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Iron is essential for aerobic organisms. Additionally, photosynthetic organisms must main-
tain the iron-rich photosynthetic electron transport chain, which likely evolved in the iron-
replete Proterozoic ocean.The subsequent rise in oxygen since those times has drastically
decreased the levels of bioavailable iron, indicating that adaptations have been made to
maintain sufficient cellular iron levels in the midst of scarcity. In combination with physiolog-
ical studies, the recent sequencing of marine microorganism genomes and transcriptomes
has begun to reveal the mechanisms of iron acquisition and utilization that allow marine
microalgae to persist in iron limited environments.
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INTRODUCTION
Iron is essential for all aerobic organisms, but is highly reac-
tive and toxic via the Fenton reaction (Halliwell and Gutteridge,
1992). Consequently, organisms tightly control iron homeostasis
and have highly coordinated responses to iron deficiency and iron
overload. Photosynthetic organisms must also maintain the iron-
rich photosynthetic electron transport chain, which likely evolved
in the iron-replete reducing environments of the Proterozoic ocean
(Falkowski, 2006). The levels of bioavailable iron have decreased
drastically over time, concurrent with the rise in oxygen, indicat-
ing adaptations have been made to maintain sufficient iron levels
in the midst of scarcity.

Still, limited iron availability impairs phytoplankton growth in
as much as 40% of the ocean, notably in the Southern Ocean,
equatorial Pacific Ocean, and north Pacific Ocean (Moore et al.,
2001). As the levels of other nutrients are sufficient, these areas
are categorized as high-nutrient, low-carbon (HNLC). This iron
limitation has been evidenced by iron fertilization experiments of
HNLC waters, which can produce rapidly growing algal blooms
(Boyd et al., 2007; Figure 1), and ultimately, speculation that
these blooms could be utilized to capture and sequester carbon
from the atmosphere (Chisholm et al., 2001). At the same time,
elevated atmospheric carbon will likely acidify the ocean, almost
certainly altering iron bioavailability, and thus algal productivity
(Shi et al., 2010). Consequently, much effort has been made to
predict how climate change will affect iron availability and phy-
toplankton growth, and how altered phytoplankton growth will
itself affect climate change.

Despite the large-scale experiments related to iron and the
ocean, our current understanding of the underlying mech-
anisms of iron homeostasis in phytoplankton remains lim-
ited. Earlier work has shown that iron quotas are often opti-
mized in marine phytoplankton, yet the mechanisms of iron
uptake in these organisms remain obscure. The sequencing of

marine phytoplankton genomes and community metagenomes
has revealed a plethora of genes of unknown function, many of
which are species-specific (e.g., Rocap, 2003; Venter et al., 2004;
Allen et al., 2008; Frias-Lopez et al., 2008; Maheswari et al., 2010).
Thus it is proposed that phytoplankton survival in iron-starved
waters could rely on novel adaptations encoded by these genes.
Indeed, it was recently found that the newly cultured marine
species Chromera velia appears to lack any of the currently char-
acterized systems of iron uptake (Sutak et al., 2010); while the
halophilic green alga Dunaliella salina was found to utilize a
transferrin, an uptake system well-characterized in mammals, but
otherwise unknown in plants (Paz et al., 2007). This review will
focus on the recent advances in genomics in marine phytoplank-
ton models that have begun to shed light on the adaptations that
allow survival in environments where iron is vanishingly rare.

MARINE CYANOBACTERIA
Cyanobacteria, modern examples of the oldest oxygenic pho-
totrophs, are proposed to have begun the great oxidation event –
the initial oxygenation of the earth’s atmosphere around 2.4 bil-
lion years ago (Kasting and Siefert, 2002). While metagenomic
approaches have begun to reveal the diversity of bacteria in the
oceans (e.g., Venter et al., 2004; Frias-Lopez et al., 2008; Zehr et al.,
2008), the physiological characterization of iron homeostasis in
free-living marine cyanobacteria has been primarily limited to the
diazotrophs Trichodesmium and Crocosphaera watsonii, and the
non-diazotrophs Synechococcus and Prochlorococcus. The genome
sequencing and expression analysis in these genera, combined with
physiological characterization, suggest that several mechanisms to
survive iron limitation exist across marine cyanobacteria species
(Table 1):

1. Iron uptake is likely mediated by the FutA/IdiA-based ABC
transporter system (Figure 2), genes for which have been
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FIGURE 1 | Examples of iron limitation in the ocean as evidenced by

rapid growth of diatoms and other plankton after iron fertilization

experiments. Circle color indicates dominant plankton in resultant blooms:
orange – diatoms; green – picophytoplankton; pink – zooplankton. 1 – IronEx-I,

1993; 2 – IronEx-II, 1995; 3 – SOIREE, 1999; 4 – EisenEx, 2000; 5 – SEEDS-I,
2001; 6 – SERIES, 2002; 7 – SOFeX North, 2002; 8 – SOFeX South, 2002;
9 – SEEDS-II, 2004; 10 – EIFEX, 2004; 11 – SAGE, 2004; 12 – PAPA-SEEDS,
2006; 13 – LOHAFEX, 2009. Adapted from Trick et al. (2010).

found in 28 unicellular cyanobacteria genomes of Prochloro-
coccus, Synechococcus, and Synechocystis (Rivers et al., 2009).
futa/idia is predicted to encode a periplasmic iron binding pro-
tein; futb likely encodes a Fe(III) permease; and futC an ATPase
binding protein. Levels of FutA/IdiA protein increase under
iron starvation in Prochlorococcus (Bibby et al., 2003; Thomp-
son et al., 2011), Trichodesmium sp. IMS 101, Crocosphaera
sp. WH8501, and Synechococcus spp. WH8103 and WH7803
(Webb et al., 2001). Work in freshwater cyanobacteria found
that the futA/idia ortholog futA2 encodes a periplasmic iron
concentrating protein essential for Fe(III) uptake (Katoh et al.,
2001; Badarau et al., 2008). Additionally, freshwater cyanobac-
teria possess FutA1, which also functions in iron uptake (Katoh
et al., 2001) but is found to localize to the thylakoid mem-
brane and plays an unknown role in the protection of PSII
(Michel et al., 1998; Exss-Sonne et al., 2000; Tölle et al., 2002).
The role, if any, of FutA1 in marine cyanobacteria remains
uninvestigated.

2. Iron limitation remodels the machinery of photosynthesis
(Barber et al., 2006). Specifically, the number of photosynthetic
complexes is reduced: iron-rich PSI (12 iron atoms) decreases,
in favor of PSII (three iron atoms), and the number of phyco-
bilisomes (which are synthesized by iron-containing proteins)
decreases.

3. Finally, genome analysis of Prochlorococcus, Synechococcus, Cro-
cosphaera, and Trichodesmium species suggests that nickel
superoxide dismutase (SOD) is utilized in place of iron SOD
to remove reactive oxygen species (ROS; Dufresne et al., 2003;
Palenik et al., 2003; Rocap, 2003; Eitinger, 2004).

NON-DIAZOTROPHS
Prochlorococcus and Synechococcus are the two most prominent
genera of picoplanktonic marine cyanobacteria (Partensky et al.,
1999a). Although they overlap in some ecosystems and may
have participated in lateral gene transfer (Beiko et al., 2005;

Zhaxybayeva et al., 2009), Synechococcus has a broader global dis-
tribution, especially in temperate latitudes and coastal regions,
while Prochlorococcus is more abundant in tropical latitudes and
oligotrophic environments (Zwirglmaier et al., 2008). Synechococ-
cus and Prochlorococcus also differ in their light-harvesting appa-
ratus: Synechococcus utilizes chlorophyll a, while Prochlorococcus
utilizes divinyl chlorophylls a and b (Partensky et al., 1999b). The
sequencing of these genomes is beginning to reveal the diverse
genetic adaptations that allow survival in a range of nutrient
environments.

Prochlorococcus
Prochlorococcus is a very small cyanobacteria (0.5–0.7 μm in diam-
eter), ubiquitous within the latitudes 40˚S to 40˚N, and perhaps
the most abundant photosynthetic organism on earth (Partensky
et al., 1999b). Some natural populations have been shown to be
somewhat iron-starved, as iron addition experiments have resulted
in increased Prochlorococcus cell division, cell size, and chloro-
phyll levels (Cavender-Bares et al., 1999; Mann and Chisholm,
2000), and Prochlorococcus dominates Synechococcus in the iron
limited equatorial Pacific (Campbell et al., 1997). Prochlorococcus
populations, however, have been shown to be much less iron-
starved than larger cells such as diatoms (Partensky et al., 1999b).
The high surface-to-volume ratio of the small Prochlorococcus
cell presumably aids nutrient uptake in these iron limited envi-
ronments (Chisholm, 1992), although the MIT9313 ecotype was
found to be more tolerant of iron limitation than the smaller-
sized MED4 (Thompson et al., 2011). Presumably, this is because
MIT9313 is from waters with 25-fold less total iron levels than
MED4.

Prochlorococcus has a small genome of less than 2000 genes
(Rocap et al., 2002), and the sequences of over a dozen strains
have now been published. Several Prochlorococcus ecotypes possess
iron homeostasis genes missing in some species of Synechococ-
cus (Rocap, 2003), suggesting that they could be environmental
adaptations. These include (Table 1):
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Table 1 | Iron-related genes and proteins mentioned in the review (see text for reference).

ELECTRONTRANSPORT

isiA Novel chlorophyll-binding protein that forms chlorophyll-protein-antenna super-complexes during Fe-starvation

isiB (flavodoxin) Fe-free electron transfer protein that can replace ferrodoxin during Fe-starvation.

petF (ferredoxin) Fe–S cluster based electron transfer protein used in a wide variety of reactions, including electron transfer to NADP+ reductase

during photosynthesis.

petE (plastocyanin) Cu-based electron transfer protein that can replace cytochrome c6 during Fe-starvation; transfers electrons from cytochrome

b6f complex to PSI.

petJ (cytochrome

c6)

Cyanobacterial heme-based electron transport protein in thylakoid lumen downregulated during Fe-starvation; transfers electrons

from cytochrome b6f complex to PSI.

cytochrome cm Cyanobacterial heme-based electron transport protein downregulated during Fe-starvation; may function in PS and respitory

electron transport chains.

cytochrome b6f

complex

Fe-rich electron transfer and proton pumping complex in thylakoid membrane, down-regulated during Fe-starvation; mediates

electron movement from PSII to PSI.

IRONTRANSPORT

Bacterial Fe(III) transport system

idiA/futA/afuA Fe(III) binding protein

idiB/futB Permease

idiC/futC ATPase

Bacterial Fe(II) transport system

feoA Small soluble protein

feoB Predicted Fe(II) permease

feoC Predicted regulator

Divalent metal transporters

ZIP ZRT, IRT-like proteins – transports divalent transistion metals into cytoplasm, e.g., Fe(II), Zn, Mn, Cu(II), Co, Ni, Cd

NRAMP Natural resistance-associated macrophage proteins – transports divalent transistion metals into cytoplasm, e.g., Fe(II), Zn, Mn,

Cu(II), Co, Cd

Oxidase-permease based transport system

FRE Ferric chelate reductase – transfers electrons from NADH via heme to reduce Fe(III)

FET3 Multicopper ferroxidase that oxidizes Fe(II) from ferric reductases and passes Fe(III) to FTR

FTR High affinity iron permease – transports Fe(III) across the plasma membrane, in complex with Fet3

OTHER

Fur Canonical bacterial transcriptional regulator that represses iron uptake genes

FER Ferritin – sequesters and oxidizes Fe(II) in a multimer; found in the plastid and mitochondria of plants, and the cytosol and

mitochondria of human; expression is induced by excess iron, thus mitigating oxidative stress.

Ftn Bacterial ferritin.

Dps DNA-binding proteins from starved cells – bacterial Fe-sequestering protein, that can also bind DNA.

• Flavodoxin (isiB), an iron-free electron transfer protein that
can replace the functionally equivalent Fe–S protein ferredoxin
(petF) under iron limitation (Erdner and Anderson, 1999).

• One to two ferritin genes (Figure 2). Ferritin is an iron storage
protein associated with survival in low iron marine environ-
ments (Marchetti et al., 2009), and prevention of iron-induced
oxidative stress in terrestrial organisms, e.g., Arabidopsis (Ravet
et al., 2009) and humans (Corsi et al., 1998; Orino et al., 2001);

• Two to three fur genes, the canonical bacterial transcriptional
regulator that represses iron uptake genes.

• Candidates for a high affinity iron scavenging system (Rocap
et al., 2002).

The Prochlorococcus core genome lacks Fe–siderophore complex-
related genes, but has components of a bacterial Fe(III) ABC
transporter encoded by idiA/futA/afuA, futB, and futC (Rocap
et al., 2003). However, it remains unclear what iron species

Prochlorococcus is able to transport. MIT9313 is more sensitive to
copper than MED4 and possesses putative iron transport genes
that are missing in MED4, suggesting variation exists in sub-
strate specificity of iron uptake systems between the ecotypes
(Thompson et al., 2011).

Examination of the transcriptional response to iron starva-
tion using qPCR and microarrays found that flavodoxin (isiB)
is upregulated and that ferredoxin (petF) is downregulated (Bibby
et al., 2003; Thompson et al., 2011), while some genes associ-
ated with the iron-rich PSI and cytochrome b6f complexes are
downregulated, presumably allowing the reallocation of iron. To
increase iron uptake, idiA is upregulated (although futB and futC
are constitutively expressed under both iron-sufficiency and defi-
ciency; Thompson et al., 2011). Finally, hli genes are upregulated,
presumably to protect the photosystems from oxidative stress.

Comparisons of different Prochlorococcus “ecotypes” have
found that there are differences in expression of iron-regulated
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FIGURE 2 | Potential iron homeostasis systems in marine

cyanobacteria, as predicted by genomic analyses. At least in part, iron
uptake in cyanobacteria is likely facilitated by the concentration of Fe(III) in
the periplasmic space by FutA, followed by transport into the cytoplasm by
the FutB/FutC ABC transporter system. The presence of FeoA/B genes in

marine cyanobacteria genomes suggests Fe(II) uptake could also occur.
Finally, the Synechococcus sp. PCC 7002 genome contains genes for
siderophore biosynthesis, as well as Fe-siderophore (Fe-S.) uptake via a
TonB dependent receptor system. Within the cell, iron could be
sequestered by bacterioferritin and Dps.

genes, indicating there is natural variation in the iron deficiency
response (Bibby et al., 2003; Thompson et al., 2011). An exam-
ination of MIT9313 and MED4 found that the iron-regulated
transcriptome was enriched with genes from the genomic islands
and genes outside the core genome (Thompson et al., 2011).
It was previously shown that Prochlorococcus ecotypes use gene
islands with nutrient transport and assimilation genes, perhaps
gained by lateral gene transfer, to adapt to the phosphate and
nitrogen availability of their environment (Martiny et al., 2006,
2009), so it is plausible that lateral gene transfer has also pro-
vided adaptations to iron limitation. Another potential adaptation
strategy was identified in two ecotypes from low iron regions of
the Eastern Equatorial Pacific upwelling and the tropical Indian
Ocean through reconstruction of putative genomes of previously
unidentified ecotypes from the 73 metagenomic samples of the
Global Ocean Sampling expedition (Rusch et al., 2010). These two
new genomes had the same assortment of iron uptake and stress
genes as other ecotypes; however, six iron-containing proteins
were absent. Assuming that the absence from these metagenomic
data sets represents the absence from these actual genomes, this
would indicate that the iron quotas are minimized via the loss
of approximately 10% of the genes for iron-based proteins found
in other Prochlorococcus ecotypes (Rusch et al., 2010). The miss-
ing iron-containing proteins include nitrate reductase, and several
electron transfer proteins that are associated with the optimiza-
tion of photosynthetic efficiency: two ferredixins, plastoquinol
oxidase (PTOX), and cytochrome cm (Table 1). It was proposed
that this reduces the maximum photosynthetic efficiency of these

ecotypes, but allows survival in a low iron environment. At the
same time, this likely limits the ability of these ecotypes to respond
and grow rapidly following the appearance of iron, as iron addition
experiments in this part of the ocean show only a minimal response
from Prochlorococcus (Rusch et al., 2010).

Synechococcus
Iron starvation of marine Synechococcus results in accumulation of
glycogen granules, decreased chlorophyll a and thylakoid leaflets,
and decreased protein levels of phycocyanin, allophycocyanin, and
the PSII reaction center D1 peptide PsbA (Sherman and Sherman,
1983; Webb et al., 1994; Michel et al., 2003). The iron quota is
likely minimized by the use of (Table 1):

• The copper-containing plastocyanin in place of the iron–protein
cytochrome c6 for electron transport from cytochrome b6f
complex to PSI.

• A cobalt-dependent ribonucleotide reductase.
• A putative nickel SOD (Rivers et al., 2009).

Flavodoxin (isiB) is present in all Prochlorococcus examined so
far, but absent in nearly two-thirds of the marine Synechococcus
genomes currently available. Finally, the gene isiA is present in the
genomes of three out of the four marine Synechococcus species
from environments that are perhaps iron limited (Bibby et al.,
2009); thus it has been proposed to be an adaptation to low iron
environments, although it is absent from the oligotrophic strain
WH8102 (Dufresne et al., 2008). In the thermophilic freshwater
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species S. elongates, isiA is upregulated in response to iron star-
vation (Park et al., 1999; Bibby et al., 2001a), resulting in the
formation of giant PSI-IsiA-chlorophyll–protein–antenna super-
complexes (Bibby et al., 2001a,b; Boekema et al., 2001). Disruption
of isiA in the freshwater species results in increased photoinhibi-
tion and reduced growth under iron starvation (Michel et al., 1996;
Park et al., 1999), suggesting it is an important component of the
iron deficiency response. Again, the relationship of freshwater IsiA
to that found in marine species has not yet been investigated.

How iron moves through the outer membrane is unknown,
although the Synechococcus genome is heavily enriched with genes
predicted to encode transporters (Palenik et al., 2003). Both a
coastal (PCC 7002) and open ocean (CCMP 1334/WH7803)
species of Synechococcus can utilize a variety of siderophores
(Hutchins et al., 1999), although siderophore uptake genes have
not been identified in the WH8102 genome (Palenik et al.,
2003). However, it was observed that the freshwater cyanobacteria
Synechocystis sp. PCC 6803 utilizes Fe(III)-siderophores through
reduction, and then presumably transport of Fe(II) (Kranzler
et al., 2011). Some coastal marine Synechococcus species produce
siderophores (Wilhelm and Trick, 1994; Ito and Alison, 2005), and
the genome of one of these, PCC 7002, contains genes related to
siderophore biosynthesis and uptake via putative TonB dependent
receptors (Hopkinson and Morel, 2009). However, siderophore
secretion has not been found in oligotrophic Synechococcus, and
siderophore synthesis and uptake genes have not been identified
in WH8102 (Palenik et al., 2003), nor in genomes from other open
ocean strains, including CCMP 1334/WH7803 (Hopkinson and
Morel, 2009).

Further sequencing has revealed variation between genomes
of coastal and open ocean Synechococcus, perhaps represent-
ing environment-specific adaptations for metal homeostasis. The
open ocean is a more constant environment with lower nutri-
ent levels, while wind-driven nutrient upwellings and inputs from
land result in higher total iron concentrations in coastal environ-
ments (Ryther and Kramer, 1961). Appropriately, coastal species
have higher iron quotas (Sunda et al., 1991), and the genome of
the coastal species CC9311 was found to possess more genes for
iron-containing proteins than the open ocean WH8102 (Palenik
et al., 2006). Also unique to the coastal genome was feoA/B, pre-
dicted to encode putative Fe(II) transporters absent from WH8102
(Figure 2). This is of interest because it is proposed that bioavail-
able Fe(II) may be more abundant in the coastal ocean through
photochemical reactions with organic matter (Kuma et al., 1992).
In the CC9311 genome, feoA/B was located in islands of atypi-
cal trinucleotide composition, suggesting it was acquired through
horizontal gene transfer (Palenik et al., 2006). Further examination
of the genomes of several coastal Synechococcus species (WH5701,
RS9917, and CC9311) again found feoB, while it is absent from
Prochlorococcus genomes (Rivers et al., 2009).

The CC9311 genome also contains five copies of a bacterial
ferritin, including one in an island suggestive of horizontal gene
transfer (Palenik et al., 2006). Also present is dpsA (Palenik et al.,
2006; Figure 2), a divergent member of the bacterioferritin super-
family found in most marine Synechococcus genomes, and absent
from most Prochlorococcus genomes (Rivers et al., 2009). In bac-
teria and Archaea, dps genes are often expressed during periods

of oxidative stress, long term nutrient deficiency, and station-
ary growth phase. In freshwater S. elongates species, disruption
of dpsA results in death under iron starvation (Sen et al., 2000).
Although its function remains unclear, DpsA from freshwater
Synechococcus PCC 7942 contains heme and has weak catalase
activity in vitro (Peña and Bullerjahn, 1995), is localized to the
photosynthetic membranes (Durham and Bullerjahn, 2002), and
can bind chromosomal DNA in vitro (Peña et al., 1995).

DIAZOTROPHS
Nitrogen fixation by diazotrophs allows growth in nitrogen starved
waters; however this process is iron intensive, as the nitroge-
nase protein complex is composed of the iron-rich proteins NifH
(four iron atoms per homodimer) and NifDK (15 iron atoms
per homodimer; Rubio and Ludden, 2008). Biological nitro-
gen fixation in cyanobacteria is believed to have evolved in the
anoxic ocean where Fe(II) was soluble and thus more bioavailable
(Falkowski, 1997). Consequently, the scarcity of readily available
iron in the modern ocean limits nitrogen fixation (Berman-Frank
et al., 2001; Moore et al., 2009). At the same time, oxygenic
photosynthesis and nitrogen fixation must be separated due to
the extreme sensitivity of the nitrogenase Fe–S clusters to oxy-
gen (Fay, 1992). Thus, diazotrophs must balance nitrogen and
iron metabolism, both in terms of iron utilization, and the spa-
tial and temporal arrangement of these incompatible reactions.
Metagenomic analysis of oligotrophic seawater identified perhaps
the most extreme adaptation to this dilemma in the ostensible
absence of PSII genes from the genome of UCYN-A, an uncul-
tured nitrogen-fixing cyanobacteria (Zehr et al., 2008; Tripp et al.,
2010).

Trichodesmium
Trichodesmium is a nitrogen-fixing,filamentous,non-heterocystous
cyanobacteria. Abundant in tropical and subtropical surface
waters, Trichodesmium forms blooms thousands of kilometers
wide and completes more marine nitrogen fixation than any other
organism (Capone et al., 1997). However, the combination of
iron-rich photosynthetic complexes and nitrogenase results in
higher intracellular iron quotas for Trichodesmium than other
phytoplankton (Kustka et al., 2003a). Iron limitation in T. ery-
thraeum IMS101 results in decreased growth, filament length, and
chlorophyll levels, in addition to decreased nitrogen fixation and
photosynthetic efficiency (Shi et al., 2007; Küpper et al., 2008).
Similar changes were seen in four other Trichodesmium species
(Chappell and Webb, 2010). A unique adaptation to this high iron
quota is found in puff colonies of Trichodesmium collected from
the Red Sea (although not in laboratory cultures), which actively
acquire desert dust and utilize the iron (Rubin et al., 2011). Striking
movies show that dust particles quickly move along the cell sur-
face of the trichome from the colony periphery to the core, where
dust and oxides are actively dissolved by an unknown mechanism.
As dust inputs are correlated with Trichodesmium abundance, the
ability to directly and efficiently utilize wind-blown desert dust
could fuel the giant blooms.

In the iron deficiency response, a “hierarchy of iron demand”
is proposed to exist in Trichodesmium, with mRNA associated
with nitrogen fixation being downregulated more quickly than
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photosynthesis genes (Shi et al., 2007). In terms of upregulation,
idiA and isiA expression were induced in response to iron starva-
tion (Webb et al., 2001; Küpper et al., 2008), in addition to isiB
(flavodoxin) and feoB (Chappell and Webb, 2010). The genomes
of Trichodesmium species also contain multiple copies for the iron
uptake regulator fur, and genes for bacterial ferritin and dps (Chap-
pell and Webb, 2010). Additionally, the presence of TonB related
genes suggests that Trichodesmium may have the ability to actively
transport siderophores.

Crocosphaera watsonii
The unicellular diazotroph C. watsonii is found in the tropical and
subtropical open ocean. Intracellular iron levels change through-
out the day, increasing at night with the expression of nitrogenase
(Tuit et al., 2004). Analysis of the C. watsonii transcriptomes by
qPCR revealed a temporal pattern to iron demand, correlating
with increased expression of flavodoxin and the iron homeostasis
genes feoAB, and fur in the evening (Shi et al., 2009). This sug-
gests coordination with nitrogenase activity. Indeed, one feoAB
operon is found within the nif cluster. A similar increase in evening
expression of these iron-related genes is also seen in the unicellular
diazotrophic cyanobacteria Cyanothece (Stockel et al., 2008).

Absolute quantitation of the protein levels (using selected
reaction monitoring mass spectrometry with isotopically labeled
peptide standards) across the diel cycle found that the synthe-
sis of photosynthesis related proteins peaks in the day, and that
the proteins are degraded as evening approaches. Conversely, the
nitrogenase complex proteins are absent in the day and synthe-
sized at night (Saito et al., 2011). At the same time, bacterioferritin
protein levels cycle, with peaks matching both the maximum iron
utilization points for photosynthesis and nitrogen fixation. This
could suggest a role in handling the iron being transferred between
the two systems. Thus, it is proposed that by shifting iron from
photosynthesis in the day to nitrogen fixation at night, C. wat-
sonii minimizes its iron quota and creates temporal separation of
the two incompatible systems. Indeed, C. watsonii is predicted to
have half the cellular iron concentration (relative to carbon) as
Trichodesmium, which fixes nitrogen during the day (Kustka et al.,
2003b; Saito et al., 2011).

EUKARYOTES
As described above for cyanobacteria, metagenomic approaches
are uncovering a wealth of unknown marine eukaryotic phyto-
plankton species. In particular, alveolates and stramenopiles of
great diversity and novelty are detected in almost all metagenome
surveys (Massana and Pedrós-Alió, 2008). Community interac-
tions may also be relevant to iron homeostasis. For example, a
potential alga–bacteria mutualism in iron uptake between the
dinoflagellate Scrippsiella trochoidea and Marinobacter could be
representative of a more common iron uptake strategy among
other phytoplankton (Amin et al., 2009). At the other end of
the size spectrum, iron-rich whale feces also appears to serve as
an important source of iron for phytoplankton in the Southern
Ocean (Lavery et al., 2010). Additionally, the role of zooplank-
ton grazing during iron fertilization experiments is of particular
interest (Figure 1), as it may prevent the long term sequestration
of carbon on the seafloor by diatoms (Bishop and Wood, 2009;

Mazzocchi et al., 2009). The haptophyte Phaeocystis also appears
to play an important role in blooms from polar iron fertiliza-
tion experiments (Pollard et al., 2009). However, relatively little is
known about the physiologies of many of these organisms, and
the genome sequences of most of them are not yet available.

Most progress to date has been made in understanding the
genetic underpinnings of iron homeostasis in green algae and
diatoms. Significantly, genome and transcriptome data, combined
with the development of stable transformants to overexpress and
knockdown genes in diatoms (Poulsen and Kröger, 2005; Siaut
et al., 2007; De Riso et al., 2009) and the green alga Ostreococcus
tauri (Corellou et al., 2009) will likely accelerate our understand-
ing of iron homeostasis in eukaryotic phytoplankton through
functional genetics.

OSTREOCOCCUS
Ostreococcus are marine green algae belonging to the prasino-
phytes, and are described as the smallest free-living eukaryotes.
Ostreococcus species possess very small, dense nuclear genomes of
12.5–13.0 Mbp. For comparison, the diatom Phaeodactylum tricor-
nutum genome is 27.4 Mbp, and the Chlamydomonas reinhardtii
genome is 120 Mbp. The two species of Ostreococcus that have
been sequenced are from contrasting environments: O. lucimar-
inus from the open coastal waters of the Pacific Ocean (Worden
et al., 2004); and O. tauri from a more nutrient-replete oyster
production lagoon on the Mediterranean coast of France. Trans-
portDB (www.membranetransport.org) predicts the presence of
genes for divalent metal transporters ZIP and NRAMP (Ren et al.,
2006; Table 1; Figure 3). Genes with similarity to prokaryotic
siderophore uptake are present, and O. lucimarinus has genes that
could represent a siderophore biosynthesis pathway (Palenik et al.,
2007). Much like other marine phytoplankton, the iron quota is
minimized: iron-free plastocyanin substitutes for cytochrome c6;
flavodoxin is present; and Ni–SOD, Cu/Zn–SOD, and Mn–SODs
appear to replace Fe–SOD (Palenik et al., 2007). Transcript levels
of ferritin and a ferredoxin family protein in O. tauri are clock reg-
ulated, both peaking at dusk (Monnier et al., 2010). It would thus
be worthwhile to investigate the relationship between free iron and
the recently identified O. tauri redox clock (O’Neill et al., 2011).

There are species-specific differences in the repertoire of iron
homeostasis genes, although it is unclear how these relate to the
different nutrient profiles of their respective environments. The O.
tauri genome has genes that could encode a multi-copper oxidase
and two putative ferric reductases lacking in O. lucimarinus, while
O. lucimarinus has two copies of ferritin genes and O. tauri has
only one (Palenik et al., 2007; Jancek et al., 2008).

MARINE DIATOMS
Diatoms, which carry out nearly 20% of photosynthesis on earth
(Tréguer et al., 1995), are often found in the most iron limited
regions of the ocean (Moore et al., 2001). Iron fertilization exper-
iments often result in blooms dominated by diatoms, suggesting
diatoms have adaptations that allow survival in iron limited waters
and a subsequent rapid multiplication when iron becomes avail-
able. The recent metatranscriptomic analysis of iron fertilization
bottle experiments found that diatoms possess a unique transcrip-
tional response to the sudden appearance of iron (Marchetti et al.,
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FIGURE 3 | Potential iron homeostasis systems in marine diatoms,

as predicted by genomic analyses. Iron-regulated ferric reductase
genes have been identified in T. pseudonana and P. tricornutum. These
could reduce Fe(III) and Fe bound by siderophores (Fe–S), as could
photoreduction (hv ). Fe(II) could then enter the cytoplasm through
iron-regulated transporters: ZIP in P. tricornutum, and NRAMP in T.
pseudonana (although if TpNRAMP is localized to the tonoplast, it could

also serve to release iron from the vacuole during iron starvation). In
T. pseudonana, extracellular Fe(II) could also be reoxidized and
transported through a yeast-like Fe(III) uptake system, utilizing the
iron-regulated multi-copper ferroxidase (TpFET3) and Fe(III) permeases
(TpFTR1 and TpFTR2). If ferritin is present (it is present in some
pennate diatom genomes, but not in T. pseudonana), it can store iron,
likely in the plastid.

2012). While other phytoplankton in the community increase
gene expression for a broad array of iron–proteins like ferre-
doxin, cytochrome c6, and Fe–SOD, diatoms appear to prioritize
expression of genes related to photosynthesis and nitrate uptake,
reduction, and assimilation. Ostensibly, this strategy allows rapid
diatom growth and bloom domination.

Representatives of the pennate and centric diatom lineages,
Thalassiosira pseudonana and P. tricornutum, respectively, have
been sequenced, and extensive molecular biology tools have been
developed. Additionally, the publication of the polar pennate
diatom Fragilariopsis cylindrus genome is imminent, and the
bloom-forming pennate Pseudo-nitzschia multiseries is currently
being sequenced. Despite these resources, predicting how diatom
iron homeostasis systems function is complicated by the preva-
lence of unique genes of unknown function and by horizontal
gene transfer. Currently, less than 50% of diatom genes have a
putative function (Bowler et al., 2008; Maheswari et al., 2010),
and the nuclear genome of P. tricornutum contains at least 587
genes predicted to be of bacterial origin (of which, around 60%
are shared with T. pseudonana; Bowler et al., 2008).

Thalassiosira pseudonana
Thalassiosira pseudonana was the first eukaryotic marine phyto-
plankton sequenced. T. pseudonana has a small genome and has
served as a model for marine centric diatom physiology experi-
ments. T. pseudonana is often described as a marine coastal diatom,
although recent phylogenetic analysis suggests T. pseudonana is

more closely related to the freshwater and marine diatom genus
Cyclotella (Alverson et al., 2011). Consequently, it was postulated
that T. pseudonana may be a freshwater diatom that is adapted to
salinity, rather than a marine Thalassiosira species (Alverson et al.,
2011).

Iron limitation of T. pseudonana results in:

• Decreased growth (Sunda and Huntsman, 1995) and photosyn-
thetic efficiency (Bidle and Bender, 2007).

• Increased cell aggregation and silica deposition on the cell wall
(Mock et al., 2008), with the relative proportion of iron in the
cell wall increasing (Ellwood and Hunter, 2000).

• Increased oxidative stress and caspase activity, ultimately result-
ing in programmed cell death (Bidle and Bender, 2007; Thama-
trakoln et al., 2011).

The sequencing of T. pseudonana revealed possible components of
a yeast-like Fe(III) uptake system, including a multi-copper ferrox-
idase (TpFET3) and two iron permeases (TpFTR1 and TpFTR2;
Table 1; Figure 3; Armbrust et al., 2004). Additionally, there are
at least two putative ferric reductases (TpFRE1 and TpFRE2) and
a putative divalent metal transporter (TpNRAMP), which could
suggest a second, reduction-based uptake system, similar to those
in Arabidopsis and humans. A similar combination of systems has
been predicted to exist in C. reinhardtii (Merchant et al., 2006).

Transcript levels of FRE1, FTR1, FTR2, and NRAMP increase
in response to iron limitation (Kustka et al., 2007), as does the
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transcript for flavodoxin, and those of several genes associated
with oxidative stress and programmed cell death (Thamatrakoln
et al., 2011). The upregulation of the ferric reductases is of addi-
tional interest, as T. pseudonana, T. weissflogii, and T. oceanica can
utilize iron–siderophores via reduction (Hutchins et al., 1999; Mal-
donado and Price, 2001; Shaked et al., 2005). Finally, microarray
analysis found that more than a third of iron-regulated genes were
genes of unknown function and hypothetical proteins (Thama-
trakoln et al., 2011), suggesting the existence of novel adapta-
tions to iron starvation. Of the genes upregulated in response to
iron limitation, 84 were also upregulated under silicon limitation,
providing further evidence that the iron and silicon starvation
pathways are interconnected, particularly at the point of cell wall
synthesis (Mock et al., 2008). It was thus proposed that iron is
incorporated with silicon into the cell wall, or that iron–proteins
could play a role in cell wall deposition (Mock et al., 2008). X-ray
fluorescence tomography of the diatom Cyclotella meneghiniana
revealed distinct iron bands girding the frustules, supporting the
idea that iron has a specialized function in the cell wall (de Jonge
et al., 2010). Unfortunately, it is difficult to draw conclusions for T.
pseudonana from this interesting result, as the sample tested was a
desiccated, freshwater diatom.

Thalassiosira oceanica
Relative to other Thalassiosira species, the open ocean species
T. oceanica is more adapted to iron limitation, growing faster
under these conditions than the coastal species T. pseudonana
(Sunda et al., 1991; Maldonado and Price, 1996) and T. weiss-
flogii (Strzepek and Harrison, 2004). Biochemical measurements
found that a novel photosynthetic architecture minimizes the iron
quota of T. oceanica, decreasing the concentrations of the iron-
rich PSI (12 iron atoms) and cytochrome b6f complexes (six iron
atoms) by fivefold and sevenfold, respectively (Strzepek and Har-
rison, 2004). Additionally, the cytochrome c6 complex (one iron
atom) is replaced by the copper-protein plastocyanin – a protein
not found in T. weissflogii nor T. pseudonana (Peers and Price,
2006; Table 1). While photosynthetic efficiency of T. oceanica is
not altered under normal light conditions, under high light it is
more susceptible to photoinhibition and photosynthesis becomes
nearly half as efficient as in T. weissflogii. The utilization of plasto-
cyanin makes T. oceanica much more sensitive to copper limitation
than T. weissflogii (Peers and Price, 2006). Thus, it is proposed that
these adaptations to its low iron environment impair adjustment
to rapid fluctuations in light intensity and copper limitation –
environmental characteristics less common in the open ocean.
Further adaptations to iron starvation likely exist in T. oceanica,
because during iron limitation it is estimated that 100% of cellular
iron is utilized by the electron transport carriers of photosynthe-
sis, compared to only 50% in T. weissflogii (Strzepek and Harrison,
2004). The fate of the mitochondrial electron transport chain and
other iron-containing proteins in iron-starved T. oceanica is worth
investigating.

Finally, sequencing of the T. oceanica chloroplast genome
revealed that the ferredoxin gene (petF) appears to have been
transferred from the chloroplast genome to the nuclear genome
(Lommer et al., 2010). Because the ferredoxin gene remains in
the T. pseudonana and T. weissflogii chloroplast genomes, it is
proposed that this change could alter regulation of ferredoxin

expression under iron limitation, presumably contributing to
the observed tolerance to iron limitation (Lommer et al., 2010);
although under iron limitation the ratio of ferredoxin to flavo-
doxin in T. oceanica is not significantly lower than in T. weissflogii
(Strzepek and Harrison, 2004).

Phaeodactylum tricornutum
Phaeodactylum tricornutum can grow at iron levels 50 times lower
than T. pseudonana (Kustka et al., 2007). P. tricornutum appears to
use a fundamentally different iron uptake system than T. pseudo-
nana, raising the possibility that it could be more effective at iron
uptake under limiting conditions. The ferroxidase and iron per-
meases indicative of a yeast-like system in T. pseudonana have not
been identified in the P. tricornutum genome (Kustka et al., 2007;
Bowler et al., 2008). Examination of genes upregulated in response
to iron starvation using expressed sequenced tags revealed two fer-
ric reductases, PtFRE1 and PtFRE2(Allen et al., 2008; Figure 3).
The predicted PtFRE2 protein appears highly similar to the root
epidermal ferric reductase required for iron uptake in Arabidopsis,
AtFRO2 (Robinson et al., 1999; Bowler et al., 2008). Also highly
upregulated is a putative ZIP family transporter that could serve
to transport Fe(II) (Allen et al., 2008), as AtIRT1 does in Arabidop-
sis (Palmer and Guerinot, 2009). Finally, the presence of PtFBP,
a gene orthologous to the bacterial ferrichrome binding pro-
tein FhuD, raises the possibility of iron–siderophore utilization,
perhaps through the scavenging of cyanobacteria siderophores.
FRE and FBP may thus play a role in the ability of P. tri-
cornutum to utilize iron–siderophore complexes, both through
reduction (Figure 3) and the apparent uptake of intact complexes
(Soria-Dengg and Horstmann, 1995).

At the same time, iron limitation results in a decrease in tran-
scripts associated with iron intensive processes like photosynthesis,
mitochondrial electron transport, and nitrate assimilation (Allen
et al., 2008). At the protein level, the ratio of PSII to PSI increases,
cytochrome b6f and cytochrome c6 proteins decrease (Allen et al.,
2008), and the activity of the iron-rich mitochondrial electron
chain decreases (Kudo et al., 2000). The upregulation of transcript
encoding the mitochondrial alternative oxidase (AOX) in response
to iron limitation is proposed to mitigate the ROS presumably
generated by iron-compromised electron transport chains (Allen
et al., 2008). About 32% of genes regulated by iron in P. tricornutum
have no ortholog in T. pseudonana, and iron starvation upregulates
expression of several unique gene clusters in P. tricornutum (Allen
et al., 2008). Of these genes, all but FRE2 are present in P. tricornu-
tum but not T. pseudonana, and many are of unknown function.
Indeed, the most highly expressed transcript under iron limitation,
ISIP1, encodes a predicted protein of unknown function found in
metatranscriptomic samples from iron limited waters (Marchetti
et al., 2012), and with no ortholog in T. pseudonana (Allen et al.,
2008). And like T. pseudonana, there is a subset of silicon starva-
tion regulated genes that are also regulated by iron (38 out of 223
Si-sensitive genes), although there is no apparent overlap between
the P. tricornutum and T. pseudonana subsets (Sapriel et al., 2009).

Pseudo-nitzschia spp.
Pseudo-nitzschia is a ubiquitous genus of pennate diatom,
frequently dominating blooms in iron addition experiments
(Hutchins and Bruland, 1998; de Baar, 2005; Trick et al., 2010).
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Among Pseudo-nitzschia species, the oceanic P. granii is more
tolerant of iron limitation than the coastal species P. multiseries
(Marchetti et al., 2009). P. granii is also more tolerant to iron
starvation than T. oceanica, presumably because P. granii utilizes
ferritin (Figure 3) to store iron during times of iron availability.
Ferritin has not been detected in T. oceanica (Marchetti et al.,
2009) and is absent from the T. pseudonana genome (Armbrust
et al., 2004).

In addition to the utilization of ferritin, Pseudo-nitzschia is of
interest because it is a eukaryotic marine phytoplankton which
secretes the phytosiderophore-like compound domoic acid (DA),
which is also a neurotoxin, and is causative of wildlife death and
amnesic shellfish poisoning in humans. DA binds iron and cop-
per (Rue and Bruland, 2001), and is structurally similar to the
plant siderophore mugineic acid, which is secreted into soil by
graminaceous plants. Because of its similarity to mugineic acid,
it is proposed that DA could facilitate the extraction of iron from
terrestrial sediments found in coastal waters (Rue and Bruland,
2001). The addition of exogenous DA to natural seawater samples
increases iron uptake and growth of Pseudo-nitzschia (Maldon-
ado et al., 2002; Wells et al., 2005), suggesting it is part of a
Pseudo-nitzschia specific iron uptake system.

Domoic acid production has been observed to be induced
by both metal availability and limitation: elevated copper (Rue
and Bruland, 2001), copper limitation (Wells et al., 2005), iron
limitation (Rue and Bruland, 2001), and iron fertilization (Sil-
ver et al., 2010; Trick et al., 2010). This suggests DA plays a role
in both metal uptake during rapidly growing blooms and sur-
vival during limitation. DA binds iron with a low affinity, but
the concentrations of DA in naturally occurring blooms are pre-
dicted to be sufficient to facilitate iron uptake (Rue and Bruland,
2001). The ability to monopolize iron availability via a species-
specific phytosiderophore could thus explain the dominance of
Pseudo-nitzschia in blooms.

CONCLUSION AND QUESTIONS FOR FUTURE RESEARCH
Other marine phytoplankton species have been sequenced (e.g.,
Emiliania huxleyi, F. cylindrus), and ever more will be. Presum-
ably, transcriptome level analysis similar to those described above
will be performed to determine which genes play a role in iron
homeostasis. Additionally, metagenomic transcriptional analysis
could be further applied to both classical bottle enrichment exper-
iments (Marchetti et al., 2012), and large-scale iron fertilization
experiments to elucidate the expression changes that underlie iron
utilization during bloom formation.

Genome level studies have offered hints about the genes respon-
sible for iron acquisition. This has allowed the leveraging of the
extensive research done in organisms like Arabidopsis, Chlamy-
domonas, yeast, and humans, to identify and predict the function
of marine orthologs. Nevertheless, the mechanisms of iron uptake
utilized by eukaryotic marine phytoplankton ultimately remain
unclear. Predicting which genes comprise the marine iron uptake
systems using the well-characterized terrestrial models is compli-
cated by the unique nature of the ocean environment, both in
terms of iron–ligand chemistry (Volker and Wolf-Gladrow, 1999;
Morel, 2008; Hassler et al., 2011), and in terms of the convo-
luted evolutionary path of organisms like diatoms (Moustafa et al.,
2009).

A more daunting gap in our understanding of iron homeostasis
is the abundance of genes of unknown function. These are often
species-specific, and found to comprise large portions of the ever
growing number of genomic and metagenomic data sets. This is
further complicated by the inability to cultivate and genetically
transform many of the new species that metagenomic surveys are
uncovering (e.g., UCYN-A, with its apparent lack of PSII genes;
Zehr et al., 2008). Additionally, the absence of canonical genes does
not necessarily prove the absence of a pathway, as was recently
demonstrated in freshwater cyanobacteria. Since the late 1960s,
cyanobacteria were believed to lack a complete TCA cycle, as the 2-
oxoglutarate dehydrogenase protein was undetected and the gene
was missing from freshwater and marine cyanobacteria genomes.
However, the recent functional characterization of candidate genes
from Synechococcus sp. PCC 7002 identified two enzymes that per-
form the same role as 2-oxoglutarate dehydrogenase, completing
the TCA cycle (Zhang and Bryant, 2011). It also appears that fur-
ther divergence is possible, as these two genes are present in all
cyanobacteria genomes except those of marine Synechococcus and
Prochlorococcus.

Thus, functional characterization of putative uptake genes in
model organisms is required to establish even the most basic mech-
anisms for iron transport in marine phytoplankton, while genetic
screening (e.g., mutagenesis, expression of gene libraries derived
from marine microorganisms in heterologous systems, etc.) could
be utilized to identify novel iron homeostasis systems that have
evolved in iron limited ocean environments.
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