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Abstract

Keywords:

Background: Brain-derived neurotrophic factor (BDNF) plays an important role in Alzheimer’s dis-
ease (AD) and other neurodegenerative disorders. BDNF function is adversely affected by amyloid
betain AD. BDNF levels in brain and peripheral tissues are lower in patients with AD and mild cogni-
tive impairment (MCI) than in controls. Here we examined the association between plasma levels of
BDNF and amyloid deposition in the brain measured with Pittsburgh Compound B (PiB).
Method: Our data set consisted of 18 AD, 56 MCI, and 3 normal control Alzheimer’s Disease Neuro-
imaging Initiative-1 (ADNI1) subjects with available [''C] PiB and peripheral blood protein data.
Magnetic resonance imaging (MRI)-coregistered positron emission tomography data were smoothed
with a 15 mm kernel and mapped onto three-dimensional (3D) hemispheric models using the warping
deformations computed in cortical pattern matching of the associated MRI scans. We applied linear
regression to examine in 3D the associations between BDNF and PiB standard uptake value ratio,
while adjusting for age and sex. We used permutation statistics thresholded at P < .01 for multiple
comparisons correction.

Results: Plasma BDNF levels showed significant negative associations with left greater than right
amyloid burden in the lateral temporal, inferior parietal, inferior frontal, anterior and posterior cingu-
late, and orbitofrontal regions (left Peorrectea = -03).

Conclusions: As hypothesized, lower plasma levels of BDNF were significantly associated with
widespread brain amyloidosis.

© 2015 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
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1. Introduction

Alzheimer’s disease (AD), the most common neurode-
generative disorder, currently affects an estimated 5.2
million Americans and this number is expected to climb to
13.8 million in 2050 [1]. With the cost of care of AD pro-
jected to increase from $203 million in 2013 to $1.1 trillion
in 2050 [1], the search for reliable disease modification stra-
tegies such as novel therapeutic and behavioral modifica-
tions has intensified. Several behavioral modification
strategies, including exercise, participation in brain stimu-
lating activities, and dietary changes, have been shown to
have a beneficial effect on the brain and cognitive function
through the upregulation of neurotrophic factors such as
the brain-derived neurotrophic factor (BDNF) [2—4].

BDNF is the most widely distributed neurotrophin in the
central nervous system (CNS). It mediates neuronal differ-
entiation, proliferation, and survival, regulates synaptic
function, facilitates brain plasticity, and modulates hippo-
campal long-term potentiation, learning, and memory for-
mation [4—7]. Multiple lines of evidence connect amyloid
beta (AB) pathology, BDNF, and cognitive performance.
Experimental intrahippocampal injections of AP reduce
BDNF levels in the frontal cortex of rats [8]. Addition of
AP to astrocyte culture seems to trigger increased BDNF
production in astrocytes [9]. Lower BDNF levels measured
in brain [10-13], cerebrospinal fluid [14], and peripheral
blood [5,15-19] are seen in subjects with AD and mild
cognitive impairment (MCI) relative to controls. One study
even suggests an early compensatory increase in plasma
BDNEF levels followed by late decline in AD [15]. Decreased
plasma BDNF levels correlate with worse cognition in am-
nestic MCI [18] and AD [15,17]. Plasma BDNF levels
seem to be also affected by age. However, cognitively
normal elderly with more pronounced decreases in serum
BDNF levels perform worse in the memory domain [20,21].

The protective effects of BDNF against AD seem to be at
least mediated in part by its stimulating effect on the nona-
myloidogenic cleavage of the amyloid precursor protein
(APP) and the subsequent release of the neurotrophic
secreted fragment of APP [5,22]. Both a therapeutic and
preventative role for BDNF have been proposed, as
pretreatment with BDNF seems to protect against Af
toxicity, whereas post-treatment administration seems to
restore neuronal function both in vitro and in murine exper-
iments [23,24].

AP accumulation in the brain is a key hallmark of AD.
Brain amyloidosis visualized with positron emission tomog-
raphy (PET) is widely recognized as the earliest imaging
biomarker for AD [25]. Given BDNF’s role in AD, its bidi-
rectional functional links with A and the well-documented
decline in BDNF levels in brain and peripheral tissue in AD,
we hypothesized that BDNF protein levels in plasma would
negatively correlate with amyloid burden in the brains of
subjects from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI).

2. Methods
2.1. Subjects

Data used in preparing this article were obtained from the
ADNI database (http://adni.loni.usc.edu). ADNI was
launched in 2003 by the National Institute on Aging, the Na-
tional Institute of Biomedical Imaging and Bioengineering,
the Food and Drug Administration, private pharmaceutical
companies and nonprofit organizations, as a $60 million, 5-
year public-private partnership. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging
(MRI), PET, other biological markers, and clinical and neu-
ropsychological assessment can be combined to measure
clinical progression in MCI and early AD. Determination
of sensitive and specific markers of very early AD progres-
sion is intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, and to lessen
the time and cost of clinical trials. The Principal Investigator
of this initiative is Michael W. Weiner MD, VA Medical Cen-
ter and University of California—San Francisco. ADNI is the
result of efforts of many coinvestigators from a broad range
of academic institutions and private corporations, and sub-
jects have been recruited from over 50 sites across the US
and Canada. The initial goal of ADNI was to recruit 800
adults, aged 55 to 90 years, to participate in the research—
approximately 200 cognitively normal older individuals to
be followed for 3 years, 400 people with MCI to be followed
for 3 years, and 200 people with early AD to be followed for
2 years. For up-to-date information see www.adni-info.org.

The clinical description of the ADNI cohort has been pre-
viously published [26]. Diagnosis of AD was based on the
National Institute of Neurological and Communicative Dis-
orders and Stroke and the AD and Related Disorders Associ-
ation criteria [27]. AD subjects were required to have
Mini-Mental State Examination (MMSE) [28] scores be-
tween 20 and 26 and a Clinical Dementia Rating scale
(CDR) [29] score of 0.5 to 1 at baseline. Qualifying MCI sub-
jects had memory complaints but no significant functional
impairment, scored between 24 and 30 on the MMSE, had
a global CDR score of 0.5, a CDR memory score of 0.5 or
greater, and objective memory impairment on Wechsler
Memory Scale—Logical Memory II test [30]. Normal con-
trol (NC) subjects had MMSE scores between 24 and 30, a
global CDR of 0 and did not meet criteria for MCI and AD.
Subjects were excluded if they refused or were unable to un-
dergo MRI, had other neurological disorders, active depres-
sion, or history of psychiatric diagnosis, alcohol, or
substance dependence within the past 2 years, less than
6 years of education, or were not fluent in English or Spanish.
The full list of inclusion/exclusion criteria may be accessed
on pages 23 to 29 of the online ADNI protocol (see http://
www.adni-info.org/Scientists/ ADNIScientistsHome.aspx).
Written informed consent was obtained from all participants.

The subset of 18 AD, 56 MCI, and 3 cognitively normal
ADNI subjects who received [''C]-Pittsburgh Compound B
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(PiB)-PET scans and provided peripheral blood protein data
were included in this study.

2.2. MRI imaging acquisition and preprocessing

All ADNI subjects underwent serial 1.5 T MRI imaging
on scanners from one of three manufacturers: GE Health-
care, Philips Medical Systems, or Siemens Medical Solu-
tions [31]. At each visit, two T1-weighted MRI scans were
acquired with a sagittal three-dimensional (3D) sequence
for each subject. The image with a higher signal-to-noise ra-
tio was selected by the ADNI MRI quality control center at
the Mayo Clinic (Rochester, MN, USA) [31]. The scans
were reconstructed with a 256 X 256 matrix and a voxel
size of 0.9375 X 0.9375 X 1.2 mm? in the x-, y-, and z-di-
mensions [31]. Additional image corrections included 3D
Gradwarp correction for geometric distortions because of
gradient nonlinearity [32], “B1-correction” for image inten-
sity nonuniformity [31] and “N3” bias field correction for
reducing intensity inhomogeneity [33]. Both raw and cor-
rected image files are freely available for download at
http://adni.loni.usc.edu.

MRI scans were registered with a nine-parameter (three
translations, three rotations, three scales) transformation
[34] to the International Consortium for Brain Mapping tem-
plate [35] and corrected for image nonuniformities using a
regularized tricubic B-spline approach [36]. The brains
were automatically skull stripped with Brainsuite and all
volumes were manually edited for mislabeled brain and non-
brain regions. After 3D hemispheric reconstruction, 38 sulci
per hemisphere were traced and averaged across subjects.
The cortical surfaces were parameterized, flattened, and
warped to align all subjects to a respective average sulcal
representation. 3D hemispheric mesh models for each sub-
ject were created.

2.3. PiB-PET acquisition and preprocessing

PiB-PET data collection was started as an “add on” proj-
ect and enrolled 103 subjects across 14 ADNI sites [37]. This
study included a subset of subjects with both [''C]-PiB-PET
scans and peripheral blood protein data: 18 AD, 56 MCI, and
3 cognitively normal subjects. All scanning sites passed
rigorous PET scanner certification using a Hoffman 3D brain
phantom. Detailed PET protocol information can be found at
http://www.adni-info.org/scientists/ ADNIStudyProcedures.
aspx but are briefly described later. Subjects were injected
with 15 = 1.5 mCi of PiB over 10 to 20 seconds. They un-
derwent a dynamic, 3D scan consisting of four 30-second
frames beginning approximately 50 minutes postinjection.
PiB-PET scans were corrected using measured attenuation
and reconstructed using scanner-specific parameters. All
PET image files were assessed for artifacts and motion.
Next, PET scans were coregistered, averaged, and smoothed
with a scanner-specific filter function to produce images of a
uniform isotropic resolution of 8-mm full-width at half-

maximum (for details see http://adni.loni.usc.edu/wp-
content/uploads/2010/09/PET_PIB_Tech_Procedures_Man
ual_Suppl_v1.3.pdf). The smoothed coregistered PiB-PET
scans were downloaded from the ADNI repository from
the Laboratory of Neuroimaging (https://ida.loni.usc.edu/
login.jsp) for further processing. These scans were then cor-
egistered to the MRI scan temporally closest to the PiB visit,
smoothed with a 15-mm kernel and convected onto the 3D
hemispheric mesh models for each subject.

2.4. Plasma protein biomarkers

Fasting blood samples were collected in two potassiu-
methylene diamine tetraacetic acid (K,EDTA) tubes at the
baseline visit and centrifuged at room temperature for 15 mi-
nutes at 3000 rpm (http://www.adni-info.org/scien
tists ADNIStudyProcedures.aspx#). The plasma portion
was aliquoted into plastic transfer tubes, stored at —80°C,
and shipped to Myriad RBM for evaluation on a
190-analyte multiplex immunoassay panel (Human Discov-
ery MAP version 1.0; Myriad RBM) and a commercially
available platform (Luminex 100; Luminex Corporation)
[38]. BDNF met the quality control criteria for subsequent
statistical analysis  (http://adni.loni.usc.edu/wp-content/
uploads/2010/11/BC_Plasma_Proteomics_Data_Primer.pdf).
Plasma BNDF levels were log;, transformed.

2.5. Statistical analysis

We used one-way analyses of variance (ANOVAs) with
post-hoc Bonferroni correction to examine differences in
age, education, BDNF plasma levels, and MMSE score. A
chi-squared test was used to assess for differences in sex dis-
tribution. We used Pearson’s correlation statistic to examine
the relationship between plasma BDNF levels and PiB stan-
dard uptake value ratio with cognitive function (MMSE,
Rey’s Auditory Verbal Learning Test-delayed recall
[RAVLT-DR] and Clinical Dementia Rating Scale-sum of
boxes [CDR-SOB]).

We applied linear regression to examine in 3D the associ-
ations between BDNF and PiB SUVR, while adjusting for
age and sex since both have been previously shown to affect
BDNF levels in peripheral blood [20,39]. We used
permutation statistics thresholded at P < .01 for multiple
comparisons correction. Significance and beta coefficient
maps were created.

3. Results

The results from the Bonferroni-corrected ANOVA and
chi-squared comparisons of demographic variables can be
seen in Table 1. MMSE score significantly differed be-
tween the three groups, with the NC group having the high-
est scores and the AD group having the lowest scores.
There were no significant differences in age, education,
plasma BDNF levels, or sex distribution between the
three groups. PiB SUVR showed significant associations
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Table 1
Demographic comparisons of NC, MCI, and AD subjects

NC MCI AD P-value, ANOVA

Variable (SD) (N = 3) (N = 56) (N =18)  or chi-square
Age, yr 70.2(8.2) 75.6(7.9) 743(7.9) 46
Gender, FM  2:1 25:31 7:11 .66
Education, yr  14.3 (3.2) 164 (2.8) 14.9(2.9) 12
MMSE 28.7(0.6) 27.1(22) 22.1(3.00 <.001
BDNF 0.38 (0.51) 0.28 (0.38) 0.40 (0.42) 51

NOTE. Significant P values in bold show group differences.

Abbreviations: NC, normal control; MCI, mild cognitive impairment;
AD, Alzheimer’s disease; SD, standard deviation; ANOVA, analysis of vari-
ance; F:M, female:male; MMSE, Mini-Mental State Examination; BDNF,
brain-derived neurotrophic factor.

with MMSE (r = —-0.26, P = .021), RAVLT-DR
(r = —0.23, P = .048) but not with CDR-SOB. BDNF
did not show significant associations with any of the cogni-
tive variables.

Our linear regression analyses in 3D indicated that plasma
BDNF levels exhibited significant negative associations with
amyloid burden in the lateral temporal, inferior parietal, infe-
rior frontal, anterior and posterior cingulate, and orbitofron-
tal regions that were more prominent on the left (left
Peorrectea = -03) than the right (right Peopectea = -11)
(Fig. 1). The results remained unchanged after excluding
the three cognitively normal subjects (maps not shown).

4. Discussion

As hypothesized, we found a significant negative associ-
ation between plasma BDNF levels and PiB binding in the
brains of our ADNII subcohort. This is to our knowledge

Significance maps

Right

the first study that has examined this association. Our find-
ings are a logical extension of prior work by others, who
have consistently reported lower plasma BDNF levels in pa-
tients with AD and amnestic MCI [15-17,19]. There is
mounting evidence that the downregulation of BDNF
results in a wide range of deleterious effects such as impair-
ments in synaptic plasticity, hippocampal long-term potenti-
ation, and learning and memory, as well as increased
cleavage of APP to the toxic A species [5,6,22,23.,40].

The associations between plasma BDNF and PIB SUVR
reached significance on the left but not the right. Although
the precise reason for this asymmetry remains uncertain the
most reasonable explanation is the greater SUVR measure-
ment noise on the right compared with the left. There could
be several plausible reasons for this. Our group has previ-
ously reported greater right-sided cortical atrophy most pro-
nounced in the lateral temporal and inferior frontal cortices of
subjects with amnestic MCI and AD [41]. If present in this
sample such underlying atrophy could inadvertently result
in asymmetric SUVR estimates. Asymmetric tracer uptake
in the scalp [42] or white matter [43], especially in the set-
tings of asymmetric white matter hyperintensity burden
[44] can likewise affect the accuracy of the SUVR estimates
and result in the observed hemispheric differences. Last but
not least, a combination of these factors could also be at
play. Recently, amyloid-positive individuals were shown to
have greater white matter uptake relative to their amyloid
negative counterparts [45]. Thus, in the MCI and AD stages
SUVR could be influenced by asymmetric white matter up-
take due to asymmetry in white matter hyperintensities in
addition to disease- and white matter hyperintensity-
associated asymmetric cortical atrophy.
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Fig. 1. Significance and beta coefficient maps showing the association between plasma brain-derived neurotrophic factor (BDNF) and amyloid burden in the

brain measured with Pittsburgh Compound B (PiB).
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Several strengths and limitations of this study should be
acknowledged. ADNI is a large, national multisite longitudi-
nal study collecting clinical, cognitive, imaging, and
biochemical data using standardized and uniform protocols
with stringent quality control. One of the limitations of
ADNI lies in its strict exclusion criteria that models AD clin-
ical trial methodology standards, which resulted in the
enrollment of a study cohort with a lower prevalence of co-
morbidities than the general population. As such all ADNI
findings require further corroboration in population-based
settings. A limitation specific to our study is the small sam-
ple size dictated by the number of participants who provided
both PiB scans and plasma protein data. Studying BDNF in
peripheral blood might not be reflective of BDNF’s fate in
the CNS. BDNF crosses the blood-brain barrier in both di-
rections. Thus, at least part of the circulating BDNF may
originate from the CNS [39,46]. Despite this, the
preponderance of prior evidence describing a distinct
peripheral blood BDNF signature in MCI [18,19] and AD
[15—17] patients is consistent with our findings and further
supports the potential use of plasma BDNF as an AD
biomarker.

Despite these limitations, our study documents a strong
association between plasma BDNF levels and PiB binding
in the brain, suggesting that plasma BDNF levels, either
alone or in combination of other peripheral blood markers,
may represent a peripheral signature of amyloid pathology
in the brain. In addition, given the links between BDNF
levels, AD pathology [8,9], and cognitive decline
[15,17,18,20,21] one should consider including this
biomarker measure not only in clinical studies of dietary
and exercise interventions that have already demonstrated
an effect on BDNF, but also for clinical trials of therapies
aimed at decreasing A} production.
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RESEARCH IN CONTEXT

1. Systematic review: Brain-derived neurotrophic factor
(BDNF), the most widely distributed neurotrophin in
the central nervous system (CNS), has been shown to
play arole in Alzheimer’s disease (AD) and cognitive
decline. The aim of our study was to examine the
relationship between plasma BDNF levels and brain
amyloid. To conduct our literature review, we
searched the PubMed database for original research
andreview articles examining the association between
BDNEF, brain amyloid, and cognitive performance.

2. Interpretation: Multiple studies connect amyloid beta
pathology, BDNF, and cognitive performance. In our
study, we found decreased plasma BDNF levels to
associate with widespread brain amyloidosis sug-
gesting that plasma BDNF levels may represent a pe-
ripheral signature of amyloid pathology in the brain.

3. Future directions: Although BDNF crosses the
blood-brain barrier in both directions it is not clear
what fraction of the circulating BDNF originates
from the CNS. Future studies examining this rela-
tionship would help clarify if plasma BDNF can be
developed as a surrogate biomarker for observational
studies and clinical trials.
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