
CLINICAL/SCIENTIFIC NOTE OPEN ACCESS

Different Complement Activation Patterns Following
C5 Cleavage in MOGAD and AQP4-IgG+NMOSD
Kimihiko Kaneko, MD, PhD, Hiroshi Kuroda, MD, PhD, Yuki Matsumoto, MD, PhD, Naohiro Sakamoto, MD,

Naoya Yamazaki, MD, Naoki Yamamoto, MD, Shu Umezawa, MD, Chihiro Namatame, MD, PhD,

Hirohiko Ono, MD, PhD, Yoshiki Takai, MD, PhD, Toshiyuki Takahashi, MD, PhD, Juichi Fujimori, MD, PhD,

Ichiro Nakashima, MD, PhD, Yasuo Harigaya, MD, PhD, Hans Lassmann, MD, PhD, Kazuo Fujihara, MD, PhD,

Tatsuro Misu, MD, PhD, and Masashi Aoki, MD, PhD

Neurol Neuroimmunol Neuroinflamm 2024;11:e200293. doi:10.1212/NXI.0000000000200293

Correspondence

Dr. Misu

misu@med.tohoku.ac.jp

Abstract
Objectives
In myelin oligodendrocyte glycoprotein IgG–associated disease (MOGAD) and aquaporin-4
IgG+ neuromyelitis optica spectrum disorder (AQP4+NMOSD), the autoantibodies are mainly
composed of IgG1, and complement-dependent cytotoxicity is a primary pathomechanism in
AQP4+NMOSD. We aimed to evaluate the CSF complement activation in MOGAD.

Methods
CSF-C3a, CSF-C4a, CSF-C5a, and CSF-C5b-9 levels during the acute phase before treatment
in patients with MOGAD (n = 12), AQP4+NMOSD (n = 11), multiple sclerosis (MS) (n = 5),
and noninflammatory neurologic disease (n = 2) were measured.

Results
CSF-C3a and CSF-C5a levels were significantly higher in MOGAD (mean ± SD, 5,629 ± 1,079
pg/mL and 2,930 ± 435.8 pg/mL) and AQP4+NMOSD (6,017 ± 3,937 pg/mL and 2,544 ±
1,231 pg/mL) than in MS (1,507 ± 1,286 pg/mL and 193.8 ± 0.53 pg/mL). CSF-C3a, CSF-
C4a, and CSF-C5a did not differ between MOGAD and AQP4+NMOSD while CSF-C5b-9
(membrane attack complex, MAC) levels were significantly lower inMOGAD (17.4 ± 27.9 ng/
mL) than in AQP4+NMOSD (62.5 ± 45.1 ng/mL, p = 0.0019). Patients with MOGAD with
severer attacks (Expanded Disability Status Scale [EDSS] ≥ 3.5) had higher C5b-9 levels (34.0
± 38.4 ng/m) than those with milder attacks (EDSS ≤3.0, 0.9 ± 0.7 ng/mL, p = 0.044).

Discussion
The complement pathway is activated in both MOGAD and AQP4+NMOSD, but MAC
formation is lower in MOGAD, particularly in those with mild attacks, than in AQP4+-
NMOSD. These findings may have pathogenetic and therapeutic implications in MOGAD.
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Introduction
Myelin oligodendrocyte glycoprotein IgG–associated disease (MOGAD) and aquaporin-4
IgG-positive neuromyelitis optica spectrum disorder (AQP4+NMOSD) are inflammatory
diseases of the CNS. In these diseases, Th17-related cytokines/chemokines are remarkably
upregulated in acute exacerbations1 and clinical phenotypes such as optic neuritis (ON) or
longitudinally extensive myelitis may occur. Both MOG-IgG and AQP4-IgG are mainly composed
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of IgG1,2 which can efficiently activate complements.
Complement-dependent cytotoxicity (CDC) is a key patho-
mechanism in AQP4+NMOSD,3 and anti-complement C5
monoclonals are highly effective in preventing relapse of
AQP4+NMOSD. However, the pathogenetic role of comple-
ment activation in MOGAD remains unclear.

This study aimed to investigate complement activation in the
CSF of patients with MOGAD relative to AQP4+NMOSD.4

Methods
CSF samples were collected from adults with MOGAD,
AQP4+NMOSD,multiple sclerosis (MS), and noninflammatory
neurologic disease (NIND) between 2018 and 2023. All samples
from patients with MOGAD, AQP4+NMOSD, and MS were
obtained before acute-phase treatments. Their clinical and lab-
oratory data were also collected.

CSF samples were stored at−80°C until use. C3a, C4a, andC5a
were measured using a bead-based assay (Human Anaphyla-
toxin Kit, BD, San Jose, CA) and C5b-9 by an ELISA (Human
C5b-9 ELISA Set, BD, San Jose, CA) according to the manu-
facturers’ protocol. MOG-IgG and AQP4-IgG were measured
with in-house cell-based assays as previously reported.5

All parameters were compared among MOGAD, AQP4+-
NMOSD, MS, and NIND groups using the Kruskal-Wallis
test. Statistical analyses were performed using PRISM 8.0
(GraphPad Software, Boston, MA). Data are available to
qualified researchers based on reasonable request.

Ethics approval was granted by the Ethics Committee of
Tohoku University Graduate School of Medicine, Sendai,
Japan (#2022-1-1103). All the patients gave informed consent
for their participation.

Results
Clinical Profiles of the Patients
In total, 30 patients with MOGAD (n = 12), AQP4-
IgG+NMOSD (n = 11), MS (n = 5), or NIND (n = 2) were
studied (Table 1). The mean age was significantly lower in the
MOGAD group (median 32 years; range, 17–68 years) than in
the AQP4+NMOSD group (59, 34–76 years) (p = 0.010).
Approximately two-thirds of patients with MOGAD and
AQP4+NMOSD were female. The most frequent clinical
phenotype in patients with MOGAD (33.3%) and AQP4+-
NMOSD (63.6%) wasmyelitis. Among patients withMOGAD,
AQP4+NMOSD, and MS, there were no significant differences
in the percentage of the first attack at sample collection, interval
from onset to sample collection, and Expanded Disability Status
Scale (EDSS) scores at the acute phase and last follow-up. 3
patients with MOGAD had CSF-restricted MOG-IgG. All pa-
tients met respective diagnostic criteria.6,7

CSF Complement Levels
CSF-C3a, CSF-C4a, CSF-C5a, and CSF-C5b-9 levels are
shown in Figure 1, A–D and the Table 1. C3a and C5a were
significantly higher in MOGAD and AQP4+NMOSD than in
MS, and C5a was significantly higher in MOGAD than in
NIND. There were no differences in C3a, C4a, and C5a be-
tween MOGAD and AQP4+NMOSD. However, C5b-9
(membrane attack complex, MAC) was significantly lower
in MOGAD than in AQP4+NMOSD (p = 0.002).

Terminal Complement Pathway Activation
Patterns Differ Between MOGAD
and AQP4+NMOSD
C5 is cleaved into C5a and C5b, which is followed by C5b-9
assembly. Therefore, we calculated the C5b-9/C5a ratios to
assess terminal complement pathway activation after C5
cleavage. The CSF-C5b-9/C5a was significantly lower in
MOGAD (mean ± SD, 17.4 ± 27.9) than in AQP4+NMOSD
(62.5 ± 45.1, p = 0.0019) (Figure 1E).

Patients with higher EDSS scores (EDSS during attacks ≥3.5)
had significantly higher CSF-C5b-9 than those with low EDSS
scores (EDSS≤ 3.0) (p = 0.030) (Figure 1F). Furthermore,
patients with high EDSS scores at the last follow-up (≥3.5, n =
3) tended to have higher CSF-C5b-9 (34.0 ± 38.4 ng/mL)
than those with low EDSS scores (≤3.0, n = 8, 0.90 ± 0.72 ng/
mL, p = 0.064).

There was no significant difference among data related to
clinical phenotypes and MOG-IgG status in sera and CSF
(Figure 2 and eTable 1). C5b-9 values were not different in
relation to MOG-IgG status in sera and CSF. However, es-
pecially for clinical phenotypes, in both myelitis and others,
the mean C5b-9 values tended to be lower in MOGAD than
in AQP4+NMOSD.

Discussion
We demonstrated that CSF-C3a and CSF-C5a levels during the
acute phase in MOGAD were comparable with those in
AQP4+NMOSD and higher than those in MS and NIND. We
previously reported CSF complement activation in AQP4+-
NMOSD compared with NIND.4 Anaphylatoxin effects of C3a
and C5a may contribute to CSF pleocytosis in MOGAD and
AQP4+NMOSD and be part of MOGAD pathology even if
downstream MAC formation is not present in all patients.
Meanwhile, CSF-C5b-9 levels, indicative ofMAC formation, were
significantly lower in MOGAD than those in AQP4+NMOSD.

It was reported that increased levels of proteins indicative of
systemic classical and alternative complement activation in the
plasma of adult and pediatric patients with MOGAD (n = 71)
compared with relapsing MS, AQP4+NMOSD, and healthy
controls.8 More recently, Cho et al. reported complement acti-
vation in sera of MOGAD,9 but C5b-9 was not elevated
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compared with AQP4+NMOSD, which is similar to our result.
Nevertheless, the studies analyzed only blood samples, which
may not necessarily reflect complement activation in the CNS.

In vitro studies performed by Yandamuri et al. and Kohyama
et al. demonstrated that MOG-IgG can induce CDC in MOG-
transfected cells, depending on the amount of complement
proteins or MOG-IgG titer.10,11 Furthermore, Macrini et al.12

reported that MOG-IgG requires bivalent binding to MOG
monomers and C1q, an initiator of the classical complement
pathway, poorly binds to MOG-IgG-MOG complexes, suggest-
ing that CDCmay not be amajor pathomechanism inMOGAD.
Lerch et al. showed that MOG-IgG can induce CDC in MOG-
transfectedHEK293A cells; however, CDC andMAC formation
levels were significantly lower than those induced in AQP4-
transfectedHEK293A cells by AQP4-IgG.13 In line herewith, our
histopathologic study in MOGAD and AQP4+NMOSD clearly
demonstrated that C9neo was deposited at substantially lower
levels in acute MOGAD lesions than in AQP4-NMOSD.14 By

contrast, Höftberger et al. reported that activated complement
deposition in lesions was more or less observed in all cases with
MOGAD.15 The reason is unclear, but difference in detection
methods and patient backgrounds might have contributed.

An interesting but perplexing finding in our study was that CSF-
C5b-9 levels were significantly lower in MOGAD than those in
AQP4+NMOSD, although the complement cascade leading to
C5 in CSF was equally activated in MOGAD and AQP4+-
NMOSD. CD59 is the only complement-regulatory protein on
the surface of human cells that inhibitsMAC formation.16 In the
CNS, CD59 is abundantly expressed on the outer layer of
myelin, whereas it is weakly expressed on astrocyte foot
process.17,18 Considering that MOG is mainly expressed on the
outer layer of myelin and AQP4 is richly expressed on astrocyte
foot processes, CD59 on myelin might inhibit MAC formation
more efficiently in MOGAD than in AQP4+NMOSD. How-
ever, myelin vs astrocyte may not per se explain the significantly
lower CSF-C5b-9 levels inMOGAD than in AQP4-NMOSD as

Table 1 Clinical, Laboratory Profiles and Complement Levels of PatientsWithMOGAD, AQP4-IgG+NMOSD,MS, andNIND

MOGAD (n = 12) AQP4-IgG+NMOSD (n = 11) MS (n = 5) NIND (n = 2)

Clinical, laboratory profiles

Median age at sampling
(years old)

32 59 32 42.5

Female sex (%) 66.6 63.6 100 100

Clinical phenotype Myelitis (n = 4) Myelitis (n = 7) Relapsing-remitting
(n = 5)

Idiopathic NPH (n = 1)

ADEM (n = 3) Optic neuritis (n = 2) Psychogenic functional
neurologic disorder (n = 1)

Encephalitis
(n = 3)

Area postrema syndrome
(n = 1)

Optic neuritis
(n = 2)

Diencephalic syndrome
(n = 1)

First attack (%) 66.7 54.5 N/A N/A

Interval from onset
to sampling (d)

17.5 12 22 N/A

EDSS at sampling 3.5 (1–7.5) 3 (2–7.5) 2 (1–5.5) N/A

CSF cell count (/mm3) 6.5 (0–256) 10 (0–93) 1 (1–4) 0

CSF protein (mg/dL) 38.5 (19–123) 32 (19–210) 28 (20–41) 27 (26–28)

IgG index 0.54 (0.45–2.06) 0.57 (0.43–0.84) 0.71 (0.52–1.99) N/A

OCB positivity (%) 33.3 27.2 100 N/A

Complement levels

C3a (pg/mL) 5,624 ± 1,079 6,017 ± 3,937 1,507 ± 1,286 1947 ± 2,620

C4a (pg/mL) 115.2 ± 190.2 74.86 ± 144.8 1.756 ± 3.927 15.77 ± 22.31

C5a (pg/mL) 2,930 ± 435.8 2,544 ± 1,231 193.8 ± 0.53 777.5 ± 880.8

C5b-9 (ng/mL) 17.42 ± 27.92 62.48 ± 45.11 22.35 ± 4.239 22.46 ± 0.444

Abbreviations: ADEM=acute disseminated encephalomyelitis, AQP4-IgG+NMOSD =aquaporin 4-IgG-positive neuromyelitis optica spectrumdisorder, EDSS =
Expanded Disability Status Scale, MOGAD = myelin oligodendrocyte glycoprotein IgG–associated disease, MS = multiple sclerosis, NIND = noninflammatory
neurologic disease, NPH = normal pressure hydrocephalus, OCB = oligoclonal IgG band.
Values are presented as mean ± SD.

Neurology.org/NN Neurology: Neuroimmunology & Neuroinflammation | Volume 11, Number 5 | September 2024
e200293(3)

http://neurology.org/nn


observed in our study because, in the study by Lerch et al., both
CDC andMAC were induced in HEK293A cells by MOG-IgG
and AQP4-IgG,10 suggesting that other factors are involved in
the distinct MAC formations in the 2 diseases.

From a therapeutic viewpoint, our results suggest that cur-
rently available anti-C5 monoclonal antibodies may not be as
effective inMOGAD as in AQP4+NMOSD, although it might
be beneficial for patients with severe attacks and high CSF-
C5b-9 values.

The main limitations of this study were small sample size,
especially ON, the lack of comparison with remission phase,
and the insufficient involvement of pediatric cases. Larger
scale clinical studies to address these issues are needed.

In summary, the complement pathway is activated in both
MOGAD and AQP4+NMOSD, but MAC formation seems
to be lower in MOGAD, particularly in cases with mild at-
tacks, than in AQP4+NMOSD. Our findings may have
pathogenetic and therapeutic implications in MOGAD.

Figure 2 CSF-C5b-9 Levels in Relation to Clinical Phenotypes and MOG-IgG Status

AQP4+NMOSD = aquaporin-4 IgG+ neuromyelitis optica spectrum disorder, MOGAD = myelin oligodendrocyte glycoprotein IgG–associated disease.

Figure 1 CSF Complement Components in MOGAD, AQP4+NMOSD, MS, and NIND

(A–E) Concentrations of activated complement components (C3a, C4a, C5a, C5b-9) and C5b-9/C5a in the CSF of patients withMOGAD, AQP4+NMOSD,MS, and
NIND and (F) comparison of CSF-C5b-9 levels between patients with MOGAD with EDSS scores ≦3 and those with scores ≧3.5. AQP4+NMOSD = aquaporin-4
IgG+ neuromyelitis optica spectrum disorder, MOGAD = myelin oligodendrocyte glycoprotein IgG–associated disease, MS = multiple sclerosis, NIND =
noninflammatory neurologic disease. pp < 0.05. Horizontal lines indicate mean values, and error bars indicate SD.
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