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Abstract

Background: Dysfunction of renal tubule epithelial cells is associated with renal tubulointerstitial fibrosis. Exploration
of the proteomic profiles of senesced tubule epithelial cells is essential to elucidate the mechanism of

tubulointerstitium development.

Methods: Primary human proximal tubule epithelial cells from passage 3 (P3) and passage 6 (P6) were selected for
evaluation. EdU and SA-B-galactosidase staining were used to detect cell senescence. p53, p21, and p16 were detected
by Western blot analysis. Liquid chromatography mass spectrometry (LC-MS) was used to examine differentially
expressed proteins (DEPs) between P6 and P3 cells. The expression of DEPs was examined by Western blot analysis.
Bioinformatics analysis was performed by protein-protein interaction and gene ontology analyses.

Results: The majority of tubule cells from passage 6 (P6) stained positive for SA-B-galactosidase, whereas passage 3 (P3)
cells were negative. Senescence biomarkers, including p53, p21, and p16, were upregulated in P6 cells relative to P3
cells. EAU staining results showed a lower rate of EdU positive cells in P6 cells than in P3 cells. LC-MS was used to
examine DEPs between P6 and P3 cells. These DEPs are involved in glycolysis, response to stress, cytoskeleton
regulation, oxidative reduction, ATP binding, and oxidative stress. Using Western blot analysis, we validated the down-
regulation of AKR1B1, EEF2, EEFT1A1, and HSP90 and the up-regulation of VIM in P6 cells seen in the LC-MS data. More
importantly, we built the molecular network based on biological functions and protein-protein interactions and found
that the DEPs are involved in translation elongation, stress, and glycolysis, and that they are all associated with
cytoskeleton regulation, which regulates senescent cell activities such as apoptosis and EMT in tubule epithelial cells.

Conclusions: We explored proteomic profile changes in cell culture-induced senescent cells and built senescence-
associated molecular networks, which will help to elucidate the mechanisms of senescence in human proximal tubule

epithelial cells.
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Background

Aging and aging-related diseases are associated with
various health problems worldwide. Renal aging begins
around approximately 40 years old and is accompanied
by decreased renal blood flow (~10 % per year). The de-
cline in renal function and susceptibility to age-related
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renal insufficiency may contribute to chronic progressive
kidney failure. Senescence of tubule epithelial cells involves
multiple complex activities including apoptosis, cell shape
enlargement, decreased motility, aberrant energy metabol-
ism, and epithelial-to-mesenchymal transition (EMT), and
it is the major cause of renal tubulointerstitial fibrosis [1]
and kidney failure. Exploring the mechanism of senescent
tubule epithelial cell activities will aid us in understanding
the pathogenesis of renal PTEC senescence.

The known senescence-associated cell activities are
mainly based on changes in protein components. It has
been reported that the upregulation of nuclear factor
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kappa B (NF-kB), tumor growth factor beta (TGF-f) and
hypoxia-inducible factor (HIF) affect tubule epithelial cell
proliferation, cellular apoptosis and EMT, which is associ-
ated with senescence in tubule epithelial cells [2, 3]. How-
ever, there is still a lack of large-scale proteomic analyses
that have explored aging-related proteins and mecha-
nisms. Therefore, we performed label-free quantitative
proteomics and explored proteomic profiles in senescent
human proximal tubule epithelial cells (PTECs) to identify
the molecular mechanism underlying
associated cell activities in PTECs.

senescence-

Methods

Isolation and culture of human primary tubular cells
Segments of macroscopically and histologically normal
renal cortex were obtained under aseptic conditions
from patients undergoing nephrectomy for small
(<6 cm) tumors in the Department of Urology, Chinese
PLA General Hospital. Patients were accepted into the
study if they had no history of renal or systemic disease
associated with tubulointerstitial pathology. Tubular
fragments were derived from the segments of renal cor-
tex by collagenase digestion and were isolated by centri-
fugation in 45 % Percoll (Pharmacia, Uppsala, Sweden).
The PTECs were re-suspended in a 1:1 (vol/vol) mixture
of Dulbecco’s modified Eagle’s (GIBCO™ Invitrogen,
Barcelona, Spain) and Ham’s F-12 media (Hyclone,
USA) supplemented with 10 % heat-inactivated fetal bo-
vine serum (FBS) (GIBCO™ Invitrogen, Barcelona,
Spain), 10 ng/ml EGF (Peprotech, Rocky Hill, USA),
5 mg/ml human transferrin, 5 mg/ml bovine insulin (all
from Sigma, St. Louis, MO, USA), 100 U/ml penicillin,
and 100 pg/ml streptomycin (Invitrogen, New York, NY,
USA). Passage 3 was defined as the young control, and
passage 6 was defined as cellular senescence.

Immunofluorescence

The PTEC biomarker cytokeratin 18 was detected by
immunofluorescence. Cells were fixed in 4 % parafor-
maldehyde and permeabilized with 1 % Triton X-100
buffer. Cells were then incubated with anti-CK18 anti-
body (Zhongshan Golden Bridge Bio-technology, Beijing,
China) and DAPI (Sigma-Aldrich, St. Louis, MO, USA)
for nuclear staining. Cells were examined using a Nikon
fluorescence microscope (Japan).

SA-B-gal staining

Cells were fixed with 2 % formaldehyde and 0.2 % glu-
taraldehyde for 15 min and stained with freshly prepared
senescence-associated p-galactosidase (SA-B-gal) (1 mg/
mL X-gal, 40 mM citric acid/sodium phosphate
(pH 6.0), 5 mM potassium ferrocyanide, 5 mM potas-
sium ferricyanide, 150 mM NaCl, and 2 mM MgCl,)
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overnight at 37 °C without CO,. The cells were then ex-
amined under a microscope.

5-ethynyl-2"-deoxyuridine (EdU) proliferation assay
Proliferative activity was detected using an EdU labeling
kit (Roche Ltd, USA) following the manufacturer’s rec-
ommendations. Fluorescent images were obtained by
florescence microscopy.

Western blot analysis

Antibodies against p53 (Abcam, Cambridge, UK), p53,
AKR1B1, EEF1A1l, EEF2, HSP90 (Proteintech Group
Inc.), p21, and p16 (Cell Signaling Technology, Danvers
MA, USA) were used for Western blot analysis. B-Actin
(Sigma-Aldrich, St. Louis, MO, USA) served as a con-
trol. Approximately 30 pg of protein were subjected to
12 % sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE). After incubation in primary and
secondary antibodies, images were acquired using an
Opti-Chemi 600 (UVP Inc., Upland, CA, USA).

Label-free quantitative proteomics

Protein (50 pg) was separated by 12 % SDS-PAGE.
Gels were stained with R250 Coomassie Brilliant Blue.
Each lane of the gel was cut into four fragments, and
each fragment was trypsin-digested as described
previously [4]. Peptides were analyzed using two-
dimensional (2-D) liquid chromatography mass spec-
trometry (LC-MS) (XEVO QTOF, Waters Corp.,
Manchester, UK). Samples were separated on a 180-
pm x 50-mm Symmetry C18 5 um (Waters Corp.,
Manchester, UK) reversed-phase trap column in the
first dimension with Solvent A (200 mM ammonium
formate, pH 10.0) and solvent B (CH3CN). Five dif-
ferent solvent plugs set automatically by Masslynx 4.1
were applied to elute the fractions sequentially. In the
second dimension, peptides were eluted with a
nanoACQUITY system equipped with a C18 column
(75 pmx 100 mm; Waters Corp.) with solvent A
(water) and solvent B (CH3CN). The procedure and
data analysis were similar to those in our previous
study [5]. The column temperature was maintained at
35 °C. Two hundred femtomolesl/pL of [Glul] fibri-
nopeptide B was applied as the lock mass with a con-
stant flow rate of 300 nl/min. Each sample was
detected in triplicate. The spectral acquisition time in
each mode was 0.6 s. In the low energy MS mode,
data were collected at a constant collision energy of
6 eV. In the elevated energy MS mode, the collision
energy was increased from 15 to 36 eV. Each sample
group contained three replicates that were combined
for expression profile analysis by PLGS 2.4. The pre-
cursor and fragment ion tolerance were determined
automatically. The default protein identification



Lu et al. BMC Nephrology

criteria included a maximal protein mass of
500,000 Da and a detection of at least three fragment
ions per peptide, seven fragment ions per protein,
and one peptide per protein. Fixed modification of
carbamidomethyl-C and the detected variable modifi-
cations, including acetylation (N-terminus), deamida-
tion (N/Q) and oxidation of methionines, were
selected. At most, two missed cleavages and a false
positive rate of 4 % were allowed. Normalization was
performed using the auto-normalization function, [6]
which exhibited an effect similar to the internal
standard [7]. The NCBI human database (released in
March, 2012) was used as a reference database. Only
those proteins identified in at least two of three injec-
tions and demonstrating fold changes >1.5 were con-
sidered differentially expressed proteins (DEPs).

Bioinformatics analysis

Data analysis was performed using MAS 3.0 (http://bioin-
fo.capitalbio.com/mas3/), BINGO and 2.44 STRING 9.0
(http://string.embl-heidelberg.de) software. The ClueGo
and BiNGO 2.44 software and plug-ins for Cytoscape 2.7
were used to analyze the biological functions. String and
the MAS 3.0 system were used for protein-protein inter-
action (PPI) analysis (score >0.6) and PPI network build-
ing. Cytoscape 2.7 was used to modify the network.

Ethics statement

The study protocol was approved by the Ethics Com-
mittee of PLA general hospital of China. Written in-
formed consent was obtained from all study
participants. The diagnosis of renal cancer was made
based on results of renal imaging testing and patho-
logical examination.

Results

Tubule cells from passage 6 exhibit an obvious
senescence phenotype

We first identified primary proximal tubule cells by con-
firming the expression of cytokeratin 18 (CK18). Im-
munofluorescence of CK18 in the cytoplasm confirmed
the purity of tubule cells (Fig. 1a). Next, SA-B-gal stain-
ing was performed to detect senescence. Nearly all tu-
bule cells from the passage 6 (P6) group stained positive
for SA-B-gal (Fig. 1b). Moreover, the expression of sen-
escence biomarkers including p53, p21, and pl6 were
detected and upregulated in the P6 group compared to
passage 3 (P3) cells (Fig. 1c). EAU staining revealed that
a lower rate of positivity in P6 cells compared with P3
cells (Fig. 1d). Therefore, P6 tubule cells were defined as
senescent.
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LC-MS results showed that DEPs in the senescent PTECs
were associated mainly with metabolism, cytoskeleton
regulation, oxidative reduction, and stress

LC-MS was used to examine the DEPs between P3 and
P6 renal tubule epithelial cells. Thirty-four proteins were
downregulated and 36 proteins were upregulated in P6
cells compared to P3 cells (Tables 1 and 2). We then ap-
plied two tools to analyze the functions of these DEPs.
CLUEGO analysis showed that these proteins are in-
volved in the regulation of cellular amino acid metabolic
processes, apoptosis, actin-mediated cell contraction,
and glucose catabolism (Fig. 2a). BinGO analysis re-
vealed additional biological functions, including glycoly-
sis, response to stress, cytoskeleton regulation, oxidative
reduction, adenosine triphosphate (ATP) binding, and
oxidative stress (Fig. 2b). These DEPs regulate biological
functions related to the process of senescence in PTECs.
Moreover, we also validated the expression of DEPs by
Western blot analysis (Fig. 2c). We confirmed that
AKR1B1, EEF2, EEF1A1l, and HSP90 were downregu-
lated and that VIM was upregulated in P6 cells, which is
consistent with our proteomic results.

Biological functions, including translation elongation,
stress, and glycolysis, were all associated with
cytoskeleton regulation based on PPI in senescence-
associated molecular networks

To better explore the mechanisms involved in PTEC
senescence, we built molecular networks based on PPI
(Fig. 3). In the network, EEF1A1 and EEF2 regulate
eukaryotic translation elongation, and GAPDH, ALDOA,
ENO2, LDHA, and PKLR are involved in glycolysis.
Other DEPs, such as ACTN2, VIM, ANXA2, MSN, and
GSM  mediate cytoskeleton regulation. HSP90BI,
HSP90AA1 and HYOUI are associated with oxidative
stress. More importantly, translation elongation, stress
and glycolysis were all related to cytoskeleton regulation,
which was associated with regulation of PTEC apoptosis
and EMT.

Discussion

In this study, the specific protein changes involved in
human PTEC senescence were explored. The altered
proteins were found to be involved in regulating
senescence-associated biological functions including
cytoskeleton regulation, glycolysis, stress and metabol-
ism. More importantly, these biological functions can
affect each other via PPI, which provide new insights on
the mechanism of senescence in PTECs.

Aberrant energy metabolism, such as glucose hyster-
esis, is an important cause of aging. In this study, we de-
termined that key enzymes such as PKLR, ALDOA,
GAPDH, and LDHA were disrupted and contributed to
a disturbance in glycolysis. ALDOA is a key enzyme that
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Fig. 1 Tubule cells from passage 6 exhibit an obvious senescence phenotype. a Primary PTEC was identified by immunofluorescence of CK18.

b (3-galactosidase staining was performed to detect senescence. Nearly all tubule cells from the passage 6 (P6) group stained positive for 3-
galactosidase. ¢ Senescence biomarkers including p53, p21, and p16 were detected by Western blot and upregulated in the P6 group compared
to P3 cells. d EdU staining results showed that there was lower positive rate in the P6 group than P3 group
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catalyzes the reversible conversion of fructose-1,6-
bisphosphate to glyceraldehydes-3-phosphate (GAPDH)
and dihydroxyacetone phosphate in glycolysis [8]. LDHA
catalyzes the interconversion of pyruvate and lactate
PKLR, and, as a pyruvate kinase, catalyzes the transpho-
sphorylation of phosphoenolpyruvate into pyruvate and
ATP, which is the final step of glycolysis [9]. In P6 cells,
low-expression of LDHA, GAPDH and PKLR may be in-
volved in reduced glycolytic function, which could sub-
sequently promote glucose hysteresis. Renal tubule
epithelial cells are high-energy-demanding polarized epi-
thelial cells [10]. In diabetic patients, senescent tubule

epithelial cells may be prone to glucose metabolic dys-
function under hyper-glucose conditions.

Stress plays a crucial role in senescence. In our study,
we revealed that most stress-associated proteins includ-
ing HYOU1, HSP90, NQO1, and XRCC were downregu-
lated in aging renal tubule epithelial cells. Specifically,
HYOU1 is associated with endoplasmic reticulum stress
[11], HSP9O is a stress-induced protein that participates
in stress resistance [12], NQOI1 protects against oxida-
tive stress induced by a variety of metabolic situations,
and XRCC5 (Ku80) is crucial for stress-induced DNA
double-strand break repair [13]. These proteins may play
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Table 1 The downregulated DEPs in P6 tubule cells detected by LC-MS (fold change >1.5)

Accession Description Protein P6/P3 ratio Standard
deviation

NP_001074007.2 aldo keto reductase family T member B15 AKR1B15 0.01 0.006

NP_001002858.1 annexin A2 ANXA2 0.12 0.025

NP_001619.1 aldose reductase AKR1B1 017 0.026

XP_933678.1 PREDICTED POTE ankyrin domain family member | POTEI 0.18 0.15

NP_002037.2 glyceraldehyde 3 phosphate dehydrogenase GAPDH 030 0.03

NP_000289.1 pyruvate kinase isozymes R L PKLR 0.37 0.016

NP_003290.1 endoplasmin precursor HSP90B1 041 0.006

NP_002256.2 importin subunit beta 1 KPNB1 041 0.02

NP_003325.2 ubiquitin like modifier activating enzyme 1 UBA1 043 0.007

NP_005339.3 heat shock protein HSP 90 alpha HSP90AA2 044 0.004

NP_001153706.1 sodium potassium transporting ATPase subunit alpha 1 ATP1A1 048 0.019

NP_001171651.1 glucose 6 phosphate isomerase GPI 061 0.009

NP_001393.1 elongation factor 1 alpha 1 EEFTAT 0.66 0.009

NP_945189.1 protein glutamine gamma glutamyltransferase 2 TGM2 063 0.017

NP_065843.3 neutral cholesterol ester hydrolase 1 AADACL1 P3

NP_000687.3 4 trimethylaminobutyraldehyde dehydrogenase ALDHO9A1 P3

NP_004299.1 rho GTPase activating protein 1 ARHGAP1 P3

NP_001719.2 basigin precursor BSG P3

NP_001019820.1 calnexin precursor CANX P3

NP_006575.2 T complex protein 1 subunit zeta 2 CCT6B P3

NP_002942.2 dolichyl diphosphooligosaccharide protein glycosyltransferase subunit 2 precursor DDOST P3

NP_004721.1 eukaryotic peptide chain release factor subunit 1 ETF1 P3

NP_110416.1 minor histocompatibility antigen H13 HM13 P3

NP_006380.1 hypoxia up regulated protein 1 precursor HYOU1 P3

NP_005557.1 L lactate dehydrogenase A chain LDHA P3

NP_001244303.1 lamin LMNA P3

NP_000894.1 NADPH dehydrogenase quinone 1 NQO1 P3

NP_005023.2 plastin 3 PLS3 P3

NP_006397.1 peroxiredoxin 4 precursor PRDX4 P3

NP_001096137.1 proteasome subunit alpha type 4 PSMA4 P3

NP_653263.2 proteasome subunit alpha type 7 like PSMA7 P3

NP_055205.2 staphylococcal nuclease domain containing protein 1 SND1 P3

NP_110437.2 thioredoxin domain containing protein 5 precursor TXNDC5 P3

NP_066964.1 X ray repair cross complementing protein 5 XRCC5 P3

a crucial role in mediating stress in aging renal tubule
epithelial cells.

Eukaryotic translation elongation factors are also closely
related to senescence. It was reported that EEF1A1 and
EEF1B2 could serve as senescence-associated biomarkers,
which are downregulated during cellular senescence [14].
In this study, we confirmed that EEF1A1 and EEF2 were
downregulated in senescent renal tubule cells (see Fig. 3).
EEF1A1 is one of the alpha subunit forms of the elong-
ation factor 1 complex that interacts with aminoacylated

tRNA and facilitates its delivery to the ‘A’ site of the ribo-
some during the elongation phase of protein synthesis.
EEL1A1 is involved in moonlighting functions, including
cytoskeletal remodeling, protein folding and degradation,
cell signaling modulation, control of cell growth, apop-
tosis, and cell cycle. Therefore, our results also suggest
that EEF1A1 may serve as a biomarker of renal tubule epi-
thelial cell senescence.

More importantly, we explored molecular networks to
define the role of biological functions in PTECs. In the
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Table 2 The upregulated DEPs in P6 tubule cells detected by LC-MS (Fold change >1.5)

Accession Description Protein P6/P3 ratio Standard
deviation

NP_001182032.1 glutathione reductase mitochondrial isoform 3 precursor GSR 203 0.18

NP_001605.1 actin cytoplasmic 2 ACTG1 322 0.05

NP_001966.1 gamma enolase ENO2 3.74 045

NP_001093241.1 POTE ankyrin domain family member F POTEF 382 0.064

NP_001077007.1 POTE ankyrin domain family member E POTEE 3.90 0.065

NP_006363.4 heterogeneous nuclear ribonucleoprotein Q SYNCRIP 4.10 027

NP_005991.1 tubulin alpha 4A chain TUBA4A 4.85 0.12

NP_001094.1 alpha actinin 2 ACTN2 p6

NP_001121089.1 fructose bisphosphate aldolase A ALDOA p6

NP_112092.1 apolipoprotein L2 APOL2 p6

NP_006076.4 3 2 5 bisphosphate nucleotidase 1 BPNT1 p6

NP_775083.1 calpastatin CAST p6

NP_004850.1 clathrin heavy chain 1 CLTC p6

NP_000080.2 collagen alpha 2 | chain precursor COL1A2 p6

NP_444513.1 dermcidin preproprotein DCD p6

NP_0042383 116 kDa U5 small nuclear ribonucleoprotein component EFTUD2 p6

NP_001129490.1 epoxide hydrolase 1 precursor EPHX1 p6

NP_003079.1 fascin FSCN1 p6

NP_000138.2 tissue alpha L fucosidase precursor FUCA1 p6

NP_000168.1 gelsolin precursor GSN p6

NP_003861.1 ras GTPase activating like protein IQGAP1 p6

NP_002435.1 moesin MSN p6

NP_038479.1 myoferlin MYOF p6

NP_060037.3 N acetyl D glucosamine kinase NAGK p6

NP_002769.1 proactivator polypeptide preproprotein PSAP p6

NP_002806.2 26S proteasome non ATPase regulatory subunit 11 PSMD11 p6

NP_055113.2 nicotinate nucleotide pyrophosphorylase carboxylating precursor QPRT p6

NP_001003.1 40S ribosomal protein S8 RPS8 p6

NP_056456.1 testin TES p6

NP_001055.1 transketolase TKT p6

NP_001018005.1 tropomyosin alpha 1 chain TPM1 p6

NP_005992.1 tubulin alpha 3C D chain TUBA3D p6

NP_997195.1 tubulin alpha 3E chain TUBA3E p6

NP_006364.2 synaptic vesicle membrane protein VAT 1 homolog VAT1 p6

NP_003371.2 vimentin VIM p6

NP_001152994.1 putative zinc finger protein 727 ZNF727 p6

network, translation elongation, stress, and glycolysis
were associated with cytoskeleton regulation by PPI. We
found that DEPs mediating cytoskeleton regulation were
closely associated with regulating cell activities such as
EMT and apoptosis in aging PTECs. For example, upreg-
ulation of DEPs VIM, IQGAP1, and moesin is closely re-
lated to EMT and renal fibrosis, [15, 16] and GSN,
another DEP, is related to renal tubule epithelial cell

apoptosis [17]. We deduced that translation elongation,
stress, and glycolysis may regulate senescent cell activ-
ities such as apoptosis and EMT by influencing cytoskel-
eton regulation in PTECs [18-20]. EMT is a common
change in cell phenotype of renal tubule epithelial cells,
especially in those cells undergoing senescence. How-
ever, in this study, although P6 cells showed EMT-like
characteristics (vimentin upregulation and E-cadherin
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Fig. 2 Biological function analysis for proteomics profiles in P6 group. a CLUEGO analysis showed the DEPs in P6 group are involved in the
regulation of cellular amino acid metabolic processes, apoptosis, actin-mediated cell contraction, and glucose catabolism. b BinGO analysis
revealed additional biological functions, including glycolysis, response to stress, cytoskeleton regulation, oxidative reduction, adenosine triphosphate
(ATP) binding, and oxidative stress. ¢ the expression DEPs including AKR1B1, EEF2, EEF1AT and HSP90 in the network was validated by western blot
(Red up arrow meant DEPs upregulated in P6, and blue down arrow meant DEPs downregulated in P6)
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Fig. 3 Biological functions including translation elongation, stress and glycolysis could mediate the senescence-cell activities by acting on
cytoskeleton regulation. The molecular network of DEPs was built by protein-protein interactions. In the network, RPS8, ETF1, EEF1A1, and
EEF2 regulate eukaryotic translation elongation (Color: yellow), TKT, GAPDH, ALDOA, ENO2, LDHA, and PKLR are involved in glycolysis (Color: blue), DEPs,
such as ACTN2, VIM, ANXA2, MSN, and GSM mediate cytoskeleton regulation (Color: red). CANX, HSP90B1, HSP9OAAT and HYOU1 are associated with
oxidative stress (Color: green). Translation elongation, stress, glycolysis were all act on the cytoskeleton regulation, and in turn regulate cell activities in
senescent PTEC (Red up arrow meant DEPs upregulated in P6, and blue down arrow meant DEPs downregulated in P6)
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downregulation), most cells maintained an epithelial cell
morphology with CK18 expression. This result is sup-
ported by other reports, which showed that PTECs
underwent EMT upon chemokine (ex. TGF-) stimula-
tion [21-23]. We deduce that most P6 cells cannot
undergo EMT without a cytokine stimulus. This may
help to explain why those exhibiting senescence in their
kidneys may show greater renal fibrosis in the event of
inflammation or nephrology.

Conclusions

We identified specific proteomic profiles involved in cell
culture-induced senescence of renal tubule epithelial cells
and built a senescence-associated biological function net-
work involved in regulation of PTEC senescence activities.
These results will aid in understanding the mechanisms
involved in renal tubule epithelial cell senescence.
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