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Development of an safe and efficient in vivo gene delivery method is indispensable for

molecular biology research and the progress in the following gene therapy. Over the past

few years, hydrodynamic gene delivery (HGD) with naked DNA has drawn increasing

interest in both research and potential clinic applications due to its high efficiency and low

risk in triggering immune responses and carcinogenesis in comparison to viral vectors.

This method, involving intravenous injection (i.v.) of massive DNA in a short duration,

gives a transient but high in vivo gene expression especially in the liver of small animals.

In addition to DNA, it has also been shown to deliver other substance such as RNA,

proteins, synthetic small compounds and even viruses in vivo. Given its ability to robustly

mimic in vivo hepatitis B virus (HBV) production in liver, HGD has become a fundamental

and important technology on HBV studies in our group and many other groups. Recently,

there have been interesting reports about the applications and further improvement of

this technology in other liver research. Here, we review the principle, safety, current

application and development of hydrodynamic delivery in liver disease studies, and

discuss its future prospects, clinical potential and challenges.

Keywords: hydrodynamic injection, gene delivery, gene therapy, liver diseases, HBV

INTRODUCTION

Gene over-expression or knockdown in cells or tissues is the primarymeans for gene function study
and even gene therapy. It involves various approaches, including viral vectors, lipids, polymers,
microinjection, electroporation and so on. Viral vector-mediated gene delivery exhibits the most
effective therapeutic results, including adenovirus (Pjechova et al., 2015), adeno-associated virus
(Duan, 2016), retrovirus (Doi and Takeuchi, 2015; Vargas et al., 2016), lentivirus (Levy et al., 2015),
herpes virus (Wang and Liao, 2017), Epstein-Barr virus (Li et al., 2016) and so on (Oehmig et al.,
2004; Nayerossadat et al., 2012; Kotterman et al., 2015; Lukashev and Zamyatnin, 2016). However,
its application in vivo as a standard treatment is still controversial, due to the lethal immune
response (Reid et al., 2002) and carcinogenesis (Hacein-Bey-Abina et al., 2003) caused by the virus
vector. In contrast, other gene delivery methods that do not involve viruses are being extensively
studied for use of clinical application. The most popular method is plasmid DNA (pDNA)-based
gene delivery methods, due to its advantage in safety and versatility in vivo. However, its gene
transfer efficiency is much lower and restricted to injection site which limits its applications.
To achieve better gene-delivery efficiency while maintaining safety features, hydrodynamic gene
delivery (HGD), a new gene delivery method has been developed in recent years.
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HGD generated hydrodynamic pressure by rapid injection
of large doses of DNA liquid into the incompressible blood in
circulation, which then permeated the parenchymal cells to allow
DNA entry. Hydrodynamics-mediated non-viral vector delivery,
due to its high efficiency of gene transfer, significantly reduces
DNA degradation by serum and cellular DNase reported in the
conventional intravenous injection. Thus, it has been widely
employed to facilitate the intracellular delivery of DNA, RNA
(Giladi et al., 2003; Kang et al., 2010), proteins (Zhang et al.,
2004), polymers (Viegas et al., 2011), and other compounds
(Zhang et al., 2004). Recently, HGD has also been used to deliver
viral vectors for improving the transduction efficiency (Condiotti
et al., 2004; Arad et al., 2005; Brunetti-Pierri et al., 2005; Fujita
et al., 2006).

Gene expression in vivo led by HGD with pDNA has been
shown to be long-lasting (∼4 weeks) (Zhang et al., 2000; Miao
et al., 2001; Stoll et al., 2001; Yew et al., 2001; Alino et al., 2003;
Chen et al., 2003; Score et al., 2006) and can reach therapeutic
levels (Kishida et al., 2003; Ye et al., 2003; Held et al., 2005).
Ninety percent of products of transgenes by HGD are mainly
found in the liver which makes HGD more preferential for liver
specific studies. Low levels of expression can be also detected
in the spleen, heart, kidneys and lungs (Liu et al., 1999; Hamar
et al., 2004). HGD has recently been shown to mediate a systemic
human cytokine expression in humanized mouse model. A single
injection of cytokine expressing plasmids by this procedure led
to transgene for more than a month which improved human
hematopoietic cell functions in all the organs (Chen et al., 2009,
2015; Li et al., 2013; Yong et al., 2016). Despite a few applications
in systemic soluble factor expression, HGD is mainly reported
for gene delivery into the liver and further study of hepatotropic
diseases.

The liver, as one of the largest metabolic organs, is a target of
various viral infections. Meanwhile, it is also an immune tolerant
organ responsible for the synthesis of complement components,
acute phase proteins and cytokines (Bandyopadhyay et al., 2016;
Gao, 2016; Grakoui and Crispe, 2016; Horst et al., 2016; Peng
et al., 2016; Robinson et al., 2016; Zhou et al., 2016). Therefore,
the disorder of these gene products, either deficiency or over-
expression, can result in anomaly of immune regulation and
the occurrence of liver disease (Ju and Tacke, 2016). As a
liver-targeted gene delivery method, HGD shines the study of
liver diseases. In the following summary, we first review the
principle, efficiency and safety of the experimental procedures
of HGD. Subsequently, the current various applications of HGD
in liver disease study as well as the future perspectives of the
hydrodynamics-based procedure is discussed.

THE PRINCIPLE AND SAFETY OF THE
LIVER TARGETED GENE DELIVERY
METHOD

A successful HGD requires a rapid (5–7 s) intravenous injection
of solution in a high dose (7–10% of body weight) (Liu et al.,
1999). The large amount of solution rapidly flows into the vena
cava, and then reflux, because it cannot be rapidly pumped

by the heart. The liver collects most of the reflux fluid and
takes up the bulk of the injected pDNA solution, with larger
vessels to the central vessel than other organs. The accompanying
increased pressure enhances permeability of parenchymal cells
(hepatocytes in liver) and transiently generates numbers of
membrane pores to allow pDNA entry and gene expression
(Zhang et al., 2004).

Green fluorescence protein (GFP) has been used to localize
the expression of transgenes by HGD. Abundant GFP expression
was mainly found in liver after GFP expression plasmid delivery
by HGD, while the signals in other organs were very weak
(Crespo et al., 2005). This confirms HGD mainly results in
expression in the liver. Actually it has been calculated that∼40%
of hepatocytes are transfected when a dose of 10µg plasmid DNA
is administrated into mouse tail vein (Liu et al., 1999). Similar
distribution of expression and transfection efficiency were also
observed in chickens (Hen et al., 2006).

Various substances can be delivered by HGD, and it is
considered as a pressure-mediated delivery method, without
involvement of receptor-ligand interaction. Concerning HGD’s
safety, it has been shown that the transient high pressure
caused by hydrodynamic injection results in a temporary cardiac
dysfunction, a sharp rise of venous pressure, liver congestion,
and elevation of aminotransferase (ALT). However, the transient
abnormal ALT usually recovers within 2–3 days post-injection
with no signs of hepatic failure (Zhang et al., 2004). In general,
the negative impact of hydrodynamic injection to the liver very
little and well tolerated. Nevertheless, HGD will not be directly
applied to the human body in this way. Dogs, pigs and other large
animals are being used as the main animal models of the pre-
clinical trials to try HGD’s optimal delivery method (Kamimura
et al., 2014; Stoller et al., 2015; Yokoo et al., 2015; Hyland et al.,
2017).

REGULATION OF GENE EXPRESSION IN
LIVER BY HGD

HGD, as an efficient means of regulating gene and protein
expression in liver, has become an important means of studying
the relevance of proteins of interest to various liver diseases, as
well as some systemic diseases that can be treated by altering
gene expression in liver. Gene regulation, including gene over-
expression and/or gene knock-down, can not only be used for
gene function study, but also as a means of gene therapy for liver
diseases.

Gene Over-Expression in Liver
As one of the most effective methods for in vivo delivery of
pDNA, HGD was first widely employed for liver targeted gene
over-expression. Among the various genes of interests, cytokines
are usually over-expressed by HGD in gene therapy application.
Therapeutic effect of interferon (IFN)-γ by HGD of pDNA
has been demonstrated in murine liver and lung metastasis
models (Kobayashi et al., 2002). IL-22 over-expression in the liver
induced by HGD of IL-22 cDNA expressing plasmid protected
the liver from various toxins induced damage, which indicates
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that IL-22 has the therapeutic potential in the treatment of
human liver disease (Pan et al., 2004). Hydrodynamic injection
of IL-15 expressing plasmid (pLIVE-IL-15) induced sustained
high expression of IL-15 in serum and liver of mice, and broke
HBV-induced immunotolerance (Yin et al., 2012). In addition,
many other secreted proteins have been introduced in liver by
this effective method, for determination of their functions and
evaluation of their therapeutic activities, including IL-10 (Hong
et al., 2003), IL-21 (Brady et al., 2004), hepatocyte growth factor
(Yang et al., 2001), human growth hormone (Sondergaard et al.,
2003), human factor IX (Miao et al., 2001; Ye et al., 2003), activin
(Chabicovsky et al., 2003), human alpha-1 antitrypsin (Zhang
et al., 2000), Erythropoietin receptor-IgG1Fc fusion protein
(Maruyama et al., 2004).

However, a number of reports have recently shown that
multiple genes co-expression may be more effective than single
gene over-expression. Over-expression of IL-12 or GM-CSF
alone induced by hydrodynamic injection are able to produce
strong antitumor cellular immunity, while combined HGD of the
two cytokine yielded better effect and achievedmore pronounced
therapeutic efficacy (Wang et al., 2001).

Gene Knock-Down in Liver
In addition to gene over-expression, HGD has also been reported
as a powerful tool for gene knockdown. Specific gene knockdown
by RNA interference was performed mainly in two ways, one
is siRNA direct transfection, the other is short hairpin RNA
(shRNA) carrying DNA vector transfection. The latter generated
siRNA in vivo. However, due to the lack of efficient delivery
methods for siRNA or shRNA vector, RNA interference is limited
in vivo.

Researchers silenced in vivo Fas expression via hydrodynamic
injection of synthesized siRNAs specific for Fas, and protected
mice from renal ischemia-reperfusion injury or fulminant
hepatitis (Song et al., 2003; Hamar et al., 2004). A similar
strategy was applied to suppress endogenous mdr1a/1b gene
expression, an efflux pump for various drugs, by HGD of
synthetic siRNA or siRNA-expressing pDNA (Matsui et al.,
2005). Researcher also used the hydrodynamic approach to
co-deliver an optimized siRNA expression construct together
with its target reporter gene to demonstrate long-term RNA
interference in vivo (Chu et al., 2005; Wooddell et al., 2005).
Despite all these successful studies of in vivo gene knock-down by
HGD of siRNA, the RNAi efficiency still remained less optimal.
Recently, siRNA-expressing adenoviral vectors were applied by
hydrodynamic technique to significantly improve the knock-
down effects of gene expression in the murine liver. In this
study, adenovirus bearing small hairpin RNA (shRNA) targeting
CX3CL1 markedly inhibited CXCL1 expression in the infected
livers and reduced adenovirus-induced liver injury (Chen Q.
et al., 2008). Concurrently, we have also successfully developed
a single vector to target multiple genes at one time: a plasmid
containing three shRNA sequences against different NKG2D
ligands, which efficiently suppressed NK cell-mediated fulminant
hepatitis in mice when delivered by HGD (Huang et al., 2013).
Small interfering RNA (siRNA) or siRNA-expressing vectors are
the most commonly used tools by HGD to reduce specific gene

expression in liver and even intervene viral infection and cancer
progression.

Simultaneous Gene Over-Expression and
Knock-Down in Liver
Along with the development of new RNA interference constructs,
hydrodynamic injection mediated RNA interference becomes
more efficient. Interest has been raised to develop new
vectors with more multifunctions. A plasmid vector using
an effective liver cell-specific promoter (α-foetoprotein (AFP)
enhancer/albumin promoter) was developed to simultaneously
over-express and knock-down different genes in a liver-directed
manner. This vector has been shown to simultaneous over-
expression of human IL-10 and knock-down of endogenous
CCL5 and CX3CL1 highly attenuated adenovirus-mediated acute
liver injury by inhibiting NK cell recruitment and activation
and inflammatory cytokines production (Geng et al., 2013). The
escalation and optimization of pDNA vector may reduce the
insecurity of HGD by its versatility, which may accelerate the
clinical application of HGD to a certain extent.

APPLICATIONS OF HGD IN LIVER GENE
THERAPY

The regulation of liver-target gene expression is closely related
with liver-target gene therapy. HGD mediated continuous
expression of phenylalanine hydroxylase (PAH) in the mouse
liver, played therapeutic roles in the mouse with human
phenylketonuria characteristics, by adjusting the level of
phenylalanine in blood (Grisch-Chan et al., 2017). Liver targeted
expression of circadian clock gene via HGD can relieve metabolic
disorders and biological clock disturbances caused by high-fat
diet, which may become a treatment for obesity and metabolic
disorders in the future (Meyer-Kovac et al., 2017). As one of
the most effective delivery methods, hydrodynamic injection also
outstands in treatment of liver fibrosis. It has been demonstrated
fibrosis in liver affects gene delivery efficiency. HGD of matrix
metalloproteinase-13 gene reduced liver fibrosis and showed
mentionable gene therapy efficiency (Kobayashi et al., 2016).

ESTABLISHMENT OF VIRAL HEPATITIS
MODELS BY HGD

Another major application of hydrodynamic delivery methods
is to establish liver disease models for animals, such as viral
hepatitis model by over-expressing viral DNA. Themost reported
work was to model hepatitis B in mouse, including both acute
and chronic hepatitis B (Chang et al., 2003; Giladi et al., 2003;
Ketzinel-Gilad et al., 2006).

Mouse Model of Acute Hepatitis B
Although HBV-transgenic mice, which was reported to
persistently express distinct HBV antigens or produce infectious
virions (Chisari et al., 1987; Wirth et al., 1995; Schirmbeck et al.,
2000), have been used to study HBV immunopathogenesis and
test numerous drugs for HBV infection, they are inherently
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tolerant to transgene products (Araki et al., 1989; Moriyama
et al., 1990; Guidotti et al., 1995; Larkin et al., 1999; Wang et al.,
2016). Therefore, the model is not suitable for studying HBV
vaccines. In addition, it is difficult to monitor viral clearance
in this model because the HBV DNA fragments are integrated
into the genome of every cell (Loirat et al., 2003). Therefore,
it is imperative to establish an alternative model of hepatitis
B in non-transgenic mice. Hydrodynamic technique was used
to deliver the HBV genome coding plasmids into the tail
vein.

pAAV-HBV1.2 plasmid, an adeno-associated virus vector
(AAV) carrying over-length, replication-competent HBV DNA,
was hydrodynamically injected into mice to establish a mouse
model mimicking acute HBV infection in human (Zheng et al.,
2013, 2016). With the promotion of HGD method, hepatocytes
synthesized viral antigens and replicative intermediates and
secreted viral particles into the blood circulation. Along with
the production of antiviral antibodies, viral antigens gradually
disappeared from the blood. So far, there are many reports of
acute hepatitis B models established with other HBV genome
expressing plasmids in HGD method (Yang et al., 2002; Suzuki
et al., 2003). These HGD-based established hepatitis B models
provide an excellent platform for studying the pathogenesis of
hepatitis B virus and its immune response.

Mouse Model of Chronic Hepatitis B
However, these animal model of acute hepatitis B could not be
applied to chronic hepatitis B studies, which is more popular
in the clinic. A mouse model of chronic hepatitis B is urgently
needed to explore the chronic pathogenesis of HBV and the
immune response. The HBV chronic infection mouse models
were also developed by HGD of the HBV genome coding
plasmids into tail vein, with a less plasmid concentration than
that for acute infection model (Huang et al., 2006; Ju et al., 2009).

After lower concentration of HBV genome expressing
plasmids delivery by HGD, immune tolerance occur in 40%
of the injected mice, which showed sustained expression of
HBV surface antigen for 6 months. The HBV carrier mice
also expressed hepatitis B e antigen (HBeAg) and core antigen
(HBcAg). Meanwhile, there is a high level of HBVDNA in serum,
but along with normal levels of serum alanine aminotransferase,
suggesting no significant inflammation of the liver. This is similar
to the human chronic HBV infection in the immune tolerance
phase (Chen, 1993; McMahon, 2004).

The chronic hepatitis B mouse model helps to better explore
liver tolerance during HBV persistence, and test new therapies
for chronic HBV infection. With the well-established HBV-
carrier mice, researchers have developed many studies on
immunpathogenesis and clearance of HBV. Our previous studies
demonstrated that KCs supported liver tolerance by inducing IL-
10-dependent anti-HBV CD8+ T cell exhaustion after HBcAg
stimulation (Xu et al., 2014; Li et al., 2015). Meanwhile, γδ T
cells drove myeloid-derived suppressor cell (MDSC)-mediated
CD8+ T cell exhaustion (Xu et al., 2013; Kong et al., 2014).
In addition, the intestinal microflora is critical to the immune
responses in the liver, which may determines hepatitis B virus
clearance or persistence (Chou et al., 2015). This animal model

accelerates mechanistic studies of human chronic hepatitis
B infection.

Nevertheless, HBV is not capable to infect mice to mimic
HBV infection in humans, thus there are still some limitations
of these HBV-carrier mouse models, such as the lack of
liver HBV infection (e.g., no infectious particle entry, no
delivery between hepatocytes, no covalently closed circular
DNA) and possible transient heart and liver trauma resulting
from hydrodynamic injection. A chronic hepatitis B model
established with adenovirus vector which carried the HBV
genome still cannot break these limitations (Huang et al.,
2012). Apparently new improvements are desired to advance
the study of hepatitis B, possibly with the technology of HGD.
Most recently, researchers had upgraded the chronic hepatitis B
model by hydrodynamic delivery of HBV precursor recombinant
covalently closed circular DNA (prcccDNA). In this model, the
HBV genome exist as cccDNA, rather than a linear replicon,
which could be replicated effectively and thus established HBV
persistence (Qi et al., 2014). There will be more and better
plasmids, equipped with HGD ride to establish more practical
model of hepatitis B.

Mouse Model of Hepatitis C and D
Similarly, other viral hepatitis models may be created by HGD
injection of corresponding genomic expression cassettes. In
addition to hepatitis B virus, there are other hepatitis viruses that
are difficult to establish mouse infection model, due to absence of
matched receptor between humans and mouse. Researchers also
tried to deliver hepatitis C virus (Yu et al., 2014; Billerbeck et al.,
2017) and hepatitis D virus (Suarez-Amaran et al., 2017) by HGD
injection, and made efforts to establish corresponding infection
mouse model. This may provide a better animal platform for
mechanisms study and drug trial of the above hepatitis virus.
Extensive genomic and biological studies of these viruses are thus
enabled.

ESTABLISHMENT OF HEPATOCELLULAR
CARCINOMA MODELS BY HGD

The application of HGD in liver disease and hepatitis model
described above have also raised interest in its application
in liver cancer. Hepatocellular carcinoma (HCC) is one of
digestive system malignant tumors, with a high mortality rate.
People have developed various mouse models of HCC to
explore the underlying mechanisms of HCC occurrence and
metastasis, such as genetically engineered mouse (GEM) models
of HCC (Newell et al., 2008). However, it is very expensive
and time-consuming to generate a GEM model. Recently,
HGD was applied to generate many models of HCC by over-
expressing candidate oncogenes, coupled with the sleeping
beauty transposon/transposase system (Ju et al., 2016). The
sleeping beauty transposon /transposase vectors induced stable
chromosomal integration and persistent transgene expression.
HGD of the sleeping beauty transposon/transposase vector
resulted in transpon DNA integrated in 5-6% hepatocytes of the
mice (Yant et al., 2000). With this time-saving and economical
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approach, a variety of HCC models have been established
very quickly, by activating oncogenes and/or silencing tumor
suppressor genes. Tward et al reported that about three quarters
of mice developed HCC in 1 month after HGD injection of
transposon carrying Met and β-catenin gene (Tward et al., 2007).
Besides, the researchers also tried CRISPR/Cas9-mediated gene
editing, which allowed rapid occurrence of liver tumors, by
regulating oncogenes or tumor suppressor genes expression in
somatic cells (Liu et al., 2017).

The HGD of sleeping beauty transposon or CRISPR/Cas9
system could be applied not only to investigate potential
oncogenic collaboration among various signaling pathways
during HCC development, but also to test anti-HCC therapy
preclinically. Sorafenib treatment in HCC models generated by
HGD with sleeping beauty transposon effectively prolonged the
median survival of mice with HCC, resembling that in HCC
patients treated with sorefinib (Rudalska et al., 2014).

APPLICATIONS OF HGD IN VACCINATION

The hydrodynamic delivery method has also been employed for
vaccination and active immunotherapy during viral infection.
The hydrodynamic delivery of plasmid expressing herpes
simplex virus type 1 glycoprotein (HSV-1gp) induced significant
production of HSV-1 neutralizing antibody in mice. The HSV-1
gp gene vaccination protected mice from latent HSV infection
(Cui et al., 2003). The vector encoding HBV core gene could
elicit HBV immunization and control viral infection by inducing
antigen expression in liver and blood via HGD (Deng et al., 2009).
It was also demonstrated that hydrodynamic vaccination with
HIV-1 envelope DNA elicited 40-fold HIV-1 envelope specific
antibodies than other immunizationmethods (Raska et al., 2008).
DNA vaccines targeted to the liver seemed resulting in enhanced
immune response.

However, an adverse result was shown in LCMV vaccination.
HGD of liver-specific LCMV-gp antigen resulted in lower
memory CD8 T cell frequency than that in intramuscularly
immunized mice, leading to reduced protection against lethal
viral challenge. The results suggest limited priming in liver
compared to peripheral tissues. In any case, HGD mediated
vaccination is worth more extensive exploration in other chronic
viral infections. The main applications of HGD in liver study
were summarized in Table 1.

IMPROVEMENT OF HGD FOR
PRECLINICAL APPLICATION

The above advantages of HGD in rodent studies have led
researchers to consider its feasibility in clinical application. The
first step is to reduce of the injected volume of HGD, while
maintaining the hydrodynamic pressure for intracellular uptake.
After all, an intravenous volume of 10% body weight is too large
for human, which is equivalent to 5 L solution for a 50 kg adult.
Cardiac congestion is well tolerated in mice, yet may not be
safe in patients. At present, the common strategy used in large
animals (dog, pig) is the replacement of systemic intravenous

TABLE 1 | Applications of HGD in liver study.

Application References

ALTERNATION OF GENE EXPRESSION IN LIVER MICROENVIRONMENT

Gene over-expression Wang et al., 2001; Hong et al., 2003; Pan

et al., 2004

Gene knockdown Song et al., 2003; Hamar et al., 2004; Matsui

et al., 2005

Simultaneous over-expression

and knockdown

Geng et al., 2013

ESTABLISHMENT OF MODELS

HBV Yang et al., 2002; Huang et al., 2006

HCV McCaffrey et al., 2002, 2003

HDV Chang et al., 2001; Bordier et al., 2003

HCC Tward et al., 2007; Keng et al., 2011; Ju et al.,

2016

VACCINATION

HSV-1 Cui et al., 2003

HBV Deng et al., 2009

HIV Raska et al., 2008

LCMV Obeng-Adjei et al., 2013

GENE THERAPY

Hepatitis Anavi et al., 2013; Huang et al., 2013

Liver fibrosis Chen S. W. et al., 2008; Kobayashi et al., 2016

BASIC BIOLOGY STUDY

Liver-draining lymph nodes Zheng et al., 2013

TABLE 2 | Substances entry into parenchymal cells by HGD methods.

Delivery substances References

NUCLEOTIDES

pDNA Yang et al., 2001

125 I-DNA Zhang et al., 2004

Transposon Yant et al., 2000; Tward et al., 2007

Antisense or decoy oligonucleotides Tomita et al., 2003; Shoji and

Nakashima, 2004

Chimeric DNA-RNA oligonucleotide

duplex

Lai and Lien, 2001; Liang et al.,

2002

Peptide nucleic acid Ray and Norden, 2000

siRNA Song et al., 2003; Zender et al.,

2003

shRNA Huang et al., 2013

PROTEIN

Evans Blue Zhang et al., 2004

Galactosidase Zhang et al., 2004

VIRUS

Adenovirus Chen Q. et al., 2008; Huang et al.,

2012, 2013; Zheng et al., 2013

Adeno-associated virus O’Callaghan et al., 2017

Retrovirus Wu et al., 2002

Lentivirus Condiotti et al., 2004

Epstein-Barr virus Stoll et al., 2001

OTHER COMPOUNDS

pDNA-cationic liposome complexes Templeton, 2002

pDNA-cationic polymer complexes Thomas and Klibanov, 2003

Fluorescence-labeled beads Kobayashi et al., 2004
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injection with specific delivery of target organs or sites via
catheters. Based on this modification, the researchers combined
hydrodynamic injection with a jugular vein catheter and then
delivered the genes of interest to each hepatic lobular vein and
hepatocytes (Kamimura et al., 2009, 2013, 2014). Human factor
IV expression were highly expressed in the liver of dogs in this
way (Yokoo et al., 2016). Although the gene delivery efficiency
in these procedures is lower than HGD by tail vein in rodents,
the results demonstrate the possibility of liver gene delivery with
<1% of body weight volume (500 ml for a 50 kg adult), which
might be clinically acceptable in human. To date, HGD has made
significant progress in all aspects, which supported the clinical
feasibility. The safety and side effects of this procedure in large
animals are still under careful evaluation.

The accompanying step is the improvement and enrichment
of substances for injection. The DNA and siRNA expressing
vectors could be developed to be multi-functional, including
liver-specific promoter insertion and simultaneous multi-gene
expression. Many other molecules, such as pDNA-cationic
liposome complexes (namely as lipoplex) (Templeton, 2002)
or pDNA-cationic polymer complexes (polyplex) (Thomas and
Klibanov, 2003), antisense or decoy oligonucleotides, chimeric
DNA-RNA oligonucleotide duplex (Lai and Lien, 2001; Liang
et al., 2002) or peptide nucleic acid (Ray and Norden, 2000) have
been delivered by hydrodynamic injection (Table 2). Moreover,
it has been demonstrated that macromolecules, including bovine
serum albumin (BSA) and immunogloblin G (IgG), can be also
effectively absorbed by the liver via hydrodynamic injection
(Kobayashi et al., 2001).

CONCLUSIONS AND FUTURE
PROSPECTS

As described above, hydrodynamic injection provides an
effective approach to deliver DNA, RNA, protein and virus

into parenchymal cells (especially hepatocytes). Besides the
applications in the studies of liver diseases, HGD also contributes
to basic understanding of liver biology. One of the examples
is the discovery of liver draining lymph nodes in mice. At 24
and 48 h after hydrodynamic injection with enhanced green
fluorescence protein (EGFP) expressing adenovirus through
the tail vein, most of the cells expressing EGFP appeared
in the portal and celiac lymph nodes near the liver, and
a small number of EGFP expressing cells were present
in the spleen and inguinal lymph nodes, which suggesting
the portal and celiac lymph nodes may be the primary
drainage lymph nodes in the liver of mouse (Zheng et al.,
2013).

Although it has achieved a great success in rodent studies,
more investigations are needed to advance its application in
human. We anticipate that this could be achieved in the
near future with the efforts on improving the function and
diversity of substances for injection, as well as more precise
control of injection routes and volumes which is a key step
in clinical application. In general, HGD offers an useful tool
for the study of liver and potentially other organs, and
will continue to advance to benefit both basic and clinical
research.
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