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Diabetic macular edema (DME), being a frequent manifestation of DR, disrupts the retinal symmetry. This 
event is particularly triggered by vascular endothelial growth factors  (VEGF). Intravitreal injections of 
anti‑VEGFs have been the most practiced treatment but an expensive option. A major challenge associated 
with this treatment is determining an optimal treatment regimen and differentiating patients who do not 
respond to anti‑VEGF. As it has a significant burden for both the patient and the health care providers if 
the patient is not responding, any clinically acceptable method to predict the treatment outcomes holds 
huge value in the efficient management of DME. In such situations, artificial intelligence (AI) or machine 
learning  (ML)‑based algorithms come useful as they can analyze past clinical details of the patients and 
help clinicians to predict the patient’s response to an anti‑VEGF agent. The work presented here attempts 
to review the literature that is available from the peer research community to discuss solutions provided by 
AI/ML methodologies to tackle challenges in DME management. Lastly, a possibility for using two different 
types of data has been proposed, which is believed to be the key differentiators as compared to the similar 
and recent contributions from the peer research community.
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In the last decade, artificial intelligence  (AI) and machine 
learning (ML)‑based systems disrupted almost every industry 
that one can imagine. Although a bit late, the healthcare 
industry is also getting overwhelmed with the recent 
advancement of these powerful technologies. AI could be a 
technique that allows computers to mimic human behavior. 
AI is being used in an exceedingly myriad of healthcare 
infrastructure, including hospitals, clinical laboratories, 
and research facilities. Ophthalmology shares the space 
with other therapeutic areas within healthcare and utilizes 
the capabilities of AI and ML for various purposes such as 
automatic screening,[1] decision support system for primary 
clinics,[2] automatic disease severity classification,[3] and 
treatment optimization,[4] and can be integrated into workflows 
to reduce the burden of repetitive tasks and increase diagnostic 
precision. AI and ML‑based technologies are often used in 
the field of medicine for repetitive tasks, tasks for which the 
trained manpower is less, and for identifying new signals 
that are difficult to predict by the physician. In the field of 
ophthalmology, imaging provides a way to objectively detect 
and diagnose the progression of pathologies and response to 
treatment. AI/ML‑based algorithms have made progress in 
recent times, in diseases such as diabetic retinopathy (DR),[5‑8] 
age‑related macular degeneration  (AMD),[9,10] glaucoma,[11] 

cataract,[12] retinopathy of prematurity  (ROP),[13] and retinal 
vein occlusion (RVO).[14]

India has the second‑highest number of people with diabetes 
in the world  (77 million, 2019) following China.[15] Diabetic 
retinopathy  (DR) is the most common microvascular ocular 
complication of diabetes and occurs in both type 1 and type 2 
diabetes.[16] The population‑based studies in India over the last 
two decades reported the prevalence of DR as 18% in urban 
areas and 10% in rural areas.[17] Bressler et al.[18] reported that 
among those who showed evidence of DR, one‑third had 
macular edema, approximately one‑fourth had non‑clinically 
significant macular edema (non‑CSME), and 1 in 16 had CSME. 
Diabetic macular edema (DME) is a common cause of visual 
impairment among people with diabetes. Though DME can be 
detected using stereo retinal photographs, the retinal thickness 
that is affected by the presence of DME can be better measured 
by optical coherence tomography  (OCT).[19] The choice of 
management of DME is also based on OCT features. Currently, 
anti‑vascular endothelial growth factor (anti‑VEGF) agents are 
the mainstay of DME treatment. However, the clinical and 
OCT response after intravitreal anti‑VEGF is variable, with 
both responder and non‑responder seen in real‑life situations.
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However, the ophthalmic research community may also have 
an interest to understand how AI/ML techniques are performing 
on various aspects of vision‑threatening DR called DME. In recent 
times, AI/ML techniques have been explored in the management 
of DME. These techniques have been used for the diagnosis of 
DME from retinal photographs or OCT. There is evidence of 
using AI/ML techniques for predicting the treatment response.

In this review, we systematically reviewed AI/ML‑based 
techniques used to analyze various aspects of DME, starting 
from its detection to treatment optimization. Through this 
article, a possibility for using two types of data has been 
proposed, which is believed to be the key differentiators as 
compared to the similar and recent contributions from the peer 
research community.

Methods
A comprehensive literature search was conducted on Google 
Scholar and PubMed by using the MESH term (machine learning) 
AND  (visual outcomes) AND  (Lucentis) OR  (ranibizumab) 
OR  (treatment options) AND  (diabetic macular edema) 
AND (diabetic population) for the time period of 2009–2020. 
Only studies with full texts published in English were included. 
A hierarchical approach was adopted when selecting articles by 
three reviewers independently: relevant articles were initially 
selected based on their titles and abstracts. The full texts of these 
articles were then obtained and reviewed in more detail. Out of 
80 hits, 20 relevant hits were obtained. We reviewed articles on 
AI that involved DME management by anti‑VEGF comparing 
the efficacy, whereas the articles dealing with other ophthalmic 
conditions and other DME and DR management were excluded.

Need for identifying and predicting algorithm in DME 
management
Identifying DME
The presence of DME is a feature of sight‑threatening DR. 
A definitive diagnosis of DME needs measurement of central 
subfield thickness on OCT. DME rarely occurs unless the patient 
has at least moderate NPDR. OCT is not mandatory if there are 
no signs of DR or in very mild retinopathy (<5 microaneurysms). 
However, for all other cases, to initiate the treatment of DME, 
doing an OCT and classifying DME to non‑central involving 
and central involving DME is often required.

Screening of DR utilizes fundus cameras to capture retinal 
images, which are then graded for presence and severity of DR. 
For epidemiology studies, stereoscopic retinal photographs 
were taken to ensure a correct diagnosis of DME. However, in 
routine screening taking stereoscopic retinal photographs is 
time‑consuming and often needs specialized skills. Evidence is 
emerging on the development of algorithms for retinal images 
utilizing the ground truth of the grader or utilizing the OCT 
data of the same patient to diagnose DME.[20]

Predicting response to Intravitreal anti‑VEGF
Intravitreal anti‑VEGF therapy is the most commonly used 
treatment approach in the management of DME because of 
its efficacy as validated by clinical trial data and has become 
the first line of treatment for DME. Patients in the RISE 
and RIDE trials had, on average, an approximately 40% 
reduction in central retinal thickness on optical coherence 
tomography  (OCT) within the first 3 months of initiating 
monthly treatment with ranibizumab.[21] Although anti‑VEGF 
therapy is often very effective, a subset of patients  (about 
30%–40%) appear to be refractory and often require other 
forms of medical management, including alternative anti‑VEGF 
therapies and/or steroids.[20] Prompt and efficacious treatment 

of DME is important to maximize visual outcomes, and that 
delay in effective treatment may adversely affect vision. As 
most patients diagnosed with DME receive anti‑VEGF therapy, 
early identification of anti‑VEGF response status is important. 
A method to identify responders to anti‑VEGF therapy would 
aid physicians to tailor treatment to likely patient outcomes. 
At present, the decision of non‑responder is often made after 
initiating the treatment with anti‑VEGF and utilizing few 
clinical  (OCT‑based) biomarkers  (not extensively studied). 
There is evidence on algorithms trying to predict the response 
of anti‑VEGF in DME.[22,23]

Review of major contributions
There are two types of problems in DME management that 
have been addressed through different AI/ML approaches: a) 
identification of DME and b) understanding treatment responses 
using anti‑VEGF agents. Numerous research articles address the 
detection of DME; however, the treatment response prediction 
remains a challenge in the management of the disease with 
anti‑VEGF treatment options. The literature review taxonomy 
is provided through an illustration [Fig. 1]. The identification 
of DME is done through a traditional ML‑based approach, 
performing the classification whether DME is present. With 
the advancement of DL techniques, DME identification is also 
done using various DL models in terms of DME classification 
or detecting and quantifying the fluids using the segmentation 
approach. The response prediction of DME treatment is mainly 
done using DL techniques or combining DL.

Use of traditional ML‑based techniques used for identifying DME
Identification of DME has been primarily carried out on OCT 
data, where AI/ML‑based techniques try to classify the DME 
accurately. Srinivasan et al.[25] used the traditional approach to 
extract the features (histogram of gradient (HOG)) from OCT 
images and then used support vector machines  (SVM) as a 
classification tool. On a dataset of 45°CT cubes with 15 in each 
category, 42‑fold cross‑validations were carried out, showing 
a 100% classification rate on AMD and DME.

Lemaître et  al. [26] described a binary classification 
framework that separates DME from normal patients using 
spectral‑domain OCT data. Local binary pattern  (LBP) has 
been chosen as a feature extraction tool, while the feature 
transformation  (high‑level to low‑level discriminative 
features) is done through Bag‑of‑Word approach. For the 
classification task, several classifiers were involved: (i) k‑nearest 
neighbor, (ii) logistic regression, (iii) random forest (RF), (iv) 
gradient boosting, and (v) SVM. RF showed higher sensitivity 
while SVM outperformed in terms of specificity.

The same research group had published a similar work[27] 
before this article was published.

In another old research article, Liu et  al.[28] proposed 
a four‑class classification technique considering macular 
hole, macular edema  (ME), AMD, and normal as classes. A 
multiscale texture and shape features have been considered 
as features followed by SVM as a classification technique. 131 
ZEISS SD‑OCT® cubes from 37 subjects across the classes were 
considered as test data. The outcomes of one‑versus‑all based 
four binary classifications have been reported using the two‑class 
classification paradigm realized through the SVM classifier. 
A minimum area under curve (AUC) of 0.94 was achieved.

To detect DME,Alsaih K et al.[29] classified DME for normal 
SD‑OCT cubes collected from Singapore Eye Research Institute. 
After preprocessing, the histograms of oriented gradients 
and LBP were extracted as features. Feature sets were then 
transformed and compactly represented through principal 
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component analysis. Finally, classification was analyzed by both 
linear and nonlinear SVMs and using RF. The work showed the 
highest 87.5% sensitivity and 87.5% specificity from linear SVM.

An interesting idea has been presented by Sidibé et al.,[30] where 
classification between DME and normal OCT cubes was treated 
as anomaly detection or one‑class classification problem. 
A  Gaussian mixture model  (GMM) has been developed on 
the features extracted from the B‑scans of normal OCT cubes. 
During verification, B‑scans with DME pathology presence were 
supposed to be flagged as an anomaly, while the normal B‑scans 
were identified as a member of the same class as the GMM model. 
On two different datasets, the method showed sensitivities and 
specificities better than contemporary techniques.

In a very recent study,[31] a unique approach has been 
adopted to find the retina region from a B‑scan by first 
segmenting it through K‑means and then applying Gaussian 
filtering regularized level set algorithm to identify the region 
of pathologies that correspond to DME. This two‑step based 
robust algorithm achieved a comparable sensitivity and 
specificity when compared against manual segmentation. 
A notable claim of this algorithm is it being 66  times faster 
than the manual process.

The literature described above uses the conventional feature 
extraction‑transformation‑modeling trio, where a feature set 
has been transformed first and then modeled using traditional 
classification techniques. Like other application areas, we also 
found that the performances of such traditional ML‑based 
techniques get saturated as we involve more data. Next, we 
discuss some identification techniques based on advanced 
technologies such as DL.

Use of DL‑based techniques used for identifying DME
In this subsection, the first two paragraphs describe DME 
identification and pathology quantification using the 
segmentation approach, while the rest of the paragraphs 
contain conventional DL‑based approaches adopted by various 

research groups to address pure OCT classification, where one 
of the classes is DME.

A classical DL‑based approach to detect and quantify retinal 
biomarkers was shown by Schlegl et al.[32] An autoencoder was 
used to detect patches of IRC and SRF for each B‑scan in a cube 
and then aggregated over all the B‑scans to calculate the total 
fluid deposition for the cube. The method was found to be 
robust enough to predict the fluid detection well on various 
diseases such as AMD and retinal vein occultations  (RVO) 
other than DME. The author also showed the versatility of the 
algorithm on two different OCT imaging devices.

A very similar approach has been attempted by Lee et al.,[6] 
where the detection of intraretinal fluid (IRF) was evaluated 
to estimate ME. Segmented maps were generated from OCT 
B‑scan to detect IRF. The authors used the Dice coefficient 
to determine the match between expert annotations and the 
algorithm’s output. Around 1300 B‑scans were involved to 
cross‑validate the developed model that resulted in a Dice 
coefficient of 0.911.

In another study[33], features were extracted from various 
layers of a VGG‑16 network. These features were then modeled 
through various classifiers to classify between normal and 
DME OCT cubes. This approach is not an end‑to‑end DL‑based 
approach, which is not commonly found among the attempts 
done by various researchers. This article, however, shows 93.5% 
and 81% sensitivity and specificity, respectively.

In this context, it is worth mentioning that the first end‑to‑end 
DME classification technique was proposed by Perdomo 
et al.[34] through a convolutional neural network (CNN)‑based 
approach called OCT‑NET. On a small dataset consisting of 32 
cubes with 16 normal and 16 DME, the classification experiment 
showed 93.5% as equal accuracy, sensitivity, and specificity.

A pure DL‑based approach has been reported by Ravi 
et al.,[35] where Inception‑Resnet‑v2 architecture was used to 
classify DME from a Normal OCT scan. The work showed 

Figure 1: Taxonomy of literature describing contribution toward DME
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100% accuracy (also 100% sensitivity and specificity) on the 
same Singapore Eye Research Institute  (SERI) dataset used 
earlier by Awais et al.[33] and Perdomo et al.[34] This also proves 
that the proposed method is the best among its predecessors.

A similar approach has been developed by De‑Kuang 
Hwang[36] for DME screening using OCT data. A  total of 
4932°CT images of 173 diabetic patients with DME who received 
intravitreal injections (IVIs) of either anti‑VEGF or corticosteroid 
in Taipei Veterans General Hospital during January of 2017 to 
December of 2017 were collected for the study, out of which 3495 
images passed the image quality control and were used in this 
study. Two CNN architectures, InceptionV3 and VGG16, were 
applied to establish the AI models and achieved an accuracy of 
93.42% and 93.15%, respectively. The external validation of both 
the models was done using 227 DME and 135 non‑DME OCT 
images, where InceptionV3 achieved an accuracy of 93.09%, 
a sensitivity of 95.15%, and a specificity of 89.48%, while the 
VGG16 model achieved 92.82% accuracy, 96.48% sensitivity, 
and 86.67% specificity.

A slightly different approach based on the multiscale transfer 
learning algorithm was attempted by Quan Zhang et al.[37] The 
algorithm was developed using 38,057°CT images  (Drusen, 
DME, CNV, and Normal) in two parts: the self‑enhancement 
model and the disease detection model. The two‑dimensional 
CNN‑based multiscale edge detection is the core of the 
self‑enhancement module. The disease detection module was 
developed using Inception V3 architecture. This two‑stage 
classification module achieved 94.5% accuracy, 97.2% precision, 
97.7% sensitivity, and 97% specificity in the independent 
testing dataset.

Varadarajan et al.[20] used OCT images for DME grading of 
fundus images. With this cross‑modality grading approach, 
the DL model trained using only fundus images outperforms 
the previous models in terms of higher specificity. The model 
can also detect the presence of intraretinal fluid (AUC: 0.81; 
95% CI: 0.81–0.86) and subretinal fluid  (AUC 0.88; 95% CI: 
0.85–0.91). This approach provides the possibility of using 
fundus images in DME diagnosis and achieved 81% accuracy, 
85% sensitivity, and 80% specificity when evaluated on primary 
dataset while it achieved 88% accuracy, 57% sensitivity and 
91% specificity when evaluated on the secondary validation 
set (EyePACS‑DME dataset).

In a very recent study by Takumasa et al.,[38] a novel capsule 
network has been proposed to address a four‑way classification 
among DME, choroidal neovascular membrane, Drusen, and 
normal OCT scans. A  very large dataset has been used to 
conduct the experiments, unlike previous approaches where 
the datasets were very small. This contribution reported 99.6% 
accuracy claiming 3.2% higher than those of contemporary 
methods.

Existing AI/ML‑based techniques determine the effectiveness of 
anti‑VEGF in DME patients
Lately, researchers are reporting more on the efficacies of 
anti‑VEGF treatment on DME rather than publishing their 
researchers on detection. It is well understood from the retina 
specialist that the anti‑VEGF injections are the first line of 
treatment to manage the DME, and they know that there would 
be a definite reduction of central subfield thickness (CST) after 
the application of the anti‑VEGF agent. However, they are 
unsure to what extent such a reduction would take place given 
the pre‑medical condition of the patient.

An AI‑based algorithm can play a very vital role here 
to provide clinicians with a near accurate estimate of such 

reduction for better treatment outcomes. We present here two 
such recent studies that attempted to represent this newer 
concept within the regime of treatment optimization.

Shao et  al.[39] used an artificial neural network  (ANN) to 
predict VA after ranibizumab treatment in DME. Ranibizumab, 
a well‑known anti‑VEGF agent, is safe and effective for DME 
treatment as it stops fluid leakage, reverses macular thickening, 
and improves vision. To train the ANN, the authors used 
patient demographic information, a little clinical information, 
diabetes type or condition, systemic diseases, eye status, and 
treatment timetables. On a publicly available dataset from 
the National Institutes of Health, the algorithm finds a good 
correlation between predicted VA against the ground truth 
on various time periods such as 52, 78, and 104 weeks. The 
method however neither used any OCT images nor predicted 
CST values directly.

On a complementary method as shown by [24], only OCT 
images have been used to predict CST of post‑treatment of 
127 subjects. Here, pre‑treatment OCT images have been 
considered as input to a CNN, while the differential thickness 
has been chosen as output/target. The authors proposed a novel 
prediction algorithm called CADNet, a modification of the VGG 
network. For fine‑tuning the model, 5‑fold cross‑validation has 
been chosen to generalize the performance of the algorithm that 
shows an average AUC of 0.866 in discriminating responsive 
from non‑responsive patients.

A similar task was attempted by Cao et  al.[40] with a 
different approach. As feature extractions, features like retinal 
layer segmentation and disruption ratio, intraretinal and 
subretinal fluid segmentation and area quantization, number of 
hyperreflective dots, and optical density ratio of intraretinal and 
subretinal fluid measurements are extracted using DL techniques. 
The classification of anti‑VEGF response was performed using 
RF and SVMs with different kernel functions. Among all 
experimented classifiers, RF achieved the best performance of 
90.7% specificity, 87.7% sensitivity, and 95.1% AUC.

Instead of classifying the response of the anti‑VEGF 
treatment, Liu et al.[41] predicted the post‑injection CST value 
using the combined both DL and traditional ML techniques. The 
deep fusion features were extracted from the OCT images using 
an ensemble of three convolutional neural networks, AlexNet, 
Vgg16, and ResNet18. These features were then combined 
with the clinical parameters, such as the measurement data, 
CFT, age, gender, baseline BCVA, and serum glucose, followed 
by the ensemble such as RF, SVM, decision tree, and Lasso 
continuous ML (CML) models to predict the CFT and BCVA 
values. This multilevel ensemble technique achieved mean 
absolute error (MAE), root mean square error (RMSE), and R2 
values of the best‑performing model in the training set as 66.59, 
93.73, and 0.71, respectively, for CFT prediction. While for BCVA 
prediction, the MAE, RMSE, and R2 of the best‑performing 
model in the training set was 0.19, 0.29, and 0.60, respectively. 
On the external validation set, the system achieved MAE, RMSR, 
and R2 of 68.08, 97.63, and 0.74, respectively, for CFT prediction 
and 0.13, 0.20, and 0.68, respectively, for BCVA prediction.

The effect of anti‑VEGF treatment in terms of volumetric 
change of intraretinal fluid  (IRF) and subretinal fluid  (SRF) 
was examined by Roberts et  al.[42] The IRF and SRF were 
quantified using a DL‑based approach and the performance 
of such an algorithm was also described in a study.[24] This 
post‑hoc analysis of a randomized clinical trial of 570 patients 
concludes that the Aflibercept was associated with greater 
reduction of IRF volume compared with bevacizumab after 
the first injection.
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Contd...

Table 1: Summary of research articles on applicability of AI in DME management

Year of 
publication

Author Objective Dataset Methodology Performance Metrics

Sep 2014 Pratul P. 
Srinivasan 
et al.[25]

Automatic detection of 
DME and dry AMD from 
OCT images

45°CT cubes with 15 in 
each of three categories, 
Normal, AMD, and DME

A traditional approach 
to extract HOG feature 
vector from denoised 
SD‑OCT images followed 
by SVM classifier.

Achieved 100% 
accuracy for AMD and 
DME classification 
while 86.67% accuracy 
for Normal OCT cube 
classification

Jul 2016 Guillaume 
Lemaître et al.
[26]

DME classification of 
SD‑OCT volumes using 
local binary patterns

The dataset, 32°CT 
volumes (16 DME 
and 16 normal cases) 
was acquired by the 
Singapore Eye Research 
Institute (SERI), using 
CIRRUS (Carl Zeiss 
Meditec, Inc., Dublin, 
CA) SD‑OCT device

As a feature extraction 
tool, LBP was used 
followed by feature 
transformation using 
Bag‑of‑Word. Several 
classifiers, k‑NN, LR, 
RF, GB, and SVM, were 
involved.

The highest sensitivity 
(81.2%) was achieved 
using RF while the 
highest specificity 
(93.7%) was achieved 
by SVM.

Oct 2011 Yu‑Ying Liu 
et al.[28]

Classification of Macular 
Hole (MH), Macular 
Edema (ME), and 
Age‑related Macular 
Degeneration (AMD) 
from normal using 
SD‑OCT cubes

131 ZEISS SD‑OCT 
cubes from 37 subjects 
across the four classes 
were considered as 
test data while 326 
scans from 136 subjects 
were used for the 
development

A multiscale texture 
and shape features 
have been considered 
as features followed by 
SVM as a classification 
technique.

Two‑class SVM 
classifiers achieved 
AUC of 0.978, 0.969, 
0.941, and 0.975 for 
identifying normal 
macula, MH, ME, and 
AMD, respectively.

Jun 2017 Alsaih K  
et al.[29]

Machine learning 
techniques for diabetic 
macular edema (DME) 
classification on 
SD‑OCT images

Singapore Eye Research 
Institute (SERI) dataset 
‑ 32°CT cubes with 16 
normal and 16 DME 
cubes

BM3D, flattering, and 
cropping were used as 
preprocessing followed 
by HOG and LBP feature 
extractions. Features 
were then transformed 
and represented 
through PCA. Linear 
and nonlinear SVM and 
RF were used for the 
classification.

Linear SVM achieved 
a sensitivity and 
specificity of 87.5% and 
87.5%, respectively.

Feb 2017 Désiré Sidibé 
et al.[30]

An anomaly detection 
approach for the 
identification of DME 
patients using SD‑OCT 
images

Two different datasets:
1). SERI dataset ‑ 32°CT 
cubes with 16 normal 
and 16 DME cubes
2). Duke dataset 
consists of 45 SD‑OCT 
volumes from 15 DME 
patients, 15 AMD 
patients and 15 normal
subjects, respectively.

The normal OCT mages 
were modeled using 
GMM and abnormal OCT 
images were detected as 
outliers.

This anomaly detection 
method achieves a 
sensitivity of 80% and 
a specificity of 93% on 
the first dataset, and 
100% and 80% on the 
second dataset.

Apr 2020 Zhenhua 
Wang et al.[31]

Detection of DME in 
OCT image using an 
improved level set 
algorithm

The OCT dataset 
contains 100°CT images 
(10 normal images 
and 80 DR images 
with DME and 10 DR 
images with no signs of 
DME), acquired using 
Heidelberg SD‑OCT 
device

A novel algorithm 
for the detection and 
segmentation of DME 
region in OCT image 
based on the K‑means 
clustering algorithm 
and improved Selective 
Binary and Gaussian 
Filtering Regularized 
Level Set.

Algorithm achieved 
97.7% precision 
(97.7%), sensitivity 
(91.8%), and specificity 
(99.2%)
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Contd...

Table 1: Contd...

Year of 
publication

Author Objective Dataset Methodology Performance Metrics

Apr 2018 Thomas 
Schlegl  
et al.[32]

Automatic detection and 
quantification of macular 
fluid in OCT using deep 
learning

1200°CT volumes of 
patients (400 AMD, 400 
DME and 400 RVO) 
acquired with CIRRUSTM 
(Carl Zeiss Meditec, 
Dublin, CA) (600 cubes) 
or Heidelberg Spectralis 
(Heidelberg Engineering, 
Heidelberg, Germany) 
(600 cubes) OCT 
devices.

Deep learning‑based 
algorithm to automatically 
detect and quantify 
intraretinal cystoid fluid 
(IRC) and subretinal fluid 
(SRF) was developed.

Algorithm achieved mean 
AUC of 0.94, a mean 
precision of 0.91, and 
a mean recall of 0.84 
for the detection and 
quantification of IRC for 
all 3 macular pathologies. 
While for the detection 
and measurement of 
SRF, the algorithm 
achieved an AUC of 0.92, 
a mean precision of 0.61, 
and a mean recall of 0.81.

Jun 2017 Cecilia S. Lee 
et al.[6]

Deep learning‑based 
automated intraretinal 
fluid (IRF) segmentation 
to estimate macular 
edema in OCT

Around 1300°CT 
macular B‑scan images 
were used for training 
and cross‑validation.

A CNN architecture with 
18 convolutional layers 
was developed to detect 
the IRF in the OCT 
images.

The segmentation 
algorithm achieved 
a cross‑validated 
Dice coefficient of 
0.911 compared with 
segmentations by 
experts.

Sep 2017 M. Awais  
et al.[33]

Classification of 
abnormal and normal 
OCT image volumes 
using a pre‑trained 
CNN.

Singapore Eye Research 
Institute (SERI) dataset 
‑ 32°CT cubes with 16 
normal and 16 DME 
cubes acquired with 
CIRRUSTM (Carl Zeiss 
Meditec, Dublin, CA).

Classification was 
performed using different 
classifiers taking features 
from different layers of 
the VGG‑16 network.

The algorithm achieved 
the best accuracy of 
87.5% while sensitivity 
and specificity being 
93.5% and 81%, 
respectively.

May 2018 Oscar 
Perdomo et al.
[34]

Automatic classification 
of normal and diabetic 
macular edema using 
SD‑OCT volumes

Singapore Eye Research 
Institute (SERI) dataset 
‑ 32°CT cubes with 16 
normal and 16 DME 
cubes acquired with 
CIRRUSTM (Carl Zeiss 
Meditec, Dublin, CA).

12 layers OCT‑NET, a 
CNN‑based end‑to‑end 
classification technique 
was developed to classify 
the OCT volumes.

The classification 
experiment with 
OCT‑NET achieved 
equal accuracy, 
sensitivity, and 
specificity of 93.5%.

Dec 2018 Ravi M. 
Kamble et al.
[35]

Classification of DME 
from normal OCT 
scan using DL‑based 
approach.

Singapore Eye Research 
Institute (SERI) dataset 
‑ 32°CT cubes with 16 
normal and 16 DME 
cubes acquired with 
CIRRUSTM (Carl Zeiss 
Meditec, Dublin, CA).

Inception‑Resnet‑v2 
architecture was used for 
the classification of DME.

The technique achieved 
100% sensitivity and 
specificity on the SERI 
dataset.

April 2020 De‑Kuang 
Hwang et al.[36]

OCT‑based diabetic 
macula edema 
screening with artificial 
intelligence

3495°CT images were 
collected from 173 
diabetic patients with 
DME who received 
intravitreal injections 
(IVIs) of either 
anti‑vascular endothelial 
growth factor (VEGF) 
or corticosteroid in 
Taipei Veterans General 
Hospital during January 
of 2017 to December of 
2017 were enrolled in 
the study.

Two CNN architectures 
(InceptionV3 and 
VGG16) have been 
applied to establish the 
AI models.

The performance 
of each AI model 
(InceptionV3 and 
VGG16) has been 
verified by For the 
validation data set, 
consist of 227 DME 
and 135 non‑DME OCT 
images, the accuracy of 
the AI model based on 
VGG16 and InceptionV3 
architectures was 
92.82% and 93.09%, 
respectively while the 
achieved sensitivity was 
96.48% and 95.15% 
and the specificity 
was corresponding to 
86.67% and 89.63%, 
respectively. 
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Table 1: Contd...

Year of 
publication

Author Objective Dataset Methodology Performance Metrics

Dec 2020 Quan Zhang 
et al.[37]

Identifying Diabetic 
Macular Edema and 
Other
Retinal Diseases by 
Optical Coherence
Tomography Image 
and Multiscale Deep 
Learning

A total of 38,057°CT 
images (Drusen, DME, 
CNV and Normal) to 
establish and evaluate 
the model. All data are 
OCT images of fundus 
retina. There were 37,457 
samples in the training 
dataset and 600 samples 
in the validation dataset

The classification system 
consists of two parts: 
first the multiscale edge 
detection and second 
is Inception V3 CNN 
architecture‑based 
disease detection model.

The model reached 
94.5% accuracy, 97.2% 
precision,
97.7% sensitivity and 
97% specificity in the 
independent testing 
dataset

Jan 2020 Varadarajan 
et al.[20]

Predicting OCT‑derived 
diabetic macular edema 
grades from fundus 
photographs using deep 
learning

Thailand dataset 
consists of 6039 fundus 
images from 4035 
patients were used for 
the development of 
the algorithm, During 
labeling Heidelberg 
Spectralis OCT data 
were used for quality 
labels.

The classification model 
was developed using 
Inception‑v3 CNN‑based 
architecture.

The model achieved 
accuracy, sensitivity, and 
specificity of 81%, 85%, 
and 80%, respectively 
for the primary validation 
set while 88% accuracy, 
57% sensitivity, and 
91% specificity when 
evaluated on the 
secondary validation set.

Mar 2020 Takumasa 
Tsuji et al.[38]

Classification of OCT 
images using a capsule
network

OCT dataset, consist 
of a training dataset of 
83,484 images and a test 
dataset of 1000 images 
‑ 250 images of each 
category, CNV, DME, 
drusen, and normal

Instead of CNN‑based 
architecture, the capsule 
network has been 
applied for the OCT 
classification.

This contribution 
reported 99.6% 
accuracy claiming 3.2% 
higher than those of 
contemporary methods.

Nov 2018 Shao‑Chun 
Chen et al.[39]

Predict the visual 
outcomes in Intravitreal 
Ranibizumab‑treated 
patients with DME

Publicly available 
dataset from the National 
Institutes of Health 
(DRCR.net) consist 
of 674 patients while 
only 454 patients were 
followed
up for more than 52 
weeks.

Artificial neural network 
was used for the 
regression calculation 
with the target as the 
final visual acuity at 52, 
78, or 104 weeks.

For the training group, 
testing group, and 
validation group, the 
respective correlation 
coefficients were 0.75, 
0.77, and 0.70 (52 
weeks); 0.79, 0.80, and 
0.55 (78 weeks); and 
0.83, 0.47, and 0.81 
(104 weeks), while the 
mean standard errors of 
final visual acuity were 
6.50, 6.11, and 6.40 (52 
weeks); 5.91, 5.83, and 
7.59; (78 weeks); and 
5.39, 8.70, and 6.81 (104 
weeks), respectively

Feb 2020 Reza Rasti 
et al.[24]

Automatically predict the 
efficacy
of anti‑VEGF treatment 
of DME in individual 
patients based on
OCT images

Spectralis SD‑OCT 
data of 127 patients, 
who underwent three 
intravitreous anti‑VEGF 
injections. The OCT 
images are acquired 
OCT before and after 
three consecutive 
anti‑VEGF injections 
spaced 4 to 6 weeks 
apart.

CADNet predictive 
framework was developed 
with the modification 
of VGG‑16 network. 
Differential retinal thickness 
was used to partition 
patients into responsive 
and non‑responsive 
classes. only patients with 
showing significantly (more 
than 10%) reduced retinal 
thickness were counted 
as responsive, while 
patients showing minimally 
improved or increased 
retinal thickness were 
counted as non‑responsive

The algorithm achieved 
an average AUC of 
0.866 in discriminating 
responsive from 
non‑responsive 
patients, with an 
average precision, 
sensitivity, and 
specificity of 85.5%, 
80.1%, and 85.0%, 
respectively
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Jun 2020 Cao et al.[40] Predict the anti‑ VEGF
therapeutic response of 
DME patients from OCT 
at the initiation stage 
of treatment using a 
machine learning‑based 
self‑explainable system

Spectralis SD‑OCT data 
with scanning
protocol used a 20° 
x 15° volume scan, 
consisting of 19 sections 
of 712 DME patients 
were collected at both 
baselines and after 3 
anti‑VEGF injections. 
The reduction in Central 
Macular Thickness 
is considered for the 
response classification.

Using Deep Leaning 
techniques, various 
features like Retinal 
layer segmentation 
and disruption 
ratio, Intraretinal 
and subretinal fluid 
segmentation and area 
quantization, number of 
Hyperreflective dots, and 
Optical density ratio of 
intraretinal and subretinal 
fluid measurements 
are extracted followed 
by RF or SVM‑based 
classification.

The RF classifier 
achieved the best 
performance of 90.7% 
specificity, 87.7% 
sensitivity, and 95.1% 
AUC.

Jan 2021 Baoyi Liu 
et al.[41]

Predict the post‑injection 
CFT and BCVA values 
using ensembled 
techniques for the 
combi image and clinical 
parameters data of 
anti‑VEGF treatment for 
DME patients

A total of 363°CT images 
and 7,587 clinical data 
records from 363 eyes 
were included in the 
training set (304 eyes) 
and external validation 
set (59 eyes).

Deep fusion features 
are extracted from the 
OCT images using the 
ensembled DL models. 
The features are 
combined with clinical 
parameters followed 
by the ensembled CML 
model to predict the CFT 
and BCVA values.

Ensembled system 
achieved MAE, RMSE, 
and R2 of 66.59, 93.73, 
and 0.71, respectively, 
for CFT prediction and 
0.19, 0.29, and 0.60 for 
BCVA prediction. While 
on the external validation 
set, the system achieved 
MAE, RMSE, and R2 
of 68.08, 97.63, and 
0.74, respectively, for 
CFT prediction and 
0.13, 0.20, and 0.68, 
respectively, for BCVA 
prediction.

Jul 2020 Roberts  
et al.[42]

Examine the volumetric 
change of IRF and 
SRF in DME during 
anti‑vascular endothelial 
growth factor treatment 
using deep learning 
algorithms.

SD‑OCT data of 570 
patients, who underwent 
anti‑VEGF treatment 
for DME, collected from 
August 21, 2012, to 
October 18, 2018.

Preprocessing for 
automatic alignment 
and registration of the 
SD‑OCT scans for the 
intra‑patient registration.
A deep learning 
convolutional neural 
network approach was 
applied, which classifies 
voxels as background, 
IRF, or SRF.
IRF and SRF volumes 
were computed for the
central fovea (circle with 
a 1‑mm diameter) and 
for the
parafovea (ring between 
1 and 3 mm surrounding 
the fovea)

The
presence of SRF 
at baseline was 
associated with a 
worse baseline BCVA 
ETDRS score of 63.2 
(approximate Snellen 
equivalent of 20/63) in 
eyes with SRF vs 66.9 
(approximate Snellen 
equivalent, 20/50) 
without SRF and a 
greater gain in ETDRS 
score every 4 weeks 
during follow‑up in eyes 
with SRF at baseline vs 
0.4 in eyes without SRF 
at baseline.
Aflibercept was 
associated with greater 
reduction of IRF 
volume compared with 
bevacizumab after the 
first injection and every 
4 weeks thereafter. 
Ranibizumab was 
associated with a greater 
reduction of IRF after the 
first injection compared 
with bevacizumab.
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Discussion on relative success and failure of methods under 
comparison
The two types of problems—identification of DME and 
understanding treatment responses using anti‑VEGF agents—
tackled by various researchers are summarized in Table 1. 
No two research works could be compared unless they used 
the same dataset with equal granularity and performance 
metrics and the objectives of both methods were the same. It is 
generally hard to find publicly available datasets in healthcare 
due to data and patient privacy reasons. In this context, other 
than the SERI dataset, which comprises 32 OCT cubes with 
equal composition between normal and DME OCT cubes, to 
the best of our knowledge, no other existing publicly available 
datasets consist of DME. However, the traditional ML‑based 
techniques lack generalization as features are handcrafted 
and may not describe the typical pathology cues, which 
could be common across a class. Hence, the classifiers could 
be impacted by these lesser generalized features. From the 
classification task viewpoint, the conventional classifiers get 
saturated as the number of data grows; contrary to this, a 
DL‑based classification technique does not suffer from this 
problem but demands larger data points for training. The 
above contributions lack considering both OCT and clinical 
parameters to train an AI model thereby predicting CST. The 
clinical parameters can play a significant role in the efficacy 
of prediction models and can impact the treatment response. 
In the case of diseases like DME, interacting clinical factors 
such as duration of diabetes, glucose levels, HbA1C levels, 
previous treatments taken, number of anti‑VEGF injections 
taken, and underlying ophthalmic conditions can influence 
the response toward the treatment. Images and clinical values 
are complementary, and we strongly believe a model that 
accommodates both data types would outperform those of 
single data stream‑based modeling.

Conclusion
DME is one of the common complications that can occur at 
any stage of DR. The therapeutic aim of anti‑VEGF injections 
in patients with DME is to improve and stabilize the quality 
of vision and, ultimately, to improve the quality of life 
which is severely threatened by visual loss. However, due 
to the complexity of the treatment regimen given to a DME 
patient and a large number of non‑responders to anti‑VEGF 
therapy, it has become essential to deploy a technology‑based 
decision support method that can be useful for eye care 
providers to make informed decisions about recommending 
anti‑VEGF treatment for the DME patients. The developed 
and validated AI tool holds huge potential in improving the 
efficiency of DME disease management by providing the 
best line of treatment to patients resulting in the reduction 
of clinical burden for disease management to the retina 
specialist and huge cost savings to the patient by taking the 
optimal treatment. Such an AI‑based tool can allow precise 
customizations in the therapeutic schedule for the patients, 
hence shifting the treatment goal from sight preservation 
to sight improvement. This will not only improve the 
quality of life for a patient (with reduced hospital visits and 
injection burden) but also give confidence to the patient in 
the treatment. Such AI‑based prediction models can become 
an integral feature of a digital health management platform 
and allow instant prediction of probability to respond toward 
anti‑VEGF treatment thereby efficiently distributing the 
medical resources and reducing the disease burden.
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