
American Journal of Epidemiology
© The Author(s) 2019. Published by Oxford University Press on behalf of the British Geriatrics Society.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.

Vol. 188, No. 3
DOI: 10.1093/aje/kwy272

Advance Access publication:
January 4, 2019

Practice of Epidemiology

The Impact of Screening and Partner Notification on Chlamydia Prevalence and
Numbers of Infections Averted in the United States, 2000–2015: Evaluation of
Epidemiologic Trends Using a Pair-Formation TransmissionModel

Minttu M. Rönn*, Ashleigh R. Tuite, Nicolas A. Menzies, Emory E.Wolf, Thomas L. Gift,
Harrell W. Chesson, Elizabeth Torrone, Andrés Berruti, Emanuele Mazzola, Kara Galer,
Katherine Hsu, and Joshua A. Salomon

*Correspondence to Dr. Minttu M. Rönn, Department of Global Health and Population, Harvard T.H. Chan School of Public Health,
90 Smith Street, Level 3, Room 331, Boston, MA 02120 (e-mail: mronn@hsph.harvard.edu).

Initially submittedMay 10, 2018; accepted for publication December 10, 2018.

Population-level effects of control strategies on the dynamics of Chlamydia trachomatis transmission are difficult to
quantify. In this study, we calibrated a novel sex- and age-stratified pair-formation transmission model of chlamydial
infection to epidemiologic data in the United States for 2000–2015. We used sex- and age-specific prevalence esti-
mates from the National Health and Nutrition Examination Surveys, case report data from national chlamydia surveil-
lance, and survey data from the Youth Risk Behavior Survey on the proportion of the sexually active population aged
15–18 years. We were able to reconcile national prevalence estimates and case report data by allowing for changes
over time in screening coverage and reporting completeness. In retrospective analysis, chlamydia prevalence was esti-
mated to be almost twice the current levels in the absence of screening and partner notification. Although chlamydia
screening and partner notification were both found to reduce chlamydia burden, the relative magnitude of their esti-
mated impacts varied in our sensitivity analyses. The variation in the model predictions highlights the need for further
data collection and research to improve our understanding of the natural history of chlamydia and the pathways through
which prevention strategies affect transmission dynamics.
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Abbreviations: CDC, Centers for Disease Control and Prevention; CrI, credible interval.

Chlamydia, caused by Chlamydia trachomatis, is the most
commonly reported sexually transmitted infection in the United
States and the most prevalent bacterial sexually transmitted infec-
tion worldwide (1, 2). Chlamydia prevalence is typically highest
among young adults, and asymptomatic infections are common.
In women, chlamydial infections have been associated with pel-
vic inflammatory disease, which can cause ectopic pregnancy and
tubal factor infertility. Repeated chlamydia diagnoses have been
associated with an additional increase in the risk of pelvic inflam-
matory disease in studies using routinely collected data (3, 4).
Chlamydial infection may be associated with an increase in the
risk of acquiring human immunodeficiency virus by inducing
inflammation at the site of infection (5, 6).

The US Preventive Services Task Force recommends
chlamydia and gonorrhea screening (testing of asymptomatic

individuals) for women who are sexually active and under age
25 years or for older women who are at increased risk of infec-
tion (7). In addition to screening of women, the Centers for
Disease Control and Prevention (CDC) also recommends con-
sidering screening sexually active young men in high-prevalence
settings (e.g., sexual health clinics, correctional facilities, adoles-
cent clinics) when there are sufficient resources available (8).
An aim of the National Center for HIV/AIDS, Viral Hepatitis,
STD, and TB Prevention’s Strategic Plan is to increase the pro-
portion of young females screened for chlamydia (9).

Previous chlamydia modeling has suggested that increasing
screening coverage in the general population should reduce
chlamydial infection (10). In a review of chlamydia screening
trials, Low et al. (11) found moderate evidence that screening
reduced the risk of pelvic inflammatory disease and found
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limited trial evidence on the impact of screening on chla-
mydia prevalence. In the United States, chlamydia trends
are characterized by increasing numbers of case reports,
while estimates of chlamydia prevalence have remained
more stable over time (12, 13). There are several explanations
for increasing rates of case reporting: Increasing screening fre-
quency would detect more cases, as would use of more sensitive
test diagnostics, and moving towards computerized surveillance
systems improves the completeness of reporting of diagnosed
chlamydia cases at the national level. How these factors affect
chlamydia burden remains unclear. There are numerous uncer-
tainties around chlamydia natural history, epidemiology, and
control strategies. In the context of uncertainty and limitations
in empirical data, mathematical modeling can provide useful in-
sights into the effects of different prevention strategies on chla-
mydial infection. By combining different sources of data and
incorporating the processes through which the data are gener-
ated, we may better understand how observed patterns and
trends relate to the underlying dynamics of disease and
intervention.

In this study, we developed a novel chlamydia transmission
model and calibrated the model to multiple epidemiologic time-
series data in order to explore uncertainties in the drivers of
recent trends in chlamydial infection.We explored uncertainties
in recent trends in the coverage of screening and the complete-
ness of case reporting. The calibrated model was used to esti-
mate the possible impact of screening and partner notification
in the United States during the period 2000–2015.

METHODS

Mathematical model overview

We developed a deterministic compartmental heterosexual
pair-formation model describing chlamydia transmission in a
heterosexual age- and risk-stratified population. The use of
pair-formation models to study sexually transmitted infections
has been developed by Dietz and Hadeler (14), Waldstätter
(15), and Kretzschmar and Dietz (16) and applied in a number
of other mathematical models of sexually transmitted infec-
tions (17–20). In a pair-formation model, partnerships are
explicitly represented as compartments, in contrast to traditional
deterministic models of sexually transmitted infections, in which
sexual contacts aremodeled as instantaneous. The pair-formation
framework allows modeling of differential infection risks among
persons who are single or paired. Pairs in which both partners are
susceptible are protected from infection and pairs in which both
partners are infected are not transmitting the infection to others,
unless there is concurrency. If one infected person in a pair is diag-
nosed and treated but their immediate partner is not, reinfection
within the partnership is likely to occur (17, 21).

The model includes compartments that stratify the popu-
lation by age, sex, partnership status, sexual risk behavior,
and chlamydial infection status. Age is divided into 4 catego-
ries: 15–18 years, 19–24 years, 25–39 years, and 40–54 years
(Figure 1). Transmission of chlamydia in the model occurs via
unprotected sex in heterosexual partnerships. The model is
described in detail in Web Appendix 1 (which includes Web
Figures 1–5 andWeb Tables 1–4), and the model is operationa-
lized using difference equations described in Web Appendix 2.

The mathematical model was coded in R and C++ soft-
ware, utilizing the “Rcpp” package (R Foundation for Sta-
tistical Computing, Vienna, Austria) (22).

Partnership dynamics

In the model, there are 3 partnership statuses that are mutu-
ally exclusive. In the 2 youngest age groups, there are people
who have not yet become sexually active (“non–sexually
active” in Figure 1). We assume that by age 25 years, everyone
is sexually experienced. Once people become sexually active,
they become part of the unpaired (“single”) population, who
can have casual partners at age-specific rates (“sexually active”
in Figure 1). Casual partners represent short-term relationships,
and they are modeled as instantaneous partnerships. Pairs are
formed from the unpaired, sexually active people. The model
specifies preferential formation of pairs within the same age
group, with the possibility that women may form partnerships
with older men. The pairs describe long-term partnerships such
as cohabiting or marital partnerships. Heterogeneity in sexual
risk behavior at the partnership level is modeled with pairs’
being predominantly monogamous, with a low frequency of
concurrency. Concurrency is modeled in the same fashion
as casual partners among unpaired single people: There is
a short-term instantaneous partnership from the casual part-
ners pool. When a pair dissolves, the former members of the
pair return to the unpaired state. At the population level, there
is additional risk heterogeneity, with 10% of the population
assumed to belong to the higher-risk group (with a higher rate
of casual and concurrent partners), while 90% of the popula-
tion have fewer casual and concurrent partners.

Natural history and time-varying parameters

Natural history is represented using a susceptible-infected-
susceptible structure (Figure 2), further differentiating asymp-
tomatic and symptomatic infections, as well as first infection
from subsequent infections. Infection risk comes from the main
partner in a pair and from any casual partners that unpaired or
paired people have. Subsequent infections are added for later
analysis. Testing of symptomatic people occurs at sex-specific
rates, while screening of asymptomatic people varies by sex
and age. There is a background natural recovery rate for chla-
mydia. Partner notification is modeled explicitly in the long-
term partnerships (“pairs” in Figure 1), and partner notification
is stratified by sex and age; however, in the absence of data on
changes in this prevention strategy, the parameters are kept
time-invariant. The different outcomes resulting from testing an
index case in a long-term partnership are described in Web
Appendix 1,Web Figure 2.

We included time-varying parameters in the model to repro-
duce the changes seen in the epidemiologic data. For health-
care–related parameters, we incorporated increasing sensitivity
of chlamydia diagnostic tests, age-specific changes in screening
due to increasing adherence to CDC and US Preventive Services
Task Force recommendations, and adoption of nucleic acid
amplification tests (Web Appendix 3, Web Figures 6 and 7).
We also incorporated an increase in the completeness of
reporting diagnosed cases to the CDC. The average sensitivity
of chlamydia tests and probabilities of reporting a chlamydia
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diagnosis to the CDC were modeled using a logistic function,
constraining trends to increase over time. Time-varying changes
in the frequency of screening were modeled with a more flexible
function operationalized as a Bezier curve, allowing screening
to increase or decrease at different time points. The time-varying
parameters governing screening were specific by age and sex
with parameters set for women aged 15–18, 19–24, and 25–39
years, and the screening for men was constrained by a multiplier
(<1) applied to corresponding rates for women.

We also allowed time-varying trends for the initiation of sexual
activity (moving from “non–sexually active” to the “sexually

active” compartment) in the youngest age group (15–18 years),
governed by monotonic functions describing time trends in both
the proportion entering the group at age 15 years as sexually expe-
rienced and the rate of sexual initiation in the 15- to 18-year-old
population.

Data

We calibrated the model to age- and sex-specific estimates of
prevalence and case reports. Prevalence estimates for persons
aged 15–39 years were obtained from the National Health and
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Figure 1. Schematic of the simulated model population and the pair formation process used to simulate chlamydia transmission, with arrows re-
flecting the aging of the population. A) Unpaired women; B) pairs of men and women, which represent long-term partnerships; C) unpairedmen.

Am J Epidemiol. 2019;188(3):545–554

Impact of Chlamydia Screening in the United States 547



Nutrition Examination Survey (23), pooled over 4-year inter-
vals between 1999 and 2014 for each age group in the model
up to age 39 years to reduce sampling variance in the estimates.
National case reports for persons aged 15–54 years were ob-
tained fromCDC data for the years 2000–2015 (24). Chlamydia
case report data rarely include information on the sex of sexual
partners; to estimate diagnoses among heterosexual men, we
assumed that 10% of reported male cases were in men who had
sex with men and that 3% of the male population between the
ages of 15 and 54 years were men who had sex with men (25).
Using Youth Risk Behavior Survey data for 1999–2015 (26),
we calibrated the model to the proportion of 15- to 18-year-olds
who reported ever having had sex, which represents the age
group with the most sizeable population of people who are not
sexually active. Behavioral parameters were informed by
the National Survey of Family Growth (27) and the Youth
Risk Behavior Survey (26). Parameters and their prior distribu-
tions are shown inWebAppendix 1,Web Table 1.

Calibration and uncertainty analysis for reporting and
screening

We calibrated the model and its parameters to the epidemio-
logic data using a Bayesian framework, which was operationa-
lized with incremental mixture importance sampling (28). We
defined prior probability distributions for the parameters that
were varied, which reflected our prior information on their plau-
sible values (Web Appendix 4, Web Table 5). The incremental
mixture importance sampling algorithm iteratively explores
parameter regions with the highest likelihood of the epidemio-
logic data given the model and the prior probability distribu-
tions for the parameters varied. The Bayesian approach yields
joint-posterior probability distributions for the parameter val-
ues. These posterior probability distributions are used in the
model simulations to produce model estimates, which are pre-
sented as mean values and 95% credible intervals for the model
outputs. For each calibration scenario, we calibrated the model

using the same prior distributions for parameters varied except
for differing assumptions made for reporting and screening as
described in Table 1. Parameter identifiability can be an issue
with complex models. We were less interested in inferring the
precise values of individual parameters than in capturing the
epidemiologic trends produced by the joint probability distri-
bution of the parameters varied as part of the calibration. We
characterized correlation between parameters with a Pearson
correlation matrix (Web Appendix 4, Web Figures 8–11).
Each model simulation was initially run to equilibrium using
time-invariant parameters, and time-varying parameters were
introduced for the calibration period corresponding to the
period 2000–2015.

To explore the impact of uncertainty regarding trends in
screening and reporting, we calibrated the model under 4 dis-
crete scenarios (Table 1), which are referred to henceforth as
the “calibration scenarios.”

Scenario 1:more constrainedpriors on reporting and screen-
ing. In scenario 1, screening was assumed to remain stable
or increase during the 2000–2015 period, consistent with
trends in health-care performance measures and claims data
(Web Appendix 3, Web Figure 7). We assumed that report-
ing had increased from the year 2000 from a minimum level
of 50%.

Scenario 2: less constrained priors on reporting and more
constrained priors on screening. In scenario 2, we allowed
reporting in the year 2000 to be less than 50%, while screen-
ing assumptions were the same as those in scenario 1.

Scenario 3: more constrained priors on reporting and less
constrainedpriorsonscreening. In scenario 3, we also allowed
screening to decline towards the end of the period 2000–2015,
while assumptions for reporting were the same as those in sce-
nario 1.

Scenario 4: less constrained priors on reporting and screen-
ing. In scenario 4, screening was also allowed to decline (as in
scenario 3), and reporting in 2000 was allowed to be less than
50% (as in scenario 2).

Table 1. Calibration Scenarios Investigated as Part of a Sensitivity Analysis of Chlamydia Transmission, United States, 2000–2015a

Calibration Scenario Prior Assumptions on Reportingb of Cases Prior Assumptions on Screeningc

Scenario 1: more constrained priors on
reporting and screening

Reporting was assumed to be at least 50% in 2000,
and it was constrained to increase over time from
2000 to 2015.

Screening was allowed to remain stable or to
increase from one year to the next from
2000 to 2015.

Scenario 2: less constrained priors on
reporting andmore constrained priors
on screening

Reporting was not constrained as in scenario 1,
but it was only allowed to increase over time
from 2000 to 2015.

Same as scenario 1

Scenario 3: more constrained priors on
reporting and less constrained priors
on screening

Same as scenario 1 Screening was allowed to decrease, remain
stable, or increase from 2000 to 2015.

Scenario 4: less constrained priors on
reporting and screening

Same as scenario 2 Same as scenario 3

Abbreviation: IQR, interquartile range.
a We examined the impact of prior assumptions on screening and reporting, which were implemented as time-varying parameters.
b The reporting probability of a diagnosed case was modeled as a logistic function. The prior parameter for reporting in 2000 was estimated as

(Beta(7, 3)/2 + 0.5), with a median reporting probability of a diagnosed case of 86% (IQR, 80–90), in scenarios 1 and 3 and estimated as Beta(7, 3),
with a median reporting probability of 71% (IQR, 61–80), in scenarios 2 and 4. The beta distribution is defined by shape parameters (α, β).

c Screening is modeled as a Bezier function with 4 control points to allow for more flexible time trends (see Web Appendix 1, section 1.8).
Changes implemented in the screening priors in the calibration scenarios apply to the age groups 15–18 years and 19–24 years.
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Estimated impact of screening and partner notification

The calibration scenarios represent our estimation of chla-
mydia burden under the current prevention efforts for 2000–2015
given the uncertainty in screening and reporting coverage. We
developed 4 counterfactual analyses to estimate the impact of
screening and partner notification during this period in a retro-
spective analysis. The counterfactual analyses preserved the
joint-posterior parameter estimates from the calibration, except
for selected parameters governing screening and partner notifi-
cation, as described in Table 2. For quantification of the overall
impact of screening between 2000 and 2015, the first counter-
factual analysis held screening constant at 2000 levels. The
second counterfactual analysis assumed that there was no part-
ner notification for the time period; the third counterfactual
analysis assumed that there was no screening (across sex and
age groups) during 2000–2015; and the fourth counterfactual
analysis assumed no screening and no partner notification.We
assume in the counterfactual scenarios that in the absence of
prevention efforts the estimated sexual-risk and health-care–
seeking behaviors would remain unchanged in the population.
Results from the counterfactual analyses were summarized in
terms of chlamydia prevalence in 2015 (allowing for compari-
son between the calibrated “current” estimate and a counter-
factual) and averted infections for 2000–2015 (computing the
difference in cumulative chlamydia incidence between the
counterfactual analysis and the current estimate).

RESULTS

We calibrated the pair-formation model to prevalence, case
report data, and the proportion of persons aged 15–18 years
who reported ever having had sex. Each of the 4 calibration sce-
narios produced joint-posterior estimates of the model consis-
tent with the observed epidemiologic data (Web Appendix 4,
Web Figure 12). The calibration scenarios reflect uncertainty
around trends in screening and completeness of reporting that
cannot be resolved by fitting the model to data on prevalence,
case reports, and sexual behavior; parameter values estimated

by the model are described in Web Appendix 4, Web Table 6
and Web Figures 13–16. In the United States, there has been a
steady increase in rates of chlamydia case reporting. The cali-
bration scenarios were able to capture the changes in case report
data and the sex- and age-specific difference in case report data,
with younger women aged 15–24 years having the highest re-
ported case rate and women over age 24 years and men in all
age groups having fewer cases detected and reported across the
time series. For the same time period, national prevalence esti-
mates from the National Health and Nutrition Examination Sur-
vey lacked a clear trend, and the estimates were characterized by
wide confidence intervals. The calibrated model suggested that
theremay have been a downward trend in chlamydia prevalence
for 2000–2015. The Youth Risk Behavior Survey data on 15- to
18-year-olds’ reporting of ever having had sex have remained
relatively stable, with some indication that there may have been
a decline in the average age of sexual debut in recent years (29).

Figure 3 presents mean values and 95% credible intervals for
model-estimated chlamydia prevalence in 2015 given current
prevention efforts for 2000–2015 and the estimated chlamydia
prevalence in 2015 under 4 counterfactual scenarios: 1) no increase
in screening since 2000; 2) no partner notification services dur-
ing 2000–2015; 3) no screening during 2000–2015; and 4) no
screening and no partner notification during 2000–2015. Preva-
lence estimates for 2000–2015 under each scenario are given in
Web Appendix 4, Web Figures 17 and 18. The 4 calibration sce-
narios produced similar estimates for the retrospective analyses,
with estimated 2015 prevalence estimates that were higher in the
absence of prevention strategies for all counterfactuals and calibra-
tion scenarios.

Absence of both screening and partner notification had the
largest impact on estimated prevalence across scenarios for both
sexes and across age groups. Amongwomen, absence of screen-
ing and partner notification was estimated to result in an approx-
imate doubling of chlamydia prevalence in 2015 in comparison
with the base case scenario reflecting current prevention efforts:
For example, in calibration scenario 1 (with more constrained
priors for reporting and screening), among women aged 15–24
years, the 2015 prevalence under current prevention efforts was

Table 2. CalibratedModel and 4 Counterfactual Scenarios Used to Investigate the Impact of Screening and Partner Notification in a
Retrospective Analysis of Chlamydia Transmission, United States, 2000–2015

Scenario Screening Parameters PN Parameters

Current level (calibratedmodel)a Screening from 2000 to 2015 was as estimated in
the calibratedmodel.

PN from 2000 to 2015 was as estimated in the
calibratedmodel.

Counterfactualb

At 2000 levelc Screening was kept constant from 2000 to 2015 at
the coverage estimated by themodel for 2000.

Same as current level (calibrated model)

No PN Same as current level (calibrated model) PN set to 0 for 2000–2015

No screening Screening set to 0 for 2000–2015 Same as current level (calibrated model)

No PN or screening Screening set to 0 for 2000–2015 PN set to 0 for 2000–2015

Abbreviation: PN, partner notification.
a The calibrated model aimed to reflect the likely levels of screening and partner notification from 2000 to 2015 through calibration to a range of

time-series data, including chlamydia prevalence estimates and case report data.
b Counterfactual scenarios in which screening and/or partner notification activities were changed but all other model parameters from the cali-

bratedmodel were preserved.
c Screening was held at the level estimated for the year 2000.
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estimated as 2.8% (95% credible interval (CrI): 2.5, 3.0) and
predicted prevalence in the absence of partner notification and
screening was 5.0% (95%CrI: 4.6, 5.4). Mean prevalence was
1.8–2.0 times that of the current level for both women aged
15–24 years and women aged 25–54 years across the 4 cali-
bration scenarios. Among men, it was 1.4–1.6 times that of
the current level for men aged 15–24 years and 1.8–2.1 times
that of the current level for men aged 25–54 years. Holding
screening at year 2000 coverage was estimated to result in prev-
alences that were 1.5–1.7 times and 1.1–1.3 times the current
levels for women aged 15–24 years and women aged 25–54
years, respectively, while the absence of partner notification
had a more modest impact, with a mean prevalence 1.1–1.4
times that of the current level for women aged 15–24 years
and 1.3–1.4 times that of the current level for women aged
25–54 years. We also compared the predicted case report
rates in 2015 under the different counterfactual scenarios. In
Web Appendix 4, Web Figure 19, the case report rates varied
most across counterfactual scenarios among women aged

15–24 years, given that this is the group targeted by screening
guidelines. Because there is considerably less screening among
heterosexual men, their case report rates remained relatively sta-
ble across the counterfactual scenarios.

All calibration scenarios predicted that chlamydia screening
together with partner notification have averted chlamydial in-
fections. There was substantial variation in estimated numbers
of infections averted across the calibration scenarios and coun-
terfactual analyses. Figure 4 shows the cumulative numbers of
infections averted in 2000–2015. Screening and partner notifi-
cation were estimated to have had the largest impact across the
scenarios and for all age groups, with a mean of 0.9–2.3 mil-
lion infections being averted among women aged 15–24 years
and a mean of 2.5–3.6 million infections being averted among
women aged 25–54 years across the counterfactual analyses.
Holding screening at the year 2000 coverage level illustrates
the incremental benefits derived from increased screening since
2000. This varied between the calibration scenarios, demon-
strating the underlying uncertainty in how screening coverage
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Figure 3. Model-estimated prevalence of chlamydia infection (mean values (circles) and 95% credible intervals (bars)) in the United States in
2015 in a calibrated model (current level) and in 4 counterfactual scenarios: 1) keeping screening at the year 2000 level, 2) no partner notification
(PN), 3) no screening, and 4) no screening or PN. Results are presented for women aged 15–24 years (A), women aged 25–54 years (B), men
aged 15–24 years (C), and men aged 25–54 years (D). Calibration scenario 1: more constrained priors on reporting and screening; calibration sce-
nario 2: less constrained priors on reporting and more constrained priors on screening; calibration scenario 3: more constrained priors on reporting
and less constrained priors on screening; calibration scenario 4: less constrained priors on reporting and screening.
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has changed since 2000. The number of infections averted
because of partner notification was estimated to be larger
for women than for men (among persons aged 15–54 years,

mean = 2.7–3.6 million infections averted for women and
1.7–2.4 million infections averted for men), which was due
to rapid reinfection in long-term partnerships in the presence
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Figure 4. Model-estimated cumulative numbers of chlamydia cases averted (mean values (circles) and 95% credible intervals (bars)) in the
United States during 2000–2015 when comparing 4 counterfactual scenarios with a calibrated model (current level). Results are presented for
women aged 15–24 years (A), women aged 25–54 years (B), men aged 15–24 years (C), men aged 25–54 years (D), women aged 15–54 years
(E), and men aged 15–54 years (F). Calibration scenario 1: more constrained priors on reporting and screening; calibration scenario 2: less con-
strained priors on reporting and more constrained priors on screening; calibration scenario 3: more constrained priors on reporting and less con-
strained priors on screening; calibration scenario 4: less constrained priors on reporting and screening. PN, partner notification.

Am J Epidemiol. 2019;188(3):545–554

Impact of Chlamydia Screening in the United States 551



of screening only, which the model structure enabled us to
capture.

DISCUSSION

In this study, we first set out to reconcile observed chlamydia
trends from national prevalence estimates and case reports. By
including both prevalence estimates and case reports in our cali-
bration, we gained a better understanding of the underlying epi-
demiology that would maintain fairly stable prevalence estimates
at the same time as case report rates are increasing. This in turn al-
lowed for more robust estimates of the impact of prevention ef-
forts. We additionally calibrated the model to reported measures
of sexual debut. Our model included the primary components
thought to influence risk of chlamydia acquisition: age, sex, and
sexual risk heterogeneity. It also included time-varying param-
eters for screening, test sensitivity, reporting of diagnosed cases,
and sexual debut for the youngest age group. For time-varying
parameters, we allowed for uncertainty in the level, direction,
and shape of the change.

To our knowledge, this is the first modeling exercise that has
calibrated a chlamydia transmission model to sex- and age-
specific time series for case reports and prevalence at the national
level. By combining multiple sources of epidemiologic data, we
gained a better understanding of the overall epidemiologic
trends. There may have been a modest decline in chlamydia
prevalence that was not captured by national estimates as pre-
dicted by the mathematical model. The increasing case report
rates are a complex phenomenon, which can be explained in a
number of different ways.

We examined the role of case reporting and screening over
time in 4 calibration scenarios, and we used the calibrated model
to retrospectively estimate the potential impact of screening and
partner notification in the United States. The counterfactual sce-
narios suggested that screening and partner notification reduced
the burden of chlamydial infection during the years 2000–2015
by averting infections and reducing prevalence.

Our analyses further suggested that prevalence estimates are
fairly robust against different a priori assumptions for reporting
and screening. While all of the calibration scenarios estimated
that partner notification and screening have reduced prevalence,
the full impact of these prevention strategies was difficult to
gather from prevalence alone. This was seen in the variation in
model predictions across the different calibration scenarios for
infections averted in Figure 3.

The modeling results suggested that the greatest impact in
chlamydia prevention in the United States has come from com-
bining screening with partner notification. This is in accordance
with other chlamydia modeling, where the largest gains have
been predicted to come from high screening coverage com-
bined with partner notification (10). Partner notification and
screening are inherently linked, although they can be analyzed
independently. In the absence of screening, there are a number
of index cases whose partners will not be reached, and in the
absence of partner notification, there are a number of index
cases who will be screened but whose ongoing sexual partners
will remain untreated, putting the index case at risk of fast rein-
fection. However, in the absence of data on patterns of partner
notification for chlamydia, there remains uncertainty about the

benefits attributed to partner notification. Based on the data we
have used for calibration, the model is unable to differentiate
between pathways leading to chlamydia diagnosis (screening
of index case vs. partner notification). Our model assumed that
there was some screening in place before 2000. Prior models
that investigated screening impact and assumed no or little
baseline screening identified a larger impact of screening inter-
vention (10, 30).

This study highlights the benefit of gathering multiple epi-
demiologic data when the epidemiologic trends can be ex-
plained in a number of ways. We chose country as the level
of analysis; therefore, this analysis could not capture local-level
variation but rather was intended to provide insight on the
impact of chlamydia prevention efforts at the national level.
Whereas population-representative laboratory-based measures
of prevalence are available at the national level for multiple
time points via the National Health and Nutrition Examina-
tion Survey, analogous data are not available at the subna-
tional level. Furthermore, guidelines for chlamydia screening
are made at the national level.

Despite the added benefits brought in by model calibration,
our pair-formation model had a number of limitations. First, the
model may underestimate the heterogeneity in chlamydia acqui-
sition and transmission risk and therefore overestimate the impact
of screening and partner notification: Although we incorporated
initiation of sexual activity as one type of sexual behavior
change, accounting for changes in the sexually active population
at a crucial time point for acquisition risk, we did not account for
possible increases in incidence due to other changes in sexual
risk behavior, such as changes in sexual mixing patterns. Sec-
ond, we did not model chlamydia transmission among nonhet-
erosexual partnerships. There is no evidence to date to suggest
that chlamydia transmission among men who have sex with
men would substantially influence the heterosexual chlamydia
epidemic. More research is needed on health-care–seeking be-
haviors among men who have sex with women and the impact
that screening for this group might have on chlamydia in the
United States. Third, we assumed that treatment ensued immedi-
ately following identification of chlamydial infection, although
this may not always happen in practice (31, 32). If treatment
delays contribute to a number of onward transmissions, this
would not have been captured in this study. Fourth, our model
does not include ethnicity or measures of urbanicity and there-
fore cannot account for these sources of heterogeneity in chla-
mydia epidemiology that exist regionally in the United States
(33, 34). Instead, it offers an overview of chlamydia preven-
tion across the country. Fifth, we assumed no immunity to
chlamydial infection at a population level. There is an ongoing
debate about the role of natural immunity for chlamydia and
whether it is sufficient to protect people from repeat infections.
There are limited data available with which to draw inferences
on natural immunity, and the existing body of work on chla-
mydial immunity at the population level has relied on case
report rates (35) or short-term reinfection patterns among
patients (36). Given that repeat infections are observed, it
is likely that any immunity garnered is partial (37). Increasing
the complexity of the model to incorporate the above factors
would require a study or data set that could differentiate natural
immunity from other phenomena and measure its impact on
risk of reinfection.
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In this modeling study, we have shown that chlamydia pre-
vention efforts may be having a population-level impact despite
a lack of decline in reported numbers of chlamydia cases. The
model results suggest that chlamydia prevalence in 2015 would
be notably higher had there been no chlamydia screening and
partner notification activities from 2000 to 2015. However, the
magnitude of the impact of prevention efforts on the burden of
chlamydia is difficult to quantify precisely in the absence of fur-
ther data on chlamydial infection.
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