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Abstract
Autoimmune diseases are common and debilitating, but their severe manifestations could be
reduced if biomarkers were available to allow individual tailoring of the potentially toxic
immunosuppressive therapy required for their control. Gene expression-based biomarkers
facilitating individual tailoring of chemotherapy in cancer, but not autoimmunity, have been
identified and translated into clinical practice1,2. We show that transcriptional profiling of
purified CD8 T cells, which avoids the confounding influences of unseparated cells3,4, identifies
two distinct patient subgroups predicting long-term prognosis in two different autoimmune
diseases, anti-neutrophil cytoplasmic antibody (ANCA) – associated vasculitis (AAV), a chronic,
severe disease characterized by inflammation of medium and small blood vessels5, and systemic
lupus erythematosus (SLE), characterized by autoantibodies, immune complex deposition and
diverse clinical manifestations ranging from glomerulonephritis to neurological dysfunction6. We
show that genes defining the poor prognostic group are enriched for genes of the IL7R pathway,
TCR signalling and those expressed by memory T cells. Furthermore, the poor prognostic group is
associated with an expanded CD8 T cell memory population. These subgroups, which are also
found in the normal population and can be identified by measuring expression of only three genes,
raise the prospect of individualized therapy and suggest novel potential therapeutic targets in
autoimmunity.
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The three clinical syndromes that make up AAV (Wegener's granulomatosis [WG],
microscopic polyangiitis [MPA] and Churg-Strauss syndrome) have diverse and overlapping
clinical features, including acute glomerulonephritis and granulomatous inflammation of the
respiratory tract5. Mortality at five years is as high as 30%, largely owing to complications
of immunosuppression7 and underlining the need for biomarkers to guide therapy. ANCA
are directed against neutrophil antigens, including proteinase-3 [PR-3] and myeloperoxidase
[MPO], are likely to contribute to pathogenesis8, but have not proven clinically useful as
predictive biomarkers9. To detect such biomarkers we examined the transcriptomes of
purified cells from 59 patients with a diagnosis of AAV (WG or MPA5) and evidence of
active disease (Supplementary Methods). All responded to treatment with high dose steroid
and one of a number of induction immunosuppression therapies, before maintenance therapy
was commenced. Detailed clinical and laboratory information was collected prospectively
for up to 1000 days (Supplementary Methods and Supplementary Tables 1 and 2). An initial
cohort of 32 patients was analysed first and the subsequent 27 patients were analysed
separately as a validation cohort. At enrolment, and before treatment, we purified CD4 and
CD8 T cells, B cells, neutrophils and monocytes from each patient10, quantifying gene
expression profiles using a genome-wide microarray platform (Mediante)11. Preliminary
analysis identified distinct patterns of gene expression in each cell type, but CD8 T cell
expression profiles were found to divide patients into two distinct subgroups, which
prompted more intensive investigation. Abnormalities in CD8 T cells have been associated
with AAV12 and they are a prominent component of vasculitic lesions, consistent with a
role in pathogenesis13.

We assessed the degree of heterogeneity within the CD8 T cell gene expression dataset in
the initial cohort of 32 AAV patients using multi-dimensional scaling with a global test of
clustering (Supplementary Methods) and demonstrated greater “substructure” than would be
expected to occur in a randomly distributed dataset (p<0.0001, Supplementary Fig. 1a). Two
discrete patient subgroups best explained this substructure (Supplementary Fig. 1b, c),
which was confirmed using 2 independent clustering techniques (k-means and hierarchical)
and 2 additional, independent algorithms allowing both comparison between techniques
(EP:NG Clustercomparison14, Supplementary Fig. 1d,e) and across multiple iterations of
one technique (ConsensusCluster15, Supplementary Fig. 1b). The genes whose expression
best defined the 2 subgroups (termed v8.1 and v8.2) were identified using one-way analysis
of variance (ANOVA; Supplementary Table 3) and were subject to hierarchical clustering to
illustrate the substructure found (Fig. 1a).

We then verified the existence of these 2 subgroups in a validation cohort, which was
clustered using the gene list defined in the initial cohort, identifying two discrete
subpopulations which were exactly reproduced by de novo analysis of the validation cohort
(Supplementary Fig. 1d, e and 2). The gene list that best differentiated the validation cohort
subgroups perfectly re-clustered the initial cohort, indicating the gene lists defining the
subgroups in both cohorts were highly overlapping (hypergeometric p < 1 × 10−300,
Supplementary Fig. 2).

We next asked whether these expression-defined subgroups correlated with disease
phenotype. There was no correlation between either v8.1 or v8.2 and technical, clinical or
laboratory parameters such as disease activity score at enrolment or erythrocyte
sedimentation rate (ESR), or prior or subsequent immunosuppressant therapy
(Supplementary Tables 1 and 2). However, two clinical associations were found; more
patients in group 8.1 relapsed after initial remission (Fig. 1c) and they had more disease
flares per month of follow-up than 8.2 (> 1 relapse in 47.4% of 8.1 and 5.4% of 8.2; Fig.
1d). Thus, these hypothesis-free, unsupervised analyses allow prospective prediction of
patients with relapsing disease.
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The association between disease relapse and subgroups 8.1 and 8.2 was confirmed when the
initial and validation cohorts were analysed independently (Supplementary Fig. 3). In
patients who had experienced disease flares prior to enrolment a worse outcome was seen, as
expected, but the predictive power of the gene expression signature was preserved
(Supplementary Fig. 4a, b). Anti-PR3 ANCA, the best current predictor of prognosis, did
not predict outcome in our cohort (Supplementary Fig. 4c), consistent with previous
reports9.

To determine if the prognosis-predicting signature was seen in other autoimmune diseases,
we arrayed purified CD8 T cells from 26 patients with SLE, in which T cells are thought to
be important, for example readily generating cytotoxic effector cells in active disease16. In
SLE as in AAV, there is substantial disease and treatment-related morbidity and mortality17
but no clinically useful biomarkers have been identified18. All patients had active disease on
enrolment and had either no previous evidence of disease or had had quiescent disease on
minimal maintenance therapy (defined in Supplementary Methods). All then responded to
induction immunosuppressive therapy, before weaning on to maintenance therapy
(Supplementary Tables 4 and 5). Samples were processed and data analysed in an identical
fashion to that described for AAV, though as a single cohort. Multidimensional scaling and
consensus clustering again showed evidence of gene expression substructure
(Supplementary Fig. 5a) best explained by the presence of 2 discrete patient subgroups (s8.1
and s8.2; Supplementary Figs. 5b - d). Genes defining the subgroups were identified using
ANOVA, and hierarchical clustering clearly demonstrated the two groups (Fig. 2a). The
gene list best defining the SLE subgroups was then used to cluster the 59 AAV patients,
precisely recreating the AAV groups v8.1 and v8.2 (Fig. 2b). The converse analysis
recreated the SLE groups (Supplementary Fig. 6), indicating a striking similarity in the CD8
T cell transcriptional changes defining the patient subgroups in these two distinct
autoimmune diseases (hypergeometric p < 1×10−300).

As for AAV, there was a clear correlation between SLE group s8.1 and relapsing disease.
All SLE group s8.1 patients had flared by 500 days after enrolment, compared to 15% of 8.2
patients (Fig. 2c), and s8.1 patients had more flares per month of follow-up than s8.2
(p=0.002, Fig. 2d). No significant association with other clinical or laboratory parameters
was seen, though patients with pre-existing disease in Group 8.1 had had more
immunosuppression before enrolment (Supplementary Table 5). This would be expected in a
group with an increased tendency to disease relapse, and suggests that it is not a relative lack
of prior therapy that has resulted in the increased flare frequency in s8.1. Induction and
maintenance therapies were similar in s8.1 and s8.2 with the exception that the anti-CD20
therapy Rituximab was more frequently required in s8.1 (Supplementary Table 5). As our
practice was to limit Rituximab use to refractory cases this is consistent with the poor
outcome seen in this subgroup.

As two subgroups had been identified in two different diseases, we asked whether such
heterogeneity might also exist within a population of 22 age and sex matched healthy
controls analysed in an identical fashion to AAV and SLE (Supplementary Table 6).
Unsupervised analysis identified 2 subgroups (c8.1 and c8.2, Fig.3a) defined by a gene list
which demonstrated highly significant overlap with that defining the prognostic subgroups
in both AAV and SLE (hypergeometric p<1×10−300). Genes defining the 2 subgroups in
healthy individuals could be used to accurately reproduce the original subdivisions seen in
both diseases (Supplementary Fig.7). When all CD8 T cell data (AAV, SLE and Control)
were pooled and unsupervised hierarchical clustering performed 2 groups were again
generated, divided not by diagnosis but by subgroups 8.1 and 8.2 (Fig. 3b). These findings
held true independent of the array platform used, being confirmed using the Affymetrix
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Gene 1.0 ST array in a sample of the initial cohorts (Supplementary Fig. 8a-d), and in
independent Caucasian and Singaporean control cohorts (Supplementary Table 6, Fig. 3c, d)

It was felt likely that the expansion of genes characterising such robust and clearly defined
groups would be defined by distinct bimodal profiles rather than the extreme ends of a
Gaussian distribution. When this was tested (for details see Supplementary Discussion,
Supplementary Fig. 8e and Table 7) expression of most CD8 T cell genes expressed in AAV
was normally distributed across the population, while those defining groups 8.1 and 8.2
predominantly fitted a bimodal distribution template, demonstrating a significant skewing
away from the Gaussian distribution (p < 0.0001, Fig. 3e). The gene expression signature
predicting prognosis could not be reproduced in patients during remission after initial
therapy – see Supplementary Discussion.

We then sought to determine if these transcription signatures were associated with biological
differences that might explain their ability to predict relapsing disease. We first looked for
differential expression of genes from known signalling pathways using two independently-
curated pathway databases (MSigDB and Ingenuity) and two enrichment algorithms,
GSEA19 and hypergeometric probability (Ingenuity20, Supplementary Methods). In v8.1
genes associated with signalling through both the T cell receptor (TCR) and the interleukin 7
receptor (IL7R) pathway were significantly upregulated (Fig. 4a, b). No enrichment was
seen for other signalling pathways such as interleukin 4 (Supplementary Fig. 9a). The
expression of genes differentiating subgroups 8.1 and 8.2 was validated by quantitative PCR
(e.g. Supplementary Fig. 9b, c).

Signalling through IL7R (CD127) is vital for promoting T cell survival21, likely to be
mediated by Bcl2 family-mediated inhibition of the pro-apoptotic effects of Bim22, and is
critical for the expansion of effector and memory populations of CD8 T cells23. Other genes
up-regulated in v8.1, including BCL2, CD27, SELL, CCR7 and CD44, are also associated
with T cell memory24 and GSEA analysis using publicly available array data25
demonstrated enrichment of a human effector-memory (TEM) expression signature in
subgroup v8.1 (Fig. 4c), and the same TEM signature was also associated with the 8.1
subgroup in both SLE patients and normal controls (Supplementary Fig. 9d, e). There was
no enrichment of an activated T cell signature26 nor of genes known to alter expression in
response to corticosteroid therapy27 (Supplementary Fig. 9f, g).

To determine if the TEM-associated signature was reflected in altered cell populations, 29
patients in remission on maintenance therapy (n = 7 v8.1; n = 22 v8.2) were re-bled between
11 and 42 months after enrolment, and their lymphocytes phenotyped. While the
relationship between these results and the situation that existed at enrolment must be
somewhat speculative, a clear difference in CD8 T cell populations was seen. Patients from
v8.1 had an increased number of T cells in general, but of memory T cells in particular
(TMEM, defined as CD3+CD8+CD45RA−; Fig. 4d-f). Most of these cells were CCR7 low,
consistent with a T effector memory (or perhaps T-memory precursor effector) cell
phenotype24, but the “central memory” (CCR7+ CD45RA−) cells described by Sallusto et
al.28 were also significantly increased in v8.1, though not always seen as a discrete
population. Correlation between TMEM numbers and the 8.1 and 8.2 subsets determined
from the same sample was confirmed in 33 normal controls (Supplementary Fig. 10a-c).
Attempts to classify patients into the two subgroups using only flow cytometric
quantification of TMEM populations failed; TMEM populations differed between 8.1 and 8.2
but overlapped (Fig. 4e, f and Supplementary Fig. 10 b, c). Consistent with this, TN genes
were also differentially expressed between 8.1 and 8.2, and TMEM genes alone cannot
explain the subgroups (see Supplementary Text and Figure 10d-i).
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These results taken together allow formulation of a speculative model which might explain
correlation of the CD8 expression signature with clinical disease. Altered gene expression in
TN cells may be imposed by germline genetic variation29, at the level of the thymus, by
antigen exposure30 or by interactions with other cells31. This might in turn enhance CD8 T
cell proliferation in response to antigen, at least in part via IL7R and TCR signalling32,
driving the formation of an expanded memory population33 thus contributing to the TMEM
component of the 8.1 signature. In the context of a response to autoantigen, such persistent
autoreactive cells could have the capacity to more easily expand on restimulation,
differentiating into the effector cells which drive tissue damage, manifesting clinically as a
relapse of disease (Supplementary Fig. 11 and Supplementary Discussion).

To facilitate clinical translation of these prognostic expression signatures, we established
that robust discrimination between 8.1 and 8.2 could be achieved using combinations of as
few as 3 genes (Fig 4g, h, Supplementary Fig. 12, Supplementary Methods). These
classifiers did not discriminate between diseases (Fig.4 g), and could not be replicated using
RNA from un-separated PBMC (Fig. 4i).

Use of the predictive model as a prognostic biomarker may allow individualization of
therapy in AAV and SLE: patients in group 8.1 may benefit from intensified maintenance
therapy and follow-up, while the patients in 8.2 may need less maintenance therapy,
reducing treatment-associated toxicity. A prospective clinical study will be needed to test
this, but the difference in clinical outcome between 8.1 and 8.2 is at least as large as that
described for clinically successful biomarkers in oncology34-36. The subgroups may also
identify patient groups with differential responses to novel therapies, and may focus
attention on CD8 TMEM generation as a mechanism driving disease severity in at least a
subset of AAV and SLE patients. The discovery of this signature in two distinct autoimmune
diseases and in a healthy population suggests that it may identify important prognostic
subsets of patients not only in autoimmune diseases but also in related clinical contexts such
as vaccination, infection and transplantation, and could thus help guide therapy in a range of
clinical situations.

METHODS
Patients

59 AAV patients and 25 SLE patients attending or referred to the specialist vasculitis unit at
Addenbrooke's hospital, Cambridge, UK between July 2004 and May 2008 were enrolled
into the present study. 34 patients presenting with active disease between July 2004 and Oct
2006 composed a prospectively-defined initial vasculitis cohort, while a further 27 patients
presenting between November 2006 and May 2008 composed a validation cohort, defined
arbitrarily by date of presentation only. Active disease at presentation was defined by
Birmingham vasculitis activity score (BVAS37) and the clinical impression that induction
immunosuppression would be required. Following treatment with an immunosuppressant
and tapering dose steroid therapy (Supplementary Table 3), patients were followed up
monthly for up to 1000 days. Prospective disease monitoring was undertaken by clinicians
blinded to gene expression findings using serial BVAS disease scoring37 and full
biochemical, haematological and immunological profiling (Supplementary Table 2). At each
time-point of follow-up, disease activity was allocated into one of three categories: Flare (at
least 1 major or 3 minor BVAS criteria), low-grade activity (0 major and 1-2 minor BVAS
criteria) or no activity (0 major or minor BVAS criteria). To differentiate between discrete
flares clear improvement in disease activity was required in the form of an improvement in
flare-related symptoms together with a reduction in BVAS score, a reduction in markers of
inflammation (CRP, ESR), and a reduction in immunosuppressive therapy.

McKinney et al. Page 5

Nat Med. Author manuscript; available in PMC 2012 November 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The SLE cohort was composed of 25 patients attending or referred to the Addenbrooke's
Hospital specialist vasculitis unit between July 2004 and May 2008 meeting at least four
ACR SLE criteria6, presenting with active disease (defined below) and in whom
immunosuppressive therapy was to be commenced or increased. Following treatment with
an immunosuppressant (Supplementary Table 5) patients were followed up monthly for up
to 1000 days (Supplementary Table 4). An episode was defined as a discrete disease flare if
it met all 3 of the following prospectively-defined criteria: 1. new BILAG score A or B in
any system, 2. clinical impression of active disease by the reviewing physician and 3.
increase in immunosuppressive therapy as a result. To differentiate between disease flares
clear improvement in disease activity was required in the form of an improvement in flare-
related symptoms together with a reduction in BILAG score and a reduction in
immunosuppressive therapy before a further flare could be defined. Ethical approval was
obtained from the Cambridge Local Research Ethics Committee.

Cell separations and microarray hybridizations
Leukocyte subsets were purified, RNA extracted10 and microarray hybridizations
performed as previously described38. Custom microarrays were printed at the Centre for
Microarray Resources, Department of Pathology, University of Cambridge using 50mer
olignucleotide probes representing 25,342 genes and control probes11. Where indicated,
later cohorts were analysed using the Human Gene 1.0 ST Array (Affymetrix) as described.
Further details are given in Supplementary Methods.

Quantitative RT- PCR
Taqman Gene Expression Assays (Applied Biosystems) were performed on an ABI PRISM
7900HT instrument according to the manufacturer's instructions.

Flow cytometry—Samples were analysed on a CyAn ADP flow cytometer (Dako) using
FlowJo software (Tree Star). All monoclonal antibodies were from Becton Dickinson or
Abcam.

Microarray data analysis
Raw image data was extracted using Koadarray v2.4 software (Koada Technology) and
probes with a confidence score >0.3 in at least one channel were flagged as present.
Extracted data was imported into R where log transformation and background subtraction
were performed followed by within-array print-tip Loess normalisation and between-array
aquantile and scale normalisation using the Bioconductor package, Limma package.
Normalized data was further analysed in Genespring v7.2 (Agilent), Cluster, Gene Pattern,
BRB ArrayTools, and ExpressionProfiler:NG as described in Supplementary Methods.

Statistical analysis
Differential expression between defined phenotypes was assessed using one-way ANOVA
with FDR controlled at 5%. Genes showing minimal variation between defined phenotypes
were excluded from analysis using a fold change (FC) filter set at either 1.5 or 2-fold as
specified. Mann Whitney U tests, Chi-square tests, and Kaplan Meier log-rank tests were
performed in Prism (GraphPad Software). Overlap between differentially expressed
genelists was assessed using hypergeometric probability (Genespring v7.2, Agilent).
Expression density distribution profiling and differential co-expression analyses were
performed in R as described in Supplementary Methods.
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Classifier
A Classifier was built using a support vector machines algorithm optimized on a 50%
‘training’ subsample and validated on the remaining ‘test’ samples, generated in a
randomized, stratified fashion. A predictive model was derived from the training set and
applied to the test set to assess its predictive performance. Development of the predictive
classifier was performed using the Genepattern 2.0 platform. Further details in
Supplementary Methods.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. T cell gene expression identifies a previously unrecognized subgroup of AAV patients
at increased risk of relapsing disease
(a) Supervised hierarchical clustering using expression data from 925 genes > 2-fold
significantly differentially expressed between the subgroups defined in Fig. S1 (false
discovery rate (FDR) p<0.05) clusters the initial cohort of AAV patients (n = 32) into two
distinct subgroups. (b) Hierarchical clustering of an independent validation cohort of AAV
patients (n = 27) using expression data for the same gene list defined in (a) also identifies 2
distinct subgroups. Hierarchical clustering was performed using uncentered correlation and
average-linkage. (c) Survival curve showing shorter time to first flare in v8.1 following
induction therapy. Flare-free survival represented as proportion of all individuals reaching
each timepoint with the numbers remaining at risk within each cohort detailed below.
Significance was measured using the log-rank test. (d) Increased flare frequency in v8.1
when followed out to 1,000 days. Flare rate normalized to duration of follow-up performed
at day 500 (mean flare rate 0.91/year v8.1 vs 0.17/year v8.2, p=0.01) and at day 1,000 (mean
flare rate 0.81/year v8.1 vs 0.15/year v8.2, p=0.004).
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Figure 2. The CD8 T cell signature that predicts prognosis in AAV defines analogous subgroups
in SLE
Consensus subgroups in a cohort of 26 SLE patients were defined by unsupervised
hierarchical clustering. (a) Supervised hierarchical clustering of the SLE cohort using 1,913
genes that best define the subgroups (>2-fold statistically significant differential expression,
p<0.05, FDR<0.05). One patient (black asterisk) underwent repeat analysis at the time of a
second disease flare 14 months after enrolment and remained in subgroup s8.1 despite
alterations in therapy. (b) Hierarchical clustering of AAV samples using expression data for
the same genes as in panel (a) reproduces the same subgroups as found with de novo
unsupervized clustering of the AAV dataset. Genelists defining the 2 subgroups in vasculitis
(n = 1,228) and SLE (1,913) cohorts were highly overlapping (overlap = 639 genes,
hypergeometric p-value <1 × 10−300). (c) Kaplan-Meier plot showing shorter time to first
flare in s8.1. Significance was measured using the log-rank test. (d) Increased flare
frequency in subgroup s8.2 when followed out to 1,000 days. Red asterisk = mean flare-rate
normalized per unit time follow-up with Mann Whitney U test of significance performed at
day 500 (flare-rate 0.86/year v 0.08/year, p = 0.0006) and at day 1,000 (flare-rate 0.81/year
vs 0.09/year, p = 0.001).
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Figure 3. Similar subgroups can be identified in a healthy population, and the defining signature
is composed of genes whose expression predominantly conforms to a bimodal distribution
Consensus subgroups in a cohort of 22 healthy Caucasian controls, age and sex-matched to
the AAV cohort, were defined by unsupervised hierarchical clustering as for the disease
cohorts. (a) The 944 genes best defining these subgroups (>2-fold statistically significant
differential expression, FDR p<0.05) were subject to hierarchical clustering. (b)
Unsupervised hierarchical clustering of a pooled CD8 T cell expression dataset including all
samples (AAV, SLE and control) reproduces subgroups 8.1 and 8.2, but shows no clustering
by disease status. (c, d) CD8 T cell RNA from a cohort of 18 healthy Caucasian (c) and 25
Singaporean (d) controls was hybridised to the Affymetrix Gene 1.0 ST Array. Each cohort
was clustered using data derived from 780 genes which represent the subset of the genes
used in panel (a) that could be mapped onto Affymetrix feature names using common Entrez
IDs. Unsupervised de novo clustering produced the same subgroups (data not shown). (e)
Matched expression density distributions for genes differentially-expressed (FDR<0.05,
fold-change 1.5) between patients in two randomly assigned subgroups of the AAV dataset
(n=392, open bars) or subgroups 8.1 and 8.2 (n=1860, blue bars) confirming significant
deviation of expression pattern from normal to bimodality (chi-square p<0.001 for bimodal
versus other).
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Figure 4. Poor prognosis in AAV correlates with over expression of mRNAs encoding proteins
associated with T cell survival and memory
(a, b) Magnitude and direction of differential gene expression between subgroups v8.1 and
v8.2 for genes of (a) IL7R pathway (b) TCR signalling pathway. FDR p<0.05 and fold-
change as illustrated by colour heatmap. Significance of enrichment was tested for the IL7R
pathway (GSEA p=0.029, inset), Jak/Stat signalling pathway (Ingenuity, p<0.01, FDR<0.05,
data not shown) and TCR signalling pathway (GSEA p=0.03, Ingenuity hypergeometric
FDR p<0.05). (c) GSEA identified significant enrichment of a CD8 TEM signature in v8.1,
p=0.023. (d) Memory T cell subsets of representative individuals from v8.1 (left panel) and
v8.2 (right panel). Cells gated on CD3+ CD8+ showing naïve (TN, CD45RA+ CCR7+),
memory (TMEM, CD45RA−) and effector memory RA (TEMRA, CCR7− CD45RA+)
populations as indicated. (e, f) Boxplots showing relative proportions (e) and absolute
numbers (f) of total, memory, naïve and effector memory-RA CD8 T cells in the two
subgroups. (g) 3D scatterplots showing the classification of combined SLE and AAV
samples using CD8 expression data from 3 genes (ITGA2, NOTCH1, PTPN22) separating
patients by prognostic subgroups in both diseases (left panel) with no differentiation
between diseases (right panel). mRNA expression on x, y and z axes as log2 ratio. (h) A
predictive model was derived using a support vector machines algorithm on a randomized,
stratified 50% subset of all samples (training set) and its performance assessed on the
remaining 50% (test set), shown in (h), PPV=94%, NPV=100%. y-axis = confidence of
prediction (%). (i) 3D scatterplot of the AAV cohort by the same 3-gene classifer using
PBMC-derived gene expression data.
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