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Abstract: To date, natural resistance or tolerance, which can be introduced into crops by crossing,
to potato spindle tuber viroid (PSTVd) has not been reported. Additionally, responses to PSTVd
infection in many wild tomato species, including some species that can be crossed with PSTVd-
susceptible cultivated tomatoes (Solanum lycopersicum var. lycoperaicum), have not been ascertained.
The aim of this study was to evaluate responses to PSTVd infection including resistance and tolerance.
Accordingly, we inoculated several cultivated and wild tomato species with intermediate and lethal
strains of PSTVd. None of the host plants exhibited sufficient resistance to PSTVd to render systemic
infection impossible; however, these plants displayed other responses, including tolerance. Further
analysis of PSTVd accumulation revealed low accumulation of PSTVd in two wild species, exhibiting
high tolerance, even to the lethal strain. Additionally, F1 hybrids generated by crossing a PSTVd-
sensitive wild tomato (Solanum lycopersicum var. cerasiforme) with these wild relatives also exhibited
tolerance to the lethal PSTVd strain, which is accompanied by low PSTVd accumulation during early
infection. These results indicate that the tolerance toward PSTVd in wild species is a dominant trait
and can be utilized for tomato breeding by crossing.

Keywords: potato spindle tuber viroid; tomato; wild tomato species; tolerance; F1 hybrid; crossing
and breeding

1. Introduction

Viroids are single-stranded (ss) circular RNA molecules ranging from 246 to 401 nu-
cleotides (nt) in length and are known as the smallest plant pathogens [1,2]. They do not
encode any proteins in their genome sequences; hence, they autonomously replicate de-
pending on host plants’ transcriptional machinery [3,4]. Their highly base-paired stem-loop
structures and partially double-stranded (ds) replicative intermediates that form transiently
during replication are potential targets of the host RNA silencing mechanism [5] and are
processed by Dicer-like (DCL)—an RNase III-like enzyme—into 21–24 nt viroid-derived
small RNAs (vd-sRNAs). Vd-sRNAs are recruited by the RNA-induced silencing complex
(RISC) including Argonaut, which is an RNase H-like enzyme. RISC directs the cleavage of
complementary target viroid RNA according to the incorporated vd-sRNA sequence. The
vd-sRNAs in RISC also suppress host gene expression with complementary sequences to
the vd-sRNAs and are involved in disease-related symptom expression of the viroids [6–9].
These reports suggest a close relationship between RNA silencing and symptom expression
in viroid diseases.

Potato spindle tuber viroid (PSTVd), a type species of the genus Pospiviroid and one
of the most studied viroids, has a wide host range and generally infects Solanaceae and
Asteraceae plants. In particular, cultivated tomatoes (Solanum lycopersicum var. lycopersicum,
S. l. lycopersicum) are the most prominent host plants for pospiviroids, including PSTVd.
PSTVd isolates are classified into four strains (mild, intermediate, severe, and lethal)
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depending on their pathogenicity as indicated by the degree of disease symptoms in
‘Rutgers’ tomatoes [10]. This difference in pathogenicity with the same host indicates that
the PSTVd genome sequence itself is one of the pathogenic determinants. For example,
mutations of 4 or 3 nt transformed the intermediate PSTVd isolate Int into lethal isolates
AS1 or RG1, in ‘Rutgers’ tomatoes [11,12].

The high sensitivity of the tomato cultivar ‘Rutgers’, which was originally used as
an indicator plant for potato witches’ broom disease [13], to PSTVd infection was found
before the first report on viroid diseases [14]. Since Diener in 1971 reported the causative
pathogen of potato spindle tuber disease as the potato spindle tuber “viroid”, ‘Rutgers’
tomatoes have been used as a sensitive host and an indicator plant in a wide range of
studies concerning PSTVd [15]. Recently, a highly tolerant tomato cultivar ‘Moneymaker’,
exhibiting only mild symptoms of PSTVd infection, has been used for comparison with
the highly sensitive ‘Rutgers’ in studies of viroids regarding the mechanism of disease
symptom expression and anti-viroid defense responses [16,17]. The PSTVd symptoms
and sensitivity vary by tomato cultivar, suggesting the role of host factors; however, the
relationship between the pathogenicity determinants in viroid and host factors involved in
symptom expression is largely unknown.

Indigenous South American populations commenced early domestication of edible
wild tomato berries in the Andes region, where the majority of the wild tomato S. lycop-
ersicum var. cerasiforme (S. l. cerasiforme, so-called cherry tomatoes) and 12 native wild
tomato relatives (S. pimpinellifolium, S. cheesmaniae, S. galapagense, S. chmielewskii, S. arcanum,
S. neorickii, S. huaylasense, S. pervianum, S. corneliomulleri, S. chilense, S. habrochaites, and
S. pennellii) have evolved [18,19]. Among these wild tomato species, S. l. cerasiforme and
S. pimpinellifolium are considered the ancestors of cultivated tomatoes [18,20–22]. Since
these wild tomato species bear small fruits, it is supposed that during domestication and
subsequent breeding, tomatoes accumulated mutations in the genome that increased their
fruit size until they reached the size of currently cultivated tomatoes [18,22–24].

Wild tomatoes can be crossed with cultivated tomatoes to introduce useful traits, such
as tolerance to stress and resistance to pathogens. For example, Tm-1, a semi-dominant resis-
tance gene of tomatoes to tomato mosaic virus (ToMV), was introgressed from S. habrochaites
and has been used to protect tomato plants against ToMV infection [25]. In addition, whole-
genome sequence analysis of S. pennellii revealed that the wild tomato relative has useful
genes for tomato breeding, such as those promoting stress tolerance, that may have been
lost during the process of tomato cultivation [26].

Some wild relatives of tomatoes were tested for susceptibility to PSTVd in early
studies to investigate the experimental host range of PSTVd. It was reported that S. l.
cerasiforme and S. pimpinellifolium are asymptomatic, whereas S. pervianum, S. habrochaites,
and S. cornellionulerii are symptomatic during PSTVd infection [27,28]. Thus, similar to
tomato cultivars, wild tomato species are presumed to present various responses to PSTVd
infection, but this has not been confirmed in most of the species.

To date, Chrysanthemum morifolium and chrysanthemum stunt viroid (CSVd) represent
the only host–viroid pair for which several surveys on viroid resistance have been carried
out [29]; however, the inheritance of CSVd resistance remains unclear. When the resistance
cultivar ‘Okayama Heiwa’ was crossed as the female parent with two susceptible cultivars,
‘Sei Elza’ and ‘Anri’, which were the pollen parents, only a portion of the first filial generation
(F1) plants demonstrated CSVd resistance [29,30]. For PSTVd, two lines of wild potatoes
(Solanum berthaultii) were reported to be resistant to viroid sap inoculations [31]. Furthermore,
PSTVd resistance or tolerance has been reported in other wild potato relatives [32,33];
however, the resistance traits have not been transferred to cultivated potatoes (Solanum
tuberosum) [33,34]. Thus, PSTVd resistance that can be introduced into susceptible cultivated
crops by crossing has not been reported; however, tolerance is the only available phenotype
for general cross-breeding to generate cultivars suppressing PSTVd disease. Meanwhile, in a
previous study, the symptomatic trait was dominant during PSTVd-AS1 infection in the F1
hybrid obtained by crosses between PSTVd-tolerant and -sensitive tomato cultivars [11].
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The relationship between infection, accumulation, and disease symptom expression
of PSTVd has been reported in several previous studies. Co-inoculation with PSTVd and
PSTVd-dsRNA decreased PSTVd accumulation, and the onset of symptoms was delayed
and less severe compared with those of the control plants [35]. Moreover, infection and accu-
mulation of PSTVd were suppressed in transgenic potato plants expressing dsRNA-specific
ribonuclease pac1 protein, and these plants did not develop disease symptoms at different
study temperatures: 25–32 (favorable for viroid replication and accumulation) and 20–28 ◦C
(resembling actual field conditions) [36]. Similarly, transgenic potato plants expressing a
hammerhead ribozyme targeting the minus-strand RNA of PSTVd-dsRNA inoculated with
PSTVd did not develop disease symptoms, and viroid accumulation in the plant was de-
creased or at undetectable levels [37]. Alternatively, in transgenic tomato plants expressing
hairpin (hp) RNA constructs derived from PSTVd sequences, symptom expression was
correlated with PSTVd accumulation, and resistance was observed in plants accumulating
high-level hpPSTVd and vd-sRNA [38]. These findings suggest that maintaining PSTVd
accumulation at a low or an undetectable level leads to PSTVd tolerance or resistance.

Therefore, in this study, to evaluate PSTVd infection responses including PSTVd resis-
tance and tolerance, which are expected to be applicable in tomato breeding, we inoculated
cultivated and wild tomatoes and wild tomato relatives with intermediate and lethal strains of
PSTVd. High PSTVd tolerance, accompanied by low PSTVd accumulation, was discovered in
two wild relatives. We generated F1 hybrids by crossing sensitive wild tomatoes with tolerant
wild tomato relatives and determined that the tolerance found in wild tomato relatives can
be introduced into sensitive tomatoes by crossing. Our data will provide new insights into
the mechanisms of PSTVd tolerance and disease symptom expression in tomato plants.

2. Results
2.1. Criteria for Assessing Sensitivity and Tolerance to PSTVd

First, we confirmed PSTVd disease symptoms in ‘Rutgers’ and ‘Moneymaker’ toma-
toes as criteria for assessing sensitivity and tolerance to PSTVd under our test conditions.
In ‘Rutgers’ tomatoes, severe vein necrosis, accompanied by leaf yellowing, was observed
during PSTVd-AS1 infection, in addition to stunting, leaf curling, and mild vein necrosis
found in plants infected with PSTVd-Int (Figure 1). Meanwhile, ‘Moneymaker’ tomatoes, a
PSTVd-tolerant cultivar, exhibited mild symptoms compared with ‘Rutgers’ tomatoes, and
only stunting was observed during PSTVd-Int infection. However, PSTVd-AS1 infection
induced severe stunting, leaf curling, size reduction of leaves, and mild stem necrosis even
in PSTVd-tolerant ‘Moneymaker’ tomatoes (Figure 1). Using these symptoms as a baseline,
the degree of sensitivity and tolerance and the various responses to PSTVd infection in the
remaining tomato cultivars and wild tomato species were evaluated.

None of the host plants used in this study demonstrated sufficient PSTVd resistance
to render systemic PSTVd infection impossible; however, these plants exhibited various
responses, from asymptomatic to lethal, during PSTVd infection (Tables 1 and 2).

2.2. The Relationship between Tomato Fruit Size and the Level of Tolerance to PSTVd

In general, small-fruited tomatoes tend to be more tolerant to PSTVd than large-
or medium-fruited tomatoes. Out of the tomato cultivars, the large-fruited cultivars
were more sensitive but some medium- or small-fruited cultivars were less sensitive to
PSTVd-AS1 infection (Table 1). For instance, ‘Tiny-Tim’ and ‘Micro-Tom’ tomatoes were
more tolerant than ‘Moneymaker’ tomatoes to PSTVd, and no significant morphological
symptoms were observed in the stems and leaves of the plants infected with both PSTVd
strains up to 6 weeks post-inoculation (wpi) (Figure 2A and Figure S1A). Moreover, these
PSTVd-infected plants were transplanted and grown to observe their fruits. The fruits
from PSTVd-infected plants grew significantly smaller in size and lacked lustrous surfaces;
the fruits from PSTVd-AS1-infected plants did not produce any seeds (Figure 2B,C and
Figure S1B). Interestingly, the number of flower buds seemed to increase in PSTVd-infected
plants, but the final number of fruits was almost the same as that in mock-inoculated
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plants (Figure 2C). Furthermore, the difference in pathogenicity between PSTVd strains
was evident from the fruits’ symptoms (Figure 2B,C and Figure S1B). These results indicate
that some symptoms may be observed in the fruits of small-fruited tomato cultivars, in
which clear morphological symptoms are not observed during PSTVd infection.

Figure 1. Symptoms in ‘Rutgers’ and ‘Moneymaker’ tomatoes infected with potato spindle tuber viroid (PSTVd). (A) At
3 weeks post-inoculation (wpi), PSTVd-infected ‘Rutgers’ tomatoes showed severe stunting and leaf curling. At 4 wpi,
‘Moneymaker’ tomatoes showed stunting during PSTVd infection, and mild leaf curling was observed only in PSTVd-AS1
infection. (B,C) Severe stem and vein necrosis, accompanied by yellowing or mild stem necrosis (indicated with a red
arrow), was observed in ‘Rutgers’ and ‘Moneymaker’ tomatoes, respectively, after PSTVd-AS1 infection.

Figure 2. Symptoms of fruits in PSTVd-tolerant ‘Tiny-Tim’ tomatoes. (A) ‘Tiny-Tim’ tomatoes did not clearly show
morphological symptoms in stems and leaves at 6 weeks post-inoculation. (B) The fruits from PSTVd-infected plants
became significantly smaller in size and lost their surface luster; in particular, the fruits from PSTVd-AS1-infected plants did
not form any seeds. (C) The average weight of fruits derived from PSTVd-infected plants was low compared with that from
mock-inoculated, but there was no difference in total number of fruits. The significant difference in the fruit weight was
confirmed by the Tukey–Kramer test.
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Table 1. Symptoms of tomato cultivars infected with intermediate and lethal strains of PSTVd.

Cultivar Fruit Size
Severity and Type of Disease Symptoms

PSTVd-Int (Intermediate) PSTVd-AS1 (Lethal)

Berner Rose Large ++ (S, Lc, Lm) +++++ (S, Lc, Lm, Ru)
Momotaro (F1) Large +++ (S, Lc) +++++ (S, Lc, Lm, Y, Ru)

Pondelosa Large ++ (S, Lc) +++++ (S, Lc, Lm, Y, Ru)
Sekai-ichi Large +++ (S, Lc, Lm) +++++ (S, Lc, Lm, Y, Ru)

Lemon-tomato *1 Medium + (S) ++ (S, Lm)
Moneymaker Medium ++ (S, Lc) ++++ (S, Lc, Lm, Sn)

Newskij Medium + (Lc, Fm) ++++ (S, Lc, Lm, Y, Vn, Fm, Pcf, Lf, Ste)
Rutgers Medium ++++ (S, Lc, Lm, Sn, Ru) ++++++ (S, Lc, Lm, Y, Ru, Vn, Sn)

San Marzano Medium ++ (S, Lc) +++++ (S, Lc, Lm, Ru, Sn)
Chika (F1) Small + (S) ++ (S)
Micro-Tom Small + (Fm, Pcf, Lf) ++ (Lm, Fm, Pcf, Lf, Ste)

Sugar *1 Small − + (S, Lm)
Tiny-Tim Small + (Fm, Pcf, Lf) *2,3 ++ (Lm, Fm, Pcf, Lf, Ste) *2,3

The symbols “+” and “−” indicate symptomatic and asymptomatic, respectively. The higher the number of “+”, the more severe the
symptoms of PSTVd. PSTVd-inoculated plants were observed until at least 6 weeks post-inoculation. Letters in parentheses mean the
following symptoms: S, stunting; Lc, leaf curling (downward); Lm, leaf miniaturization; Ru, rugose; Sn, stem necrosis; Vn, vein necrosis; Y,
yellowing; Fm, fruit miniaturization; Pcf, poor coloring fruit; Lf, lusterless fruit; Ste, sterility. *1. Growth of healthy or mock-inoculated
plants tended to be suppressed under the conditions of our test. *2. Slightly poor growth was observed in PSTVd-infected plants. *3. The
number of flower buds increased in PSTVd-infected plants.

Table 2. Symptoms of wild tomatoes and wild tomato relatives infected with intermediate and lethal strains of PSTVd.

Species Cultivar
/Accession

Severity and Type of Disease Symptoms

PSTVd-Int (Intermediate) PSTVd-AS1 (Lethal)

Solanum lycopersicum var. cerasiforme LA1286 +++ (S, Lc, Lm, Ru, Vn) +++++ (S, Lc, Lm, Ru, Vn, Sn)
Solanum lycopersicum var. cerasiforme LA1310 − + (Lm) *1

Solanum lycopersicum var. cerasiforme LA1324 ++ (S, Lc, Lm) +++++ (S, Lc, Lm, Ru, Vn, Sn, W) *2

Solanum lycopersicum var. cerasiforme LA1328 + (S, Lm) +++ (S, Lc, Lm, Vn)
Solanum lycopersicum var. cerasiforme Tomallilo + (S, Lm) *3 ++ (S, Lc, Lm) *3

Solanum pimpinellifolium LA0373 − − *4

Solanum pimpinellifolium LA0411 − − *4

Solanum cheesmaniae LA0421 +++ (S, Lm, Ln) ++++ (S, Lr, Lm, Ln, Ro)
Solanum galapagense LA0317 − *5 − *5

Solanum chmielewskii LA1028 − −
Solanum chmielewskii LA2695 ++ (S, Lr, Lm, Ln) ++++ (S, Lr, Lm, Ln, Sn, Y)

Solanum arcanum LA1031 + (S) *6 ++ (S) *6

Solanum neorickii LA0247 ++ (S, Lm) +++ (S, Lm)
Solanum hyaylasense *7 LA1358 + (S) + (S)

Solanum pervianum LA0111 ++ (S, Lm, Ro) +++ (S, Lm, Ro)
Solanum corneliomulleri LA0103 + (S) *8 ++ (S, Ro) *8

Solanum chilense LA1938 − *9 + (S, Ro) *9

Solanum habrochaites LA0361 + (S) *10 ++ (S, Ro) *10

Solanum pennellii LA0716 ++ (S, Lc, Ru) +++ (S, Lc, Lm, Ru)

The symbols “+” and “−” indicate symptomatic and asymptomatic, respectively. The higher the number of “+”, the more severe the
symptoms of PSTVd. PSTVd-inoculated plants were observed until at least 6 weeks post-inoculation (wpi). Letters in parentheses mean
the following symptoms: S, stunting; Lc, leaf curling (downward); Lr, leaf rolling (upward); Lm, leaf miniaturization; Ln, leaf necrosis;
Ru, rugose; Sn, stem necrosis; Vn, vein necrosis; Y, yellowing; Ro, rosette; W, withering. *1. Under the best conditions for disease onset,
poor growth was observed in plants infected with PSTVd-AS1. *2. Some of the plants infected with PSTVd-AS1 died due to highly severe
vein necrosis. *3. After 4 wpi, PSTVd-infected plants recovered. *4. Poor growth was observed in plants infected with PSTVd-AS1 when
grown for more than 12 weeks. *5. The number of leaves and branches was reduced in PSTVd-infected plants. *6. Disease symptoms
varied in severity between inoculated plants. *7. Growth of the healthy or mock-inoculated plants tended to be suppressed under our test
conditions. *8. Stunting began to be observed in PSTVd-infected plants at 4 wpi and became apparent at 7 wpi. *9. Due to large differences
in germination and growth, it was impossible to take biological and technical replicates. *10. PSTVd-infected plants were stunted after 6 wpi.
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2.3. Wild Tomatoes Contain Sensitive or Tolerant Accessions to PSTVd Infection

Inoculation of wild tomato S. l. cerasiforme with PSTVd revealed that three accessions
of S. l. cerasiforme (LA1286, LA1324, and LA1328) were sensitive to PSTVd, whereas two
(LA1310 and the ‘Tomallilo’ cultivar) were tolerant to intermediate and lethal PSTVd
strains (Figure 3A,B, Table 2). Of the PSTVd-sensitive accessions, LA1286 plants showed
severe vein and stem necrosis as seen in ‘Rutgers’ tomatoes infected with PSTVd-AS1, and
some LA1324 individuals inoculated with PSTVd-AS1 presented with hypersensitivity
and died due to extremely severe stem necrosis (Figure 3C–E). In addition, symptoms
commonly observed in tomato cultivars, such as stunting and leaf curling, were also
observed in all PSTVd-sensitive accessions of wild tomatoes (Figure 3A). Meanwhile, of the
PSTVd-tolerant accessions, LA1310 plants displayed a shortening of petiole lengths but no
significant symptoms, and ‘Tomallilo’ plants only showed stunting and mild leaf curling
when infected with PSTVd-AS1 (Figure 3B). Thus, it was shown that the wild tomato S. l.
cerasiforme, the so-called cherry tomato, contained PSTVd-sensitive accessions that showed
disease symptoms qualitatively similar to those in PSTVd-infected cultivated tomatoes, in
addition to those exhibiting PSTVd tolerance, as previously reported [28].

Figure 3. Wild tomatoes (S. l. cerasiforme) including PSTVd-sensitive or -tolerant accessions. Wild
tomato accessions showed sensitivity or tolerance to PSTVd infection. (A) Three accessions of wild
tomatoes were PSTVd-sensitive and showed severe stunting and leaf curling during PSTVd infection.
(B) Two accessions of wild tomatoes were PSTVd-tolerant; LA1310 plants exhibited shortening of
petiole length but no significant symptoms during PSTVd-AS1 infection. Stunting and mild leaf
curling were observed only in ‘Tomallilo’ plants infected with PSTVd-AS1. (C,D) Severe vein and
stem necroses were observed in PSTVd-sensitive wild tomato LA1286 during PSTVd-AS1 infection.
(E) Highly severe stem necrosis in LA1324 plants resulted in withering.

2.4. Some Wild Tomato Relatives Exhibited PSTVd Tolerance Regardless of PSTVd Strain

In ten wild tomato relatives (10 accessions), some disease symptoms were observed
during PSTVd infection; for example, stunting occurred in all PSTVd-sensitive wild tomato
relatives (Figure 4 and Figure S2, Table 2). Characteristic disease symptoms were observed
in some wild tomato relatives. In S. cheesmaniae LA0421 and S. chmielewskii LA2695 plants,
necrosis was observed on leaf tissue other than the veins, unlike in cultivated and wild
tomatoes (Figure 4B–D), and leaf curling or rolling was observed only in S. chmielewskii
LA2695 or S. pennellii LA0716 plants (Figure 4E,F). In addition to these wild tomato relatives,
S. arcanum LA1031, S. neorickii LA0247, and S. huaylasense LA1358 were newly identified as
symptomatic host plants in this assay (Figure S2, Table 2).

In contrast, S. pimpinellifolium LA0373, S. pimpinellifolium LA0411, S. galapagense
LA0317, and S. chmielewskii LA1028 plants displayed no significant symptoms and were
tolerant to two distinct PSTVd strains (Figure 5 and Figure S3, Table 2). In particular,
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S. pimpinellifolium LA0373 and LA0411 and S. chmielewskii LA1028 plants were highly
tolerant to PSTVd. These results indicate that wild tomato relatives present with various
responses to PSTVd infection.

Figure 4. Wild tomato relatives showing characteristic symptoms during PSTVd infection. (A) In
S. cheesmaniae LA0421, S. chmielewskii LA2695, and S. pennellii LA0716, clear symptoms including
stunting and leaf miniaturization were observed after PSTVd infection. (B–D) Necrosis was observed
in wild tomato relatives infected with PSTVd-AS1. (B) Leaf necrosis in S. cheesmaniae LA0421. (C) Leaf
necrosis, accompanied by yellowing, and (D) stem necrosis in S. chmielewskii LA2695. (E) Leaf rolling
was observed in PSTVd-infected S. chmielewskii LA2695 plants ((a), mock; (b), PSTVd-Int; (c), PSTVd-
AS1). (F) S. pennellii LA0716 clearly exhibited leaf curling after PSTVd-AS1 infection ((a), mock; (b),
PSTVd-AS1).

Figure 5. PSTVd tolerance in wild tomato relatives. S. pimpinellifolium LA0373 and S. chmielewskii
LA1028 plants exhibited high PSTVd tolerance and did not show any disease symptoms at 6 weeks
post-inoculation, even to PSTVd-AS1 infection.
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2.5. Low Accumulation of PSTVd in Wild Tomato Relatives Exhibiting High Tolerance to PSTVd

To obtain insight into the properties of PSTVd tolerance observed in some wild tomato
relatives, such as S. pimpinellifolium LA0373 and S. chmielewskii LA1028, the accumulation
of PSTVd in these accessions was analyzed by dot-blot hybridization.

This assay revealed that the accumulation of PSTVd was lower in both of the wild
tomato relatives than in the PSTVd-sensitive wild tomato, S. l. cerasiforme LA1286 (Figure 6),
suggesting that the low accumulation of PSTVd is important for PSTVd tolerance in wild
tomato relatives.

Figure 6. Low PSTVd accumulation in wild tomato relatives. Accumulation of PSTVd in wild tomato
relatives was analyzed by dot-blot hybridization with a PSTVd-specific cRNA probe. Accumulation of
PSTVd in S. pimpinellifolium LA0373 and S. chmielewskii LA1028 was lower than in a PSTVd-sensitive
S. l. cerasiforme LA1286 at 3 weeks post-inoculation.

2.6. F1 Hybrids between a PSTVd-Sensitive Wild Tomato and PSTVd-Tolerant Wild Relative Were
Tolerant to PSTVd

To understand the properties of PSTVd tolerance observed in wild tomato relatives
in more detail, F1 hybrids were generated by crossing PSTVd-sensitive wild tomato S. l.
cerasiforme LA1286 with S. pimpinellifolium LA0373 or S. chmielewskii LA1028. Subsequently,
the F1 hybrids were inoculated with PSTVd-AS1.

At 2 wpi, S. l. cerasiforme LA1286 plants showed severe leaf curling, whereas S. l.
cerasiforme LA1286 × S. pimpinellifolium LA0373 F1 plants displayed very mild leaf curling
on the leaves at the top. At 3 wpi, S. l. cerasiforme LA1286 plants exhibited clear stunting
and vein necrosis, whereas S. l. cerasiforme LA1286 × S. pimpinellifolium LA0373 F1 plants
recovered and presented with no apparent symptoms compared with mock-inoculated
plants (Figure 7). Alternatively, S. l. cerasiforme LA1286 × S. chmielewskii LA1028 F1 plants
were asymptomatic at 2 and 3 wpi, despite lethal PSTVd strain infection (Figure 7).

These results indicate that the nature of symptom expression in PSTVd-sensitive wild
tomatoes can be suppressed by that of tolerance in PSTVd-tolerant wild tomato relatives,
even if infected with lethal PSTVd-AS1.

2.7. Low Accumulation of PSTVd Early in Infection in PSTVd-Tolerant F1 Hybrids

Subsequently, the accumulation of PSTVd was analyzed in PSTVd-sensitive wild
tomato S. l. cerasiforme LA1286 and PSTVd-tolerant F1 hybrids. At 2 wpi, the accumulation
of PSTVd was lower in F1 hybrids, especially in S. l. cerasiforme LA1286 × S. chmielewskii
LA1028 F1 plants, compared with S. l. cerasiforme LA1286 plants. At 3 wpi, the accumulation
in F1 hybrids increased to an indistinguishable level compared with S. l. cerasiforme
LA1286 plants at 50 dilution (Figure 8). These results indicate that the severity of disease
symptoms positively correlates with the early accumulation of PSTVd and suggest that
suppression of PSTVd accumulation, particularly early in infection, is important to exhibit
PSTVd tolerance.
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Figure 7. F1 hybrids between a PSTVd-sensitive wild tomato and PSTVd-tolerant wild relatives
were tolerant to PSTVd. At 2 weeks post-inoculation (wpi), S. l. cerasiforme LA1286 showed severe
leaf curling, whereas S. l. cerasiforme LA1286 × S. pimpinellifolium LA0373 F1 or S. l. cerasiforme
LA1286 × S. chmielewskii LA1028 F1 showed very mild leaf curling or was asymptomatic. At 3 wpi,
S. l. cerasiforme LA1286 exhibited stunting and vein necrosis, whereas S. l. cerasiforme LA1286 ×
S. pimpinellifolium LA0373 F1 recovered from mild symptoms and both F1 hybrids were asymptomatic
even after lethal PSTVd-AS1 infection.

Figure 8. Low PSTVd accumulation in PSTVd-tolerant F1 wild tomatoes. Accumulation of PSTVd in
wild tomato relatives was analyzed by dot-blot hybridization with a PSTVd-specific cRNA probe.
At 2 weeks post-inoculation (wpi), accumulation of PSTVd decreased in F1 hybrids, especially in
S. l. cerasiforme LA1286 × S. chmielewskii LA1028 F1 plants, compared with S. l. cerasiforme LA1286
plants. Afterward, at 3 wpi, the accumulation in F1 hybrids increased to an indistinguishable level
compared with S. l. cerasiforme LA1286 plants at 50 dilution.
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2.8. Nicotiana Occidentalis Exhibits Severe Symptoms during Infection of Lethal PSTVd Strain

In our inoculation assay of tomato cultivars and wild tomato species, there were cases
where expression of clear symptoms was observed only after inoculation with a large
amount of infectious PSTVd-AS1 RNA (5 µg/plant). Therefore, host plants, even those
reported to be asymptomatic or to exhibit only mild symptoms during PSTVd infection
in previous reports, may develop disease symptoms after PSTVd-AS1 inoculation at high
concentrations. For this reason, we also examined responses to two PSTVd strains in five
different species of the family Solanaceae under the same conditions as the inoculation
method utilized for tomato cultivars and wild tomato species.

As expected, potato (Solanum tuberosum) plants, a symptomatic host, inoculated with
PSTVd-AS1 exhibited more severe symptoms than those with PSTVd-Int (Table 3). An
eggplant cultivar ‘Black Beauty’ (Solanum melongena) was reported as a symptomatic
host [39]; however, in our assay, two eggplant cultivars ‘Kurobe’ and ‘Kurowashi’ did not
exhibit any symptoms regardless of the PSTVd strain. In addition, two cultivars of capsicum
(Capsicum annuum) plants, an asymptomatic host of PSTVd in the previous report [40], also
did not exhibit any symptoms regardless of the PSTVd strain. All inoculated capsicums
and eggplants were confirmed to be infected with PSTVd by RT-PCR. On the other hand,
Nicotiana rustica plants exhibited apparent stunting, leaf miniaturization, and poor growth
during PSTVd infection, inconsistent with a previous report [40] (Figure 9A, Table 3).
Symptoms of stunting in Nicotiana plants have been reported only in N. benthamiana infected
with PSTVd-AS1 or PSTVd-Nb [11,41]. No reports were found about an inoculation
assay of N. occidentalis with PSTVd as far as we searched. Interestingly, N. occidentalis
plants exhibited disease symptoms, such as stunting, leaf curling, rugose, and vein/stem
necrosis, similar to those observed in PSTVd-infected tomatoes, only after PSTVd-AS1
infection (Figure 9B,D–G, Table 3). It should be noted that stunting in PSTVd-Int-infected
N. occidentalis was observed only when the plants were inoculated with an excessive
amount of PSTVd-Int RNA (10 µg/plant) and were grown under greenhouse conditions
suitable for disease onset (Figure 9C, Table 3).

These results indicate that some asymptomatic host plants may be capable of develop-
ing disease symptoms after inoculation with high concentrations of a PSTVd inoculum or
inoculation with a lethal PSTVd isolate. Symptoms of stunting in Nicotiana plants have been
reported only in N. benthamiana infected with PSTVd-AS1 or PSTVd-Nb [11,41]. For the
first time in this study, N. rustica and N. occidentalis were shown to develop disease symp-
toms during PSTVd infection. At present, N. occidentalis is considered the only Nicotiana
plant that exhibits obvious disease symptoms such as rugose, leaf curling, and vein/stem
necrosis due to PSTVd infection.

Table 3. Symptoms of five Solanaceae species infected with intermediate and lethal strains of PSTVd.

Species Cultivar
Severity and Type of Disease Symptoms

PSTVd-Int (Intermediate) PSTVd-AS1 (Lethal)

Capsicum annuum Botan-kosho − −
Capsicum annuum Takano-tsume − −

Nicotiana occidentalis − *1 +++++ (S, Lc, Lm, Ru, Vn, Sn)
Nicotiana rustica ++ (S, Lm) *2 +++ (S, Lm) *2

Solanum melongena Kurobe (F1) − −
Solanum melongena Kurowashi (F1) − −
Solanum tuberosum Danshaku-imo ++++ (S, Lm, Ro) ++++++ (S, Lm, Ru, Y, Ro, W)

The symbols “+” and “−” indicate symptomatic and asymptomatic, respectively. The higher the number of “+”, the more severe the
symptom of PSTVd. PSTVd-inoculated plants were observed until at least 6 weeks post-inoculation. Letters in parentheses mean the
following symptoms: S, stunting; Lc, leaf curling (downward); Lm, leaf miniaturization; Ru, rugose; Sn, stem necrosis; Vn, vein necrosis;
Y, yellowing; Ro, rosette; W, withering. *1. PSTVd-Int-infected plants were stunted when they were inoculated with an excessive amount of
PSTVd RNA (10 µg/plant). *2. Poor growth was observed in PSTVd-infected plants.
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Figure 9. Symptoms in Nicotiana plants infected with PSTVd. (A) At 8 weeks post-inoculation (wpi),
stunting, leaf miniaturization, and poor growth were observed in PSTVd-infected N. rustica plants
and were more severe during PSTVd-AS1 infection. (B) At 3 wpi, N. occidentalis plants inoculated
with 5 µg RNA per plant clearly exhibited disease symptoms only after inoculation with PSTVd-AS1.
(C) At 3 wpi, N. occidentalis plants inoculated with 10 µg RNA per plant exhibited stunting even by
inoculation with PSTVd-Int. (D–G) N. occidetalis plants infected with PSTVd-AS1 exhibited disease
symptoms such as leaf curling, rugose, and vein/stem necrosis in addition to stunting. (D) Rugose
and leaf curling at 7 wpi. (E) Leaf rugose at 3 wpi. (F) Vein necrosis at 3 wpi (indicated with a red
arrow). (G) Stem necrosis at 4 wpi (indicated with a red arrow).

3. Discussion

To date, effective control methods for viroid diseases have not been established;
therefore, the use of tolerant or resistant cultivars to viroid infection is considered the
most effective countermeasure against viroid diseases. However, in most crops, except for
chrysanthemums, which have been reported to show CSVd resistance in some cultivars,
viroid-resistant cultivars or traits available in breeding have not been reported. Similarly,
tomato, an agriculturally important crop, is a pathogenic host of many pospiviroids, but
no resistance has been reported. In addition, although wild tomato relatives contain many
species that can be crossed with cultivated tomatoes, responses to PSTVd infection have
been clarified only in some species. Therefore, this study was conducted to clarify the
responses of a wide range of cultivated and wild tomatoes and wild tomato relatives
to PSTVd infection and to examine genetic resources of PSTVd resistance that could be
introduced into susceptible cultivated tomatoes by crossing. No tomato cultivars or wild
tomato species exhibiting PSTVd resistance capable of rendering systemic infection of
PSTVd impossible were found, but the tested plants exhibited various responses, including
high tolerance to PSTVd infection (Tables 1 and 2).

Cultivated tomatoes are derived from S. l. cerasiforme (wild tomatoes) and S. pimpinelli-
folium (the putative closest wild tomato relative) [21], which bear small fruits. Moreover, in



Plants 2021, 10, 575 12 of 18

the process of domestication and subsequent breeding, tomatoes accumulated mutations
in the genome that increased their fruit size, resulting in the larger fruits of the currently
cultivated tomatoes [18,22–24]. In this study, the small-fruited tomato cultivars tended
to have a higher PSTVd tolerance than the large- and medium-fruited tomato cultivars
(Figures 1 and 2, Table 1). These findings suggest that there is a link between the increase in
fruit size associated with tomato domestication/breeding and the high sensitivity to PSTVd
because ancestor wild species of cultivated tomatoes are asymptomatic during PSTVd
infection [28]. Our inoculation assay revealed that S. l. cerasiforme included PSTVd-sensitive
accessions in addition to those exhibiting PSTVd tolerance as previously reported [28]
(Figure 3), and that S. pimpinellifolium did not develop any disease symptoms [28] (Figure 5).
These results suggest that PSTVd sensitivity in tomatoes is derived from a group of PSTVd-
sensitive S. l. cerasiforme because this species is a complex mixture of domesticated (close
to cultivated tomatoes) and wild (close to S. pimpinellifolium) groups [22]. Our data on
necrosis symptoms support the above hypothesis regarding the origin of PSTVd sensitivity.
Necrosis was observed in some wild tomatoes and wild tomato relatives, as well as some
tomato cultivars; the symptoms observed in cultivated and wild tomatoes infected with
PSTVd appeared on the veins and stems, whereas necrosis was observed on the stems
and leaf tissues other than the veins in S. cheesmaniae LA0421 and S. chmielewskii LA2695
(Figure 1B,C, Figure 3C–E, Figure 4B–D, Tables 1 and 2). Considering these findings,
PSTVd-sensitive or -tolerant tomato cultivars may have been domesticated/bred from the
PSTVd-sensitive (close to cultivated tomatoes) or -tolerant (close to S. pimpinellifolium) wild
tomato, respectively.

On the other hand, this possibility inadequately explains the high PSTVd sensitivity
in large-sized tomato cultivars because the fruits of wild tomatoes are larger than those
of S. pimpinellifolium, but clearly smaller than those of large-fruited tomato cultivars. In
this study, stunting was generally observed in PSTVd-sensitive tomato cultivars, and the
fruits of ‘Tiny-Tim’ and ‘Micro-Tom’ tomatoes showed disease symptoms, such as minia-
turization, sterility, and loss of luster (Figures 1 and 2B,C, Table 1). Stunting and fruit
miniaturization were also observed in tomato planta macho viroid- or Mexican papita
viroid-infected ‘Rutgers’ tomatoes in which the expression of gibberellin biosynthesis
genes GA20ox1 and GA7ox, and GAI (gibberellic acid insensitive) was suppressed [42]. The
expression of these genes was also suppressed in PSTVd-infected tomato plants [17], and
suppression of the StTCP23 transcription factor, which activates gibberellin metabolism,
caused by PSTVd infection in potato plants, was associated with disease symptom expres-
sion [9]. These findings suggest that the gibberellin metabolism pathway fluctuation is
associated with disease symptom expression in PSTVd-infected host plants. Gibberellin is
also involved in the fruit development of tomatoes by regulating fruit set and cell expan-
sion after flowering [43,44]. It has been suggested that the expression of the YABBY-like
transcription factor gene, which regulates gibberellin synthesis by feedback control in
rice, was suppressed in modern cultivated tomatoes due to the large insertion into the
first intron region of the gene so that the number of locules was increased and the size
of fruits was enlarged [24,45]. Considering these reports, there may be a relationship
between tomato fruit size and symptom expression (or PSTVd sensitivity) via gibberellin
metabolism. Further research is needed to confirm this possibility.

None of the host plants demonstrated PSTVd resistance in this study, but some wild
tomato relatives showed high tolerance to PSTVd. Little research has been conducted on
tolerance to viroids, and the mechanism and its properties have not been elucidated. In
previous reports, F1 hybrids obtained by crossing sensitive and tolerant tomato cultivars
had the dominant trait of developing disease symptoms [11]. In our study, F1 hybrids
generated by crossing between symptomatic S. l. cerasiforme LA1286 and asymptomatic
S. pimpinellifolium LA0373 or S. chmielewskii LA1028 exhibited tolerance even to lethal
PSTVd-AS1 (Figure 7), indicating that PSTVd tolerance is a dominant trait and can be
introduced into PSTVd-sensitive tomatoes by crossing. This is the first report demonstrating
that PSTVd tolerance can be introduced into PSTVd-sensitive tomatoes by general crossing,



Plants 2021, 10, 575 13 of 18

which does not use transformation techniques. Since S. pimpinellifolium and S. chmielewskii
are wild tomato relatives that can be crossed with not only wild tomatoes (S. l. cerasiforme)
but also cultivated tomatoes, this tolerance to PSTVd is a high-value trait in breeding.

Inoculation with different PSTVd strains in a wide range of host plants is useful in
comprehensively understanding the relationship between host and viroid, in the viroid
pathogenesis. Our data show that pathogenicity differences between PSTVd strains were
evident in PSTVd-sensitive host plants, and not in highly tolerant or asymptomatic hosts
(Tables 1–3), thus suggesting that the role of pathogenicity determinants of the viroid
depends on the host plant and that the severity of symptoms in the plant is determined
by the interaction between viroid pathogenicity determinants and host factors related to
symptom expression. In this study, during PSTVd-AS1 infection, PSTVd-tolerant wild
tomato relatives had a lower accumulation of PSTVd than PSTVd-sensitive wild tomatoes
and the severity of disease symptoms in their F1 hybrids demonstrated a positive corre-
lation with early accumulation (Figures 5–8). In a previous study, suppression of PSTVd
accumulation resulted in suppression of symptom expression or reduced the degree of
disease symptoms [35,37,38]. These findings suggest that S. pimpinellifolium LA0373 and S.
chmielewskii LA1028 contain factors that affect PSTVd accumulation, which is one of the
determinants of disease symptom severity.

Regarding the low accumulation of PSTVd in wild tomato relatives, it is possible
that PSTVd replication and intercellular/systemic transfer were suppressed or that the
accumulated PSTVd was degraded by the anti-viroid defense mechanism, including RNA
silencing. In previous reports, suppression of DCL2 and DCL4 in tolerant ‘Moneymaker’
tomatoes increased the accumulation and sensitivity during PSTVd, PVX, or PVY infec-
tion [46,47]. It has also been reported that the combined activity of DCL2 and DCL3 in N.
benthamiana is important for suppressing the disease symptom expression of PSTVd [48].
These findings suggest that the degradation mechanisms of viroids, including RNA silenc-
ing, are involved in suppressing PSTVd accumulation, thereby exhibiting PSTVd tolerance
in S. pimpinellifolium LA0373 and S. chmielewskii LA1028.

Suppressed accumulation of PSTVd early during infection in wild relatives and their
F1 hybrids may also be associated with pathogen-associated molecular patterns (PAMPs)-
triggered immunity (PTI), which is generally considered as the defense response of plants
in early infection of pathogens. For instance, the earliest signaling events in PTI responses
include the influx of Ca2+, production of reactive oxygen species, and activation of mitogen-
activated protein kinase (MAPK) cascades [49]. In PSTVd infection, induction of PTI
responses was suggested from comprehensive transcriptome analyses in ‘Heinz 1706’
tomatoes, and MAPK3 was induced at both transcriptional and translational levels [50];
although the involvement of PTI in defense responses against viroids, including RNA
silencing, has been suggested in a previous study [51], no studies have been conducted to
prove that hypothesis. At 14 dpi, PSTVd accumulation was lower in F1 hybrids than in
S. l. cerasiforme LA1286 but increased to an indistinguishable level at 50 dilution at 21 dpi
(Figure 8). A similar phenomenon was observed in PSTVd-tolerant ‘Moneymaker’ toma-
toes whose symptoms were exacerbated by the downregulation of DCL2 and DCL4 [46].
Considering these findings, suppression of PSTVd accumulation in early infection may
be important to exhibit PSTVd tolerance. The plants may probably gain time to activate
their anti-viroid defense by suppressing the initial accumulation, resulting in tolerance
to PSTVd.

Alternatively, the severity of disease symptoms and accumulation of PSTVd is likely
to be associated with the number of genes that fluctuate due to PSTVd infection. In
general, mild strains of PSTVd accumulate less than highly pathogenic strains [11,12,52].
Additionally, microarray analyses in ‘Rutgers’ tomatoes infected with mild or severe
strains of PSTVd revealed that 3037 differentially expressed genes were observed in severe
strain infection, whereas less than one third of those were found in mild strain infec-
tion [53], suggesting that fluctuations in the expression levels of many genes disrupt the
normal metabolism of plants and cause disease symptoms. In this study, low accumula-
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tion of PSTVd in F1 plants correlated with the moderation of disease symptom severity
(Figures 7 and 8). These findings suggest that the suppression of PSTVd accumulation by
crossing with PSTVd-tolerant wild tomato relatives results in a decrease in the number
of fluctuating host genes and direct or indirect suppression of disease symptom expres-
sion. The mechanism of PSTVd tolerance and suppression of PSTVd accumulation in wild
relatives will be further analyzed in the future.

In conclusion, this study demonstrated that wild tomato relatives (S. cheesmaniae,
S. galapagense, S. chmielewskii, S. arcanum, S. neorickii, S. huaylasense, and S. pennellii) whose
response to PSTVd infection was unknown exhibit various responses during PSTVd infec-
tion and that many of them, S. l. cerasiforme, N. rustica, and N. occidentalis, are symptomatic
hosts of PSTVd. At present, N. occidentalis is considered the only Nicotiana plant that
exhibits obvious disease symptoms such as rugose, leaf curling, and vein/stem necrosis
due to PSTVd infection. Furthermore, although no host plants exhibited PSTVd resistance,
we found highly PSTVd-tolerant wild tomato relatives that displayed almost no symptoms
during infection with intermediate and lethal strains of PSTVd. This PSTVd tolerance
in S. pimpinellifolium LA0373 and S. chmielewskii LA1028 is a dominant trait that can be
utilized for tomato breeding. This is the first study to produce F1 hybrid tomatoes showing
PSTVd tolerance by crossing, along with the low accumulation of PSTVd in early infec-
tion; however, the detailed mechanism is unknown. In the future, we plan to reveal the
mechanism of PSTVd tolerance and suppression of PSTVd accumulation in wild relatives.
Our data will provide new insights into disease tolerance and the mechanism of symptom
expression.

4. Materials and Methods
4.1. Plant Materials

Tomatoes (1 species, 13 cultivars), wild tomatoes (1 species, 5 accessions), wild tomato
relatives (12 species, 14 accessions), and another five species of the family Solanaceae
(including the genus Capsicum, Nicotiana, and Solanum) were used for the inoculation assay
with two PSTVd strains in order to evaluate responses to PSTVd infection. Open pollinated
(OP) seeds of the following tomato cultivars were purchased from seed companies in
Japan: ‘Berner Rose’ (Tsurusin Seed Co., Ltd, Nagano, Japan), ‘Pondelosa’ and ‘Sekai-
ichi’ (Noguchi Seeds Co., Saitama, Japan), and ‘Lemon-tomato’ and ‘San Marzano’ (SNC
Sapporo Nouen Co., Ltd., Hokkaido, Japan). OP seeds of tomato cultivars ‘Moneymaker’,
‘Newskij’, and ‘Rutgers’ were collected in our laboratory. In addition, OP seeds of the
following tomato cultivars were kindly provided by the following institutions: ‘Micro-
Tom’ by the Tomato Genetics Resource Center (TGRC), and ‘Sugar’ and ‘Tiny-Tim’ by the
National Plant Germplasm System (NPGS). F1 hybrid seeds of tomato cultivars ‘Momotaro’
and ‘Chika’ were produced by the seed company of Japan (Takii & Co., Ltd., Kyoto, Japan).
All seeds of wild tomato species were kindly provided by the TGRC or the NPGS. OP seeds
of N. occidentalis and N. rustica were collected in our laboratory. OP seeds of capsicum
cultivars ‘Botan-kosho’ and ‘Takano-tsume’ were purchased from seed companies (Tsurusin
Seed and Sakata Seed Corporation, Kanagawa, Japan, respectively). F1 hybrid seeds of
eggplant cultivars ‘Kurobe’ and ‘Kurowashi’ were produced by seed companies of Japan
(Watanabe Seed Co., Ltd., Miyagi, Japan, and Takii & Co., Ltd., respectively).

S. l. cerasiforme LA1286 was crossed as a seed parent with a wild tomato relative,
S. pimpinellifolium LA0373 or S. chmielewskii LA1028, as a pollen parent, and F1 hybrid seeds
were produced in this study.

Seeds of wild tomato species were sown on filter paper after pretreatment with 2.7%
hypochlorous acid for 30 or 60 min to improve the germination rate. After germination,
seedlings were planted in potting soil and grown in a greenhouse with controlled temper-
ature at 24 (night)–28 ◦C (day), with a day length of about 16 h with light provided by
the sun and a sunlight lamp. Once the plants unfolded two true leaves (approximately
10–12 days after transplantation), they were inoculated with PSTVd and grown under
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similar growth conditions for at least 6 wpi. An inoculation assay was repeated at three
different times, and at least three individual plants were used per inoculum in every assay.

4.2. In Vitro Transcription of PSTVd RNA and Mechanical Inoculation

Infectious PSTVd transcripts of intermediate (isolate PSTVd-Int, Accession No. M16826)
and lethal (isolate PSTVd-AS1, Accession No. AY518939) strains were used for the inocula-
tion assay. After in vitro transcription with T7 RNA polymerase (Invitrogen, Carlsbad, CA,
USA), a template plasmid was digested with DNase I (RT Grade) (Nippon Gene, Toyama,
Japan), and transcribed RNA was collected by ethanol precipitation using ammonium
acetate to remove substrate nucleotides, before suspension in RNA storage solution (Am-
bion). The concentration and the size of transcripts were confirmed using a NanoDrop-1000
(Thermo Fisher Scientific, Waltham, MA, USA) and denaturing agarose gel electrophoresis
containing 2.2 M formaldehyde. PSTVd inoculums were adjusted to include 0.1 M Tris-
HCl (pH 7.5), 0.01 M EDTA (pH 7.5), and 0.33 µg/µL bentonite at the final concentration.
When evaluating PSTVd infection response (Sections 2.1–2.8) or analyzing PSTVd tolerance
(Sections 2.5–2.7), 5 or 2 µg infectious PSTVd RNA per individual plant was used for
inoculation, respectively. Exceptionally, N. occidentalis was inoculated with 5 or 10 µg
RNA per plant (Section 2.8). For mechanical inoculation, an aliquot of inoculum (2–4 µL
containing infectious PSTVd RNA) was placed on the second true leaf from the top of
individual plants (2−4 true leaf stage) dusted with carborundum (600 mesh) and gently
rubbed ten times against the leaf using a finger covered in a finger cot.

4.3. Isolation of Nucleic Acid and Confirmation of PSTVd Infection by RT-PCR

A total of five leaf disks (6 mm in diameter) were collected at 4 wpi from individual
PSTVd-inoculated plants for nucleic acid extraction. Total nucleic acids were extracted by a
rapid method using potassium ethyl xanthogenate, as described previously [54], with some
modifications (Hataya, submitted). The nucleic acid suspension was used for subsequent
confirmation of PSTVd infection by RT-PCR.

In the RT reaction, cDNA was synthesized from 1 µL of the nucleic acid suspension
using random hexamer primers (TaKaRa Bio Inc., Shiga, Japan) and ReverTra Ace (Toyobo,
Osaka, Japan) and used as a template for PCR to amplify part of the PSTVd sequence. PCR
was performed with Hot start Taq DNA polymerase (New England Biolabs, Ipswich, MA,
USA) and a primer set, PSTV-7P and PSTV-7M [55]. The PCR products were fractionated in
1.5% agarose gel containing 0.5×Tris-acetate-EDTA buffer, stained with ethidium bromide
solution (0.5 µg/mL), and visualized under ultraviolet (UV) irradiation at 312 nm.

4.4. Extraction of Total RNA and Detection of PSTVd by Dot-Blot Hybridization

Total RNA was extracted from the second true leaf from the top of individual plants
inoculated with PSTVd-AS1 using RNAiso Plus (TaKaRa Bio Inc.) according to the man-
ufacture’s protocol. Total RNA samples were used for dot-blot hybridization to detect
PSTVd. A 5-fold dilution series from total RNA of 62.5 (in the case of wild relatives) or
31.25 ng (in the case of F1 hybrids) was prepared, spotted onto the Hybond-N membrane
(GE Healthcare Life Sciences, Piscataway, NJ, USA), and crosslinked with UV irradiation.
Hybridization was conducted with a digoxigenin-labeled cRNA probe for PSTVd [51,54].
Hybridized signals were visualized using ImageQuant LAS4000 (Fujifilm, Tokyo, Japan).

Supplementary Materials: The following are available online at https://www.mdpi.com/2223-7
747/10/3/575/s1, Figure S1: Symptoms in fruits of PSTVd-tolerant ‘Micro-Tom’ tomatoes. ‘Micro-
Tom’ tomatoes showed clear disease symptoms only in fruits derived from PSTVd-infected plants.
(A) ‘Micro-Tom’ tomatoes exhibited PSTVd tolerance to some extent, and did not clearly show
morphological symptoms in stems and leaves at 6 weeks post-inoculation. (B) The fruits from
PSTVd-infected plants became significantly smaller in size and lost their surface luster; the fruits
from PSTVd-AS1-infected plants did not form any seeds. Differences in pathogenicity between
PSTVd strains were remarkable with regard to fruit symptoms; Figure S2: PSTVd-sensitive wild
tomato relatives. In addition to the three species described in Figure 4, S. arcunum LA1031, S. neorickii
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LA0247, and S. huaylasense LA1358 were symptomatic during PSTVd infection. S. arcanum LA1031
plants exhibited stunting at 6 weeks post-inoculation (wpi). S. neorickii LA0247 showed stunt and leaf
miniaturization at 6 wpi. S. huaylasense LA1358 exhibited stunting at 4 wpi, whereas plant growth
tended to be suppressed under our test conditions. Differences in pathogenicity between PSTVd
strains were remarkable in S. arcanum LA1031 and S. neorickii LA0247 plants; Figure S3: PSTVd-
tolerant wild tomato relatives. In addition to the three species described in Figure 5, S. pimpinellifolium
LA 0411 and S. galapagense LA0317 exhibited PSTVd tolerance regardless of PSTVd strain. S. pimpinel-
lifolium LA0411 was asymptomatic during PSTVd infection at 6 weeks post-inoculation, similar to
S. pimpinellifolium LA0373. S. galapagense LA0317 exhibited no obvious symptoms, except for poor
growth, such as decreased number of branches and leaves.
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