 3A and B). We constructed TAFI or tafl-N5684
strains carrying the same set of reporter constructs shown
in Figure 2B, and compared the CE activity of the TATA
element inserted at various positions in both strains.
The results showed that the ectopic initiation sites
at —88/—71 bp were TFIID-dependent (lanes 33 and 34,
Figure 3A), similar to the endogenous sites at —37/—27/
—23 bp, while the ectopic initiation sites at —160/—133 bp
were TFIID-independent (lanes 41 and 42, Figure 3A). To
our knowledge, this is the first evidence showing that
the TFIID-dependence of CE can be altered by position,
even within the same core promoter. Also, this is con-
sistent with previous observations that the conversion of
atypical TATA (=125 to —120bp in the original
promoter) to consensus TATA could not rescue RPS5
transcription in  tafl strains (33,55). Therefore,
TFIID-dependency may be determined by whether the
TATA clement is localized within the region to which
TFIID binds.

Identification of potential CE within the RPS5 promoter

It is difficult to identify CE located downstream within the
inserted fragment because pol II scans DNA from
upstream (Figure 2). Thus, we examined CE activity of
shorter fragments (c.a. 20-50bp) encompassing —224
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Figure 2. Ability of the TATA element (TATAAAAA), or a portion of the RPS5 core promoter, to induce ectopic initiation sites within the RPSS5
or ADH]I promoters in TAFI and tafl-N5684 strains. (A) Schematic diagram showing the insertion sites of the TATA element (upper panel) or a
portion (—174 to —81 bp) of the RPS5 promoter (lower panel) within the RPS5 promoter. The number of constructs is shown in parenthesis (upper
panel). Note that #60 contains the same promoter fragment (—174 to —81 bp) in duplicate. (B) The ability of each insertion of the TATA element
(#48 — #59) or of the —174 to —81 bp fragment (#60) (top) to induce ectopic initiation site(s) in the RPS5 promoter. Primer extension analysis was
done as described in Figure 1B, except that the initiation sites of both VTCI (upper panel) and ADHI (lower panel, control) were examined.
(C) TFIID-dependency of the ectopic initiation sites induced by insertion of the —174 to —81bp fragment (#60). Total RNA (20 pg) was isolated
from the strains carrying a combination of either TAFI or tafI-N5684 and either WT or #60 before, or 2 h after, a temperature shift from 30 to 37°C
(top). Primer extension analysis was done as described in (B). (D) Transcriptional initiation activities from the sites at —160, —133, —88, —71, —37,
—27 and —23bp (the last three endogenous sites are marked with a horizontal bracket above the “WT’) that were examined in (B) and (C) are

Continued
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to —31bp of the RPS5 promoter by inserting them at
—175/—174bp to minimize the number of CE within
each fragment (Figure 4).

The results showed that the region upstream of —126 bp
(#67-69) is almost inactive in this assay (lanes 1-4,
Figure 4B), consistent with the result showing that #19,
lacking the region between —338 and —127 bp, has similar
activity to that of WT (lanes 12-13, Figure 1C).
Remarkably, an extension of only 5Sbp (TAAAA in #70)
significantly enhanced initiation from —88/—71 bp (lanes 4
and 5), consistent with the result showing that the CE
within —174 to —81bp was assigned to the same
sequence (atypical TATA clement ‘CTAAAATA’,
Figure 2B).

The signals for ectopic initiation sites at —136/—133 bp
were stronger in #72 than in #70 and #71 (lanes 5-7),
probably because the ‘TAAAA’ sequence moved
upstream from —179 to —175] (#70; note that the number-
ing here is from A (+1) of ATG within the chimeric
promoter bearing the insert) or [—189 to —185] (#71) to
[—199 to —195] (#72) bp (inset, Figure 4A). Furthermore,
ectopicinitiation profiles for #73—77 were similar to those of
#72 (lanes 7-12). In #73-77, the ‘TAAAA’ sequence was
duplicated at [-209 to —205] and [—180 to —176] (#73),
[<219 to —215] and [—190 to —186] (#74), [—222 to —218]
and [—193 to —189] (#75), [—200 to —196] and [—182 to
—178] (#76), and —210 to —206] and [—192 to —188] (#77)
bp, corresponding to either pair of the three ‘TAAAA’
sequences localized at [—125 to —121] (TAAAA#;), [—96
to —92] (TAAAA™?), and [—78 to —74] (TAAAA™) bp in
the original RPS5 promoter. Importantly, the upstream ‘T
AAAA’ sequence in these constructs is located further
upstream than in #72, indicating that the ‘TAAAA’
sequence located at —199 to —195bp (#72), or further
upstream, (#73-77) could induce ectopic initiation at
—136/—133/—88/—71 bp (inset, Figure 4A).

Next, we measured the CE activity of ~30bp length
variants (#78-83) and found that they induced ectopic
initiation from —136/—133/—88/—71 bp, but less strongly
when compared with ~50bp length variants (#74-77)
(lanes 14-19). Notably, #78, 81 and 82 contain the ‘TA
AAA’ sequence upstream of —199 to —195bp, #79 and
#80 contain it further downstream, and #83 does not
contain it (inset, Figure 4A). This suggests that CE other
than the “TAAAA’ sequence must exist in #79, 80 and 83.
Candidate sequences are AT-rich stretches such as ‘TATT
TT (=204 to —199bp [#79] corresponding to —120 to
—115bp within the original RPS5 promoter), ‘TTTTTA
T (=204 to —198 bp [#80], —110 to —104 bp [original]),
and ‘TAATTA’ (=204 to —199bp [#83], —60 to —55bp
[original]) (Supplementary Figure S1) since they are
located upstream of —199 to —195bp in each construct.

This agrees with the result showing that ~20bp length
variants (#84-86) induced ectopic initiation at —88/
—71bp, but not at —136/—133bp (lanes 20-22),
probably because these insertions are too short to reach
position —199 to —195 bp. Furthermore, they may induce
ectopic initiation from —88/—71bp because they also
contain AT-rich stretches, such as ‘ATTTT (—192 to
—188bp [#84], —87 to —83bp [original]), ‘TAAAA’
(—183 to —179bp [#84], —78 to —74bp [original]), ‘TTT
TTATTTAATTA’ (—193 to —179 bp [#85], —69 to —55bp
[original]) and ‘ATAATA’ (—188 to —183 bp [#86], —44 to
—39 bp [original]) (Supplementary Figure S1). To examine
whether these AT-rich stretches functioned as bona fide
CE, we compared the ability of three ~15bp length
variants (#87-89) to induce ectopic initiation at —88/
—71bp (lanes 23-25). #87 is nearly inactive as expected
from the results for #67 and #68, whereas #88, containing
‘TTTTTAT (—184 to —178bp [#88], —110 to —104bp
[original]) (Supplementary Figure Sl1), showed CE
activity comparable to, or stronger than, that of #89 con-
taining ‘TAAAA’ (—185 to —181 bp [#89], —96 to —92 bp
[original]) (Supplementary Figure S1). This strongly
suggests that these AT-rich stretches function as CE in
the RPS5 promoter. It is also notable that the ectopic
initiation sites at —136/—133 bp were restored when an
inactive region (—200 to —186 bp [#87]) was fused to the
3’terminus of an active region (—100 to —86 bp [#89]) (i.c.
#90), but not when fused to the 5terminus of another
active region (—115 to —100bp [#88]) (i.e. #91), again
supporting the suggestion that CE must be located at, or
more upstream of, —199 to —195bp to initiate transcrip-
tion at —136/—133bp (‘TAAAA’ of #90 is located at —200
to —196 bp) (inset, Figure 4A).

Core promoter sequences derived from other genes also
function as CE in the RPS5 promoter

To examine whether core promoter sequences derived
from other genes function as CE in the RPS5 core
promoter, we first tested CE activity of the Tc or Ty
element of the HIS3 promoter (31,32,38,53) by inserting
them at —175/—174bp of the RPS5 promoter (#97-98,
Figure 4A, B). Either element induced ectopic initiation
similar to that of #54 bearing the TATA element at —190
to —183bp (Figure 2B) or #78 bearing the ‘TAAAA’
sequence at —199 to —195bp (lanes 14 and 35,
Figure 4B). Consistently, the TATA sequence (TATATA
AA) of the Ty element is located at —191 to —184 bp in
#98 (Supplementary Figure S1). Importantly, the T¢
element functioned in the RPS5 core promoter, although
it is unclear whether a short AT-rich stretch (‘(ATTAT’)

Figure 2. Continued

summarized schematically with vertical black bars in each construct. (E) TFIID-dependency of the ectopic initiation sites induced by insertion of the
—174 to —81 bp fragment of the RPS5 promoter at two distinct sites of the ADHI promoter (=750 to —1bp). Schematic diagram (upper panel)
illustrates the constructs that contain (or do not contain) the —174 to —81 bp fragment of the RPS5 promoter as an insert at the indicated position
(—=195/—194 or —100/—99 bp) within the ADHI promoter (#61-63, right) and those that contain an additional TATA to GAGA mutation (#64-66,
right). Total RNA (20 pg) was isolated from the strains carrying a combination of either TAFI or taflI-N5684 and either WT, #61, #62 or #63
before, or 2h after, a temperature shift from 30 to 37°C (indicated top, lanes 2—13 and 15-18). Similarly, total RNA (20 pg) was isolated from the
strains carrying a combination of TAFI and either #60, #61, #64, #65 or #66 incubated at 30°C as indicated at the top (lanes 1, 14 and 19-22).

Primer extension analysis was done as described in (B).
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Figure 3. TFIID-dependency of ectopic initiation induced by the TATA insertion was altered by the position where it was inserted within the RPSS
promoter. (A). TFIID-dependency of ectopic initiation sites induced by insertion of the TATA element at various positions as depicted in Figure 2A
in the RPS5 promoter. Total RNA (20 pg) was isolated from strains carrying a combination of either TAFI (left panel) or tafl-N568A4 (right panel)
and either WT, #48, #49, #50, #51, #52, #53, #54, #55, #56, or #57 before, or 2h after, a temperature shift from 30 to 37°C as indicated at the top.
Primer extension analysis was done as described in Figure 2B. (B) Transcriptional initiation activities from the sites at —160, —133, —88, =71, =37,
—27 and —23bp in a tafl-N5684 strain (right panel in A) are summarized schematically as in Figure 2D. Note that the regions conferring
TFIID-independent or TFIID-dependent ectopic initiation sites when the TATA element was inserted are indicated at the bottom.

located at —193 to —189bp (Supplementary Figure S1)
was responsible for this activity.

The insertion of —120 to —71 bp of the SSBI promoter at
the same site of the RPS5 promoter (#93) induced ectopic
transcription (lane 31, Figure 4B) similar to that of #55 or
#56 bearing the TATA element at —207 to —200 bp or —220
to —213 bp (lanes 9 or 10, Figure 2B). This is plausible since
the TATA element (TATATAAA) of the SSBI promoter is
located at —216 to —209bp in this construct

(Supplementary Figure S1). The insertion of —100 to
—51 bp of the SSBI promoter (#94) induced ectopic tran-
scription, albeit less strongly (lane 32), similar to #97
bearing the HIS3 T¢ element (lane 36). This construct
lacks the TATA element but instead contains the ‘TAAA
A’ sequence at —192 to —188 bp (Supplementary Figure
S1), suggesting that the original SSBI promoter has dual
CE like the T¢c and Ty elements of the HIS3 promoter.
Intriguingly, the ADH promoter may also have multiple
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Figure 4. CE activities of the core promoter fragments derived from RPS5 and several other genes. (A) Schematic diagram showing a series of
promoter fragments from RPSS5 (top and middle panels), RPL2B, SSB1, ADHI and HIS3 (bottom panel) tested for CE activities by inserting them
at —175/—174bp of the RPS5 core promoter (as described for #60 in Figure 2B). The three “TAAAA’ sequences (TAAAA*"™) in the RPS5
promoter are marked with small black rectangles. To facilitate a comparison of the distances between “TAAAA’ and the —175/—174 bp insertion
sites, the constructs containing these ‘TAAAA’ sequences were aligned (see inset) according to their insertion sites (i.e. —175/—174bp).
Transcriptional initiation activities from the sites at —136, —133, —88, —71, —37, —27 and —23bp of these constructs were examined in (B) and
summarized schematically as in Figure 2D (see inset). The boundaries corresponding to the 5'- or 3’-ends of each promoter fragment are indicated.
The number of each construct is also indicated (left). Note that #90 and #91 are chimeric constructs between UAS (white rectangle) and core (grey
rectangle). Detailed sequence information is given in Supplementary Figure 1. (B) CE activity of each insert (#67-#98 as depicted in A) to induce
ectopic initiation site(s). Primer extension analysis was done as described in Figure 2B.

CE since two distinct but overlapping regions, both located
downstream of the TATA element (#95-96), also showed
weak CE activity (lanes 33—34). This is somewhat paradox-
ical, as the RPS5 CE does not appear to function in the
ADHI promoter (Figure 2E), but is consistent with the
fact that the ADHI core promoter is activated efficiently

by RPS5 UAS (36). Finally, the insertion of —100 to —51 bp
of the RPL2B promoter (#92) induced ectopic transcription
(lane 30) similar to that of #72 (lane 29), probably because it
also has the TAAAA’ sequence located at —198 to —194 bp
(Supplementary Figure S1). Together, this suggests that
many promoters contain multiple CE that function not



only in the original promoters, but also in the RPSS
promoter.

Multiple AT-rich stretches function redundantly as CE in
the RPS5 promoter

The results described above strongly suggest that several
distinct AT-rich stretches function as CE in the RPSS
promoter. To test this, we conducted mutational
analyses of the four overlapping promoter fragments con-
taining different numbers of these AT-rich stretches
(#70-73) and show CE activity when they are inserted at
—175/—174bp (Figure 5). The #72 and #73 showed
ectopic initiation from —136/—133/—88/—71 bp, whereas
#70 and #71 did only from —88/—71bp (Figure 4B).
When the ‘TAAAA’ sequence in #70 was changed to ‘T
GGGG’ (#99), ‘TCCCC’ (#100), ‘ TGGAA’ (#103), or °C
GGGG’ (#104), these constructs showed minimal CE
activity, similar to that of #69 (lanes 1-5, 8 and 9,
Figure 5F). In contrast, the substitution mutant bearing
‘TTTTT (#101), ‘TGAAA’ (#102), ‘TAAGA’ (#105), or
‘TAACA’ (#106) at the same position showed stronger
activity than #69 (lanes 1-3, 6-7 and 10-11), while the
mutant bearing “TAATA’ (#107) showed similar activity
to that of the wild-type #70 (lanes 3 and 12). This suggests
that the number of A or T residues within the ‘TAAAA’
sequence (rather than the sequence itself) may be critical
for CE function.

Substituting “TAAAA’ with ‘TGGGG’ greatly reduced
CE activity in #70 (#99) (lanes 3—4) but not in #71 (#108)
(lanes 13-15). However, when another AT-rich stretch (‘T
ATTTT’) located downstream was simultaneously
changed to ‘TACCCC’ (#109), it almost abolished the
CE activity of #71 and decreased it to the level of #69
(lanes 2, 13, 14 and 16), suggesting that the ‘TAAAA’
and ‘(TA)TTTT® sequences function redundantly as
CE in the RPS5 promoter. Analogously, the simultaneous
substitution of these two sequences (#112) was not enough
to abolish the CE activity of #72 (lanes 18, 19 and 21),
which contains another AT-rich stretch (‘TTTTTAT’)
further downstream (Figure 5A). As expected, triple sub-
stitution (including this ‘TTTTT(AT)’ sequence) (#113)
decreased the CE activity to the level of #69 (lanes 2, 18,
19 and 22). Strikingly, when the —140 to —91 bp region
(#73) containing two more additional AT-rich stretches
(‘AATA’ and ‘TTAAAAT’, Figure 5A) was subjected to
the same mutational assay, all five AT-rich sequences had
to be substituted simultaneously to abolish CE activity
(lanes 23-28). The ectopic initiation at —136/—133 bp
was selectively weakened when the AT-rich sequences
located further upstream were substituted (lanes 25-27),
indicating that they function independently as CE where
pol II is assembled into PIC and released to scan DNA
downstream. Therefore, we conclude that multiple
AT-rich sequences within the —125 to 91bp region of
the RPS5 promoter have redundant CE function.

AT-rich sequences are physiologically relevant CE for
the RPS5 promoter

We showed that multiple AT-rich sequences induce
ectopic initiation at —136/—133/—88/—71bp when
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inserted at —175/—174bp (Figure 5B). However, it is
unclear whether these sequences play crucial roles in in-
trinsic initiation from the original RPS5 promoter. A
search for AT-rich stretches within the RPS5 core
promoter corresponding to the —174 to —51bp region
that supports intrinsic initiation from —37/—27/-23/
—18/—13/—9 bp (see the result of #30 lacking this region,
Figure 1E) revealed that it contains several additional
AT-rich sequences downstream of the five sequences
tested in Figure 5 (Figure 6A) and a region (—161 to
—138bp) with weak similarity to the T¢ element of the
HIS3 promoter (53) (lower panel, Figure 6A). Intrinsic
initiation from —13/—9 bp was observed for #31 (contain-
ing the latter Tc-like region), but not for #30 (without this
region) (lanes 7-8, Figure 1E). This implies that the
Tc-like region may have CE activity.

To test whether these multiple AT-rich sequences and
the Tc-like region function as CE in the original RPSS
promoter, we mutated them in various combinations
and compared CE activity in the resulting mutants
(Figure 6B, C, Supplementary Figures S2 and S3). The
results showed that simultaneous mutation of three
elements (M1-5-7 and M7-8-9) from a total of 10
(Figure 6B) affected CE activity only slightly (lanes 1-3,
Figure 6C), whereas mutation of seven elements
(Tc-like-M 1-2-3-5-6-7) affected it more significantly (lane
4, Figure 6C). The position of non-mutated elements
appears to determine the distribution profile of the intrin-
sic initiation sites. For instance, when M8-9 is active, but
other CE located upstream are mostly inactive (#121), ini-
tiation from —37 bp becomes weaker; however, that from
—13/—9bp becomes stronger (lane 4, Figure 6C). These
observations match those in Figure 5, where some of these
multiple AT-rich sequences were inserted at —175/
—174bp to create ectopic initiation sites at —136/—133/
—88/—71bp. Thus, it is likely that the ectopic initiation
assays explored in this study (Figures 2-4) measure CE
activity in a physiologically relevant manner.

Most strikingly, we found that CE activity remained
detectable even when any combination of the eight
AT-rich sequences among the nine was mutated simultan-
eously (lanes 6-13, Figure 6C). That is, any single copy of
these AT-rich sequences is enough to produce transcripts
from intrinsic initiation sites, albeit less strongly than the
wild-type promoter. As expected, the position of
non-mutated elements correlated well with that of the in-
trinsic initiation site (lanes 6—13). Somewhat puzzlingly,
the Tc-like region appears to be inactive in this assay as
there are no differences in the initiation profiles of #122
and #131 (lanes 5 and 14). Although the reason for such
a discrepancy between the effects of the Tc-like region
on intrinsic initiation of two different mutants (#31,
Figure 1E and #122, Figure 6C) is unclear, it may be
due to differences in the distance between the Tc-like
region and the initiation site (i.e. it is too great to induce
intrinsic initiation in #122). This may also explain why
#69 (containing the Tc-like region) was almost inactive
(Figure 4B). Therefore, we conclude that multiple
AT-rich sequences are physiologically-relevant CE for
the RPS5 promoter and function redundantly.
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Figure 6. Highly redundant functions of multiple AT-rich CE within
the original RPS5 promoter. (A) Schematic diagram showing the
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major transcriptional initiation site (—37bp) in the RPS5 promoter.
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#131) containing different combinations of 10 intact (white rectangle)
or mutated (black rectangle) potential CE. Detailed sequence
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DISCUSSION

This study shows that multiple AT-rich sequences
function as CE within the TATA-less RPS5 core
promoter in Saccharomyces cerevisiae. 1t is remarkable
that many similarities exist between the promoter archi-
tectures of RPS5 and HIS3, the latter of which was
characterized  extensively in  previous studies
(31,32,38,52-54).

It was shown that the HIS3 promoter contains two
functionally distinct CE (T¢ and Tg), which direct tran-
scription from the +1 and +13 sites, respectively. Tr cor-
responds to a typical TATA eclement and mediates
activation by Gendp and Galdp, whereas T is a relatively
large (~30bp) TATA-less element unresponsive to these
acidic activators. Notably, T¢ is more resistant to substi-
tution mutations than Tg. In fact, simultaneous mutation
of the three short AT-rich stretches (‘(ATTAT’, ‘ATAAT’
and ‘AATTA’) within Tc is required for the elimination of
its CE activity (53). Furthermore, short AT-rich sequences
(~7bp) with some resemblance to a TATA element are
sufficient to mediate Tc function (54). These unusual
properties of T (lacks a TATA element but contains
multiple, highly redundant AT-rich sequences, and a
poor response to acidic activators) are also seen in the
RPSS5 core promoter comprising several short AT-rich
CE (34) (Figure 6). Given that transcription mediated
by Tc and RPS5 CE are both TFIID-dependent (85)
(Figure 2), these CE may be novel recognition sites for
TFIID. Consistent with this, the region overlapping
some of these multiple AT-rich CE in the RPS5 core
promoter is bound by purified TFIID in the presence of
TFIIA (56).

The reason that AT-rich CE have not been identified in
endogenous yeast promoters (except T¢) may be due, in
part, to their highly redundant features in addition to a
lack of sequence conservation. TATA elements are highly
conserved (13,16) and have strict sequence requirements
for CE function (38), probably because base changes
affect not only TBP binding but also higher order
complex formation with TFIIA and TFIIB (40). In
contrast, RPS5 CE appear to have more relaxed
sequence requirements. For instance, several AT-rich sub-
stitution mutants of the “TAAAA’ sequence (—125 to
—121bp) remained functional in the ectopic initiation
assays (Figure 5). To explore this further, we randomized
the ‘AATA’ sequence (M4: —102 to —99bp) in the
original RPS5 promoter lacking all potentially functional
CE except M4 and compared CE activity in more than 60
mutants to determine the effect of each substitution
(Supplementary Figure S4). The results showed that
mutants comprising only A or T residues were mostly

information for these constructs is shown in Supplementary Figure 2.
Transcriptional initiation activities from the sites at —160, —133, —88,
=71, =37, =27, =23, —13 and —9bp that were examined in (C) are
summarized schematically as in Figure 2D. (C) Transcriptional activity
of the RPS5 promoters constructed in (B). Northern blot analysis (top
panel) to determine the expression levels of VTCI was performed as
described in Figure 1B. Primer extension analysis was performed for
VTCI (middle panel) and ADHI (control, bottom panel) as described
in Figure 2B.



72 Nucleic Acids Research, 2011, Vol. 39, No. 1

active (Supplementary Figure S4B), whereas those
comprising only G or C residues were inactive
(Supplementary Figure S4E). Although some sequence
preferences may exist (Supplementary Figure S4C and
D), activity tends to be correlated with the number of A
or T residues included within the CE. This suggests that
the reason it has been difficult to identify AT-rich CE in
endogenous promoters using the usual mutational
approaches is that many A/T residues need to be
changed simultaneously to G/C residues after eliminating
the function of neighboring CE with similar activity. In
this regard, the ectopic initiation assays we have exploited
here should provide an advantage in the identification of
such CE, since only a portion of the original core
promoter containing a minimal number of CE can be
tested. In fact, several novel CE candidates were identified
in both TATA-containing (ADHI and SSBI) and
TATA-less (RPL2B) promoters (Figure 4). Hence, core
promoters carrying multiple CE may be more frequently
utilized by yeast genes than previously anticipated.

We showed that insertion of the TATA element
at —200/—199bp (#55) induced ectopic initiation at
—138/—133bp, or further downstream (Figure 2B), in a
TATA-dependent manner (Supplementary Figure S5).
When we inserted randomized 10bp sequences at the
same site, six (r8, rl6, rl7, r37, r80 and r82) of
88 randomly selected clones showed similar ectopic initi-
ation profiles to that of #55 (Supplementary Figure S5).
However, only r80 contained a previously identified func-
tional TATA element (TATTTA) (32). Intriguingly, the
other active clones contained either TTAAA (r8, r37 and
r82) or TTAAG (r16 and rl7), neither of which were
found in inactive clones. Remarkably, r25 contained a T
AAAA sequence that was active when inserted at
—175/—174bp (Figure 5), but was not active in this
assay (Supplementary Figure S5; note that the juxtaposed
‘A’ residue at —199 bp was taken into account for r37 and
r25). This suggests that CE activity varies depending on
the surrounding sequences, and that ‘TTAA(A/G)’ may
function as CE specifically at —200/—199 bp, but not at
other sites. In agreement with this, more than a dozen
AT-rich sequences were previously identified as active
CE by screening randomized oligonucleotides at the Ty
site in the HIS3 core promoter, but did not contain
‘TTAA(A/G)’ (52). However, further analysis is required
to confirm the hypothesis that preferred sequences for CE
are determined by surrounding sequences and/or more
remote elements like UAS.

The TATA element has transcriptional directionality.
Specifically, when the TATA element is reversed, the re-
sulting core promoter does not mediate reversed transcrip-
tion but simply becomes weak in the forward direction
(20,42.86). As TBP binds to the TATA element in two
orientations (bi-directionally), at least in solution,
correct binding of TBP must be facilitated by other
factors including TFIIA, TFIIB, and/or activators
(20,87,88). Since RPS5 CE have more relaxed sequence
requirements than the TATA element, it is likely that
the former may also have weaker transcriptional direc-
tionality than the latter. To test this, the —174 to —50 bp
or —134 to —50 bp regions were reversed in the RPS5 core

promoter and the CE activity directing forward transcrip-
tion was compared (Supplementary Figure S6). When the
—174 to —50bp region was reversed (#135), the major
intrinsic initiation site at —37bp disappeared, whereas
ectopic initiation sites appeared further upstream, suggest-
ing that the reversed Tc-like region is inactive but that
some reversed CE are active, albeit weakly. When the
—134 to —50bp region was reversed (#132), intrinsic ini-
tiation at —37 bp decreased significantly but ectopic initi-
ation was induced slightly at a region further upstream,
again suggesting that the reversed CE are weakly function-
al. This assumption was confirmed by testing the effects
of two substitution mutations within the reversed CE
(#133 and #134) that abolished intrinsic and ectopic initi-
ation. Reversed transcription was not induced by these
reversed CE (unpublished observations). Therefore, we
suppose that the entire set of RPS5 CE has strong tran-
scriptional directionality similar to that of the TATA
element. However, each RPS5 CE may have weaker dir-
ectionality, as exemplified by the fact that randomized
AT-rich sequences at the M4 region showed similar
activity, even when the sequence was reversed (#rl-rl3,
#r2-15, #1269, #rd—r7 and #r6-r12, Supplementary
Figure S4A).

One of the most interesting observations was that the
TFIID-dependence of the TATA eclement in inducing
ectopic initiation varies depending on the position at
which it is inserted (Figure 3A, B). Previous studies
show that the conversion of atypical TATA (‘TAAAAT’
at —125 to —120bp) to consensus TATA (‘TATAAA’)
could not restore RPS5 transcription in tafl strains
(33,55). This decrease in transcription is due to core
promoter-specific defects in activation by the RPS5 UAS
(33). Therefore, it is likely that such activation defects
cannot be restored when the TATA element is created
within the region to which TFIID binds, but can be
restored when it is created in regions to which it does
not bind. Consistent with this, similar defects in activation
by the ADH1 UAS in taf] strains were restored when the
TATA element was located at a region distant from
the RPS5 core promoter (55). Therefore, we assume that
the function of the TATA element may differ depending
on the promoter context, since each core factor (free TBP,
TFIID, SAGA etc.) regulates TATA function in its
own way.

An enigmatic question is how such short AT-rich
sequences could have CE function even when they exist
as a single copy in the core promoter (Figure 6). It is hard
to imagine that each AT-rich sequence (4-6bp) can
provide a specific recognition site for TFIID, given that
it exhibits relaxed sequence requirements (Figure 5 and
Supplementary Figure S4). Recent genome-wide studies
show that yeast promoters contain a nucleosome free
region (NFR) near the transcriptional initiation site
flanked by two positionally well-defined nucleosomes
(=1 and +1) (89). PIC is assembled on NFR to initiate
transcription from a site within the +1 nucleosome.
AT-rich CE identified here can be regarded as short
segments of a poly(dA:dT) tract that plays an important
role in forming NFR (90). Although each CE may be too
short to exclude nucleosome formation on the core



promoter, it may induce NFR in cooperation with other
factors like Abflp or Raplp (91). If this is the case,
another role of AT-rich CE may be to induce NFR that
is a prerequisite for PIC assembly and subsequent tran-
scriptional initiation. In fact, it was recently proposed that
TFIID and SAGA might be recruited to the TATA-less
promoters by binding to —1/+1 nucleosomes rather than
to core promoter elements (89). However, the fact that the
RPS5 core promoter is bound by purified TFIID (56), and
that the entire set of RPS5 CE shows strong transcription-
al directionality (Supplementary Figure S6), still supports
a view that these CE may function as recognition sites for
TFIID. Although the detailed mechanism is unclear, we
prefer a model in which RPS5 CE have a dual function:
one is to exclude nucleosome formation, and the other is
to provide a recognition site for TFIID. The latter may
depend on the entire set of CE, since a single copy showed
rather weak activity in both transcriptional strength
(Figure 6) and directionality (Supplementary Figure S4).
Further studies are necessary to clarify the function of
these AT-rich CE and elucidate the mechanism of how
TATA-less promoters are transcribed in yeast.
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