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Diabetic	macular	edema	(DME),	being	a	frequent	manifestation	of	DR,	disrupts	the	retinal	symmetry.	This	
event is particularly triggered by vascular endothelial growth factors (VEGF). Intravitreal injections of 
anti-VEGFs have been the most practiced treatment but an expensive option. A major challenge associated 
with	this	treatment	is	determining	an	optimal	treatment	regimen	and	differentiating	patients	who	do	not	
respond	to	anti‑VEGF.	As	it	has	a	significant	burden	for	both	the	patient	and	the	health	care	providers	if	
the patient is not responding, any clinically acceptable method to predict the treatment outcomes holds 
huge	value	in	the	efficient	management	of	DME.	In	such	situations,	artificial	intelligence	(AI)	or	machine	
learning (ML)-based algorithms come useful as they can analyze past clinical details of the patients and 
help	clinicians	to	predict	the	patient’s	response	to	an	anti‑VEGF	agent.	The	work	presented	here	attempts	
to review the literature that is available from the peer research community to discuss solutions provided by 
AI/ML	methodologies	to	tackle	challenges	in	DME	management.	Lastly,	a	possibility	for	using	two	different	
types	of	data	has	been	proposed,	which	is	believed	to	be	the	key	differentiators	as	compared	to	the	similar	
and recent contributions from the peer research community.
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In	 the	 last	 decade,	 artificial	 intelligence	 (AI)	 and	machine	
learning (ML)-based systems disrupted almost every industry 
that one can imagine. Although a bit late, the healthcare 
industry is also getting overwhelmed with the recent 
advancement of these powerful technologies. AI could be a 
technique	that	allows	computers	to	mimic	human	behavior.	
AI is being used in an exceedingly myriad of healthcare 
infrastructure, including hospitals, clinical laboratories, 
and research facilities. Ophthalmology shares the space 
with other therapeutic areas within healthcare and utilizes 
the capabilities of AI and ML for various purposes such as 
automatic screening,[1] decision support system for primary 
clinics,[2] automatic disease severity classification,[3] and 
treatment optimization,[4]	and	can	be	integrated	into	workflows	
to reduce the burden of repetitive tasks and increase diagnostic 
precision. AI and ML-based technologies are often used in 
the	field	of	medicine	for	repetitive	tasks,	tasks	for	which	the	
trained manpower is less, and for identifying new signals 
that	 are	difficult	 to	predict	by	 the	physician.	 In	 the	field	of	
ophthalmology, imaging provides a way to objectively detect 
and diagnose the progression of pathologies and response to 
treatment.	AI/ML‑based	algorithms	have	made	progress	 in	
recent times, in diseases such as diabetic retinopathy (DR),[5-8] 
age-related macular degeneration (AMD),[9,10] glaucoma,[11] 

cataract,[12] retinopathy of prematurity (ROP),[13] and retinal 
vein occlusion (RVO).[14]

India has the second-highest number of people with diabetes 
in the world (77 million, 2019) following China.[15] Diabetic 
retinopathy (DR) is the most common microvascular ocular 
complication of diabetes and occurs in both type 1 and type 2 
diabetes.[16] The population-based studies in India over the last 
two decades reported the prevalence of DR as 18% in urban 
areas and 10% in rural areas.[17] Bressler et al.[18] reported that 
among those who showed evidence of DR, one-third had 
macular edema, approximately one-fourth had non-clinically 
significant	macular	edema	(non‑CSME),	and	1	in	16	had	CSME.	
Diabetic macular edema (DME) is a common cause of visual 
impairment among people with diabetes. Though DME can be 
detected using stereo retinal photographs, the retinal thickness 
that	is	affected	by	the	presence	of	DME	can	be	better	measured	
by optical coherence tomography (OCT).[19] The choice of 
management of DME is also based on OCT features. Currently, 
anti-vascular endothelial growth factor (anti-VEGF) agents are 
the mainstay of DME treatment. However, the clinical and 
OCT response after intravitreal anti-VEGF is variable, with 
both responder and non-responder seen in real-life situations.
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However, the ophthalmic research community may also have 
an	interest	to	understand	how	AI/ML	techniques	are	performing	
on various aspects of vision-threatening DR called DME. In recent 
times,	AI/ML	techniques	have	been	explored	in	the	management	
of	DME.	These	techniques	have	been	used	for	the	diagnosis	of	
DME from retinal photographs or OCT. There is evidence of 
using	AI/ML	techniques	for	predicting	the	treatment	response.

In	 this	 review,	we	 systematically	 reviewed	AI/ML‑based	
techniques	used	to	analyze	various	aspects	of	DME,	starting	
from its detection to treatment optimization. Through this 
article, a possibility for using two types of data has been 
proposed,	which	 is	believed	 to	be	 the	key	differentiators	as	
compared to the similar and recent contributions from the peer 
research community.

Methods
A comprehensive literature search was conducted on Google 
Scholar and PubMed by using the MESH term (machine learning) 
AND (visual outcomes) AND (Lucentis) OR (ranibizumab) 
OR (treatment options) AND (diabetic macular edema) 
AND (diabetic population) for the time period of 2009–2020. 
Only studies with full texts published in English were included. 
A hierarchical approach was adopted when selecting articles by 
three reviewers independently: relevant articles were initially 
selected based on their titles and abstracts. The full texts of these 
articles were then obtained and reviewed in more detail. Out of 
80 hits, 20 relevant hits were obtained. We reviewed articles on 
AI that involved DME management by anti-VEGF comparing 
the	efficacy,	whereas	the	articles	dealing	with	other	ophthalmic	
conditions and other DME and DR management were excluded.

Need for identifying and predicting algorithm in DME 
management
Identifying DME
The presence of DME is a feature of sight-threatening DR. 
A	definitive	diagnosis	of	DME	needs	measurement	of	central	
subfield	thickness	on	OCT.	DME	rarely	occurs	unless	the	patient	
has at least moderate NPDR. OCT is not mandatory if there are 
no signs of DR or in very mild retinopathy (<5 microaneurysms). 
However, for all other cases, to initiate the treatment of DME, 
doing an OCT and classifying DME to non-central involving 
and	central	involving	DME	is	often	required.

Screening of DR utilizes fundus cameras to capture retinal 
images, which are then graded for presence and severity of DR. 
For epidemiology studies, stereoscopic retinal photographs 
were taken to ensure a correct diagnosis of DME. However, in 
routine screening taking stereoscopic retinal photographs is 
time-consuming and often needs specialized skills. Evidence is 
emerging on the development of algorithms for retinal images 
utilizing the ground truth of the grader or utilizing the OCT 
data of the same patient to diagnose DME.[20]

Predicting response to Intravitreal anti‑VEGF
Intravitreal anti-VEGF therapy is the most commonly used 
treatment approach in the management of DME because of 
its	efficacy	as	validated	by	clinical	trial	data	and	has	become	
the first line of treatment for DME. Patients in the RISE 
and RIDE trials had, on average, an approximately 40% 
reduction in central retinal thickness on optical coherence 
tomography	 (OCT)	within	 the	first	 3	months	 of	 initiating	
monthly treatment with ranibizumab.[21] Although anti-VEGF 
therapy	 is	 often	very	 effective,	 a	 subset	 of	 patients	 (about	
30%–40%)	 appear	 to	 be	 refractory	 and	often	 require	 other	
forms of medical management, including alternative anti-VEGF 
therapies	and/or	steroids.[20]	Prompt	and	efficacious	treatment	

of DME is important to maximize visual outcomes, and that 
delay	 in	effective	 treatment	may	adversely	affect	vision.	As	
most patients diagnosed with DME receive anti-VEGF therapy, 
early	identification	of	anti‑VEGF	response	status	is	important.	
A method to identify responders to anti-VEGF therapy would 
aid physicians to tailor treatment to likely patient outcomes. 
At present, the decision of non-responder is often made after 
initiating the treatment with anti-VEGF and utilizing few 
clinical (OCT-based) biomarkers (not extensively studied). 
There is evidence on algorithms trying to predict the response 
of anti-VEGF in DME.[22,23]

Review of major contributions
There are two types of problems in DME management that 
have	been	addressed	through	different	AI/ML	approaches:	a)	
identification	of	DME	and	b)	understanding	treatment	responses	
using anti-VEGF agents. Numerous research articles address the 
detection of DME; however, the treatment response prediction 
remains a challenge in the management of the disease with 
anti-VEGF treatment options. The literature review taxonomy 
is	provided	through	an	illustration	[Fig.	1].	The	identification	
of DME is done through a traditional ML-based approach, 
performing	 the	 classification	whether	DME	 is	present.	With	
the	advancement	of	DL	techniques,	DME	identification	is	also	
done	using	various	DL	models	in	terms	of	DME	classification	
or	detecting	and	quantifying	the	fluids	using	the	segmentation	
approach. The response prediction of DME treatment is mainly 
done	using	DL	techniques	or	combining	DL.

Use of traditional ML‑based techniques used for identifying DME
Identification	of	DME	has	been	primarily	carried	out	on	OCT	
data,	where	AI/ML‑based	techniques	try	to	classify	the	DME	
accurately. Srinivasan et al.[25] used the traditional approach to 
extract the features (histogram of gradient (HOG)) from OCT 
images and then used support vector machines (SVM) as a 
classification	tool.	On	a	dataset	of	45°CT	cubes	with	15	in	each	
category, 42-fold cross-validations were carried out, showing 
a	100%	classification	rate	on	AMD	and	DME.

Lemaître et al. [26] described a binary classification 
framework that separates DME from normal patients using 
spectral‑domain	OCT	data.	Local	 binary	pattern	 (LBP)	has	
been chosen as a feature extraction tool, while the feature 
transformation (high-level to low-level discriminative 
features) is done through Bag-of-Word approach. For the 
classification	task,	several	classifiers	were	involved:	(i)	k‑nearest	
neighbor, (ii) logistic regression, (iii) random forest (RF), (iv) 
gradient boosting, and (v) SVM. RF showed higher sensitivity 
while	SVM	outperformed	in	terms	of	specificity.

The same research group had published a similar work[27] 
before this article was published.

In another old research article, Liu et al.[28] proposed 
a	 four‑class	 classification	 technique	 considering	macular	
hole, macular edema (ME), AMD, and normal as classes. A 
multiscale texture and shape features have been considered 
as	features	followed	by	SVM	as	a	classification	technique.	131	
ZEISS SD-OCT® cubes from 37 subjects across the classes were 
considered as test data. The outcomes of one-versus-all based 
four	binary	classifications	have	been	reported	using	the	two‑class	
classification	paradigm	realized	 through	 the	SVM	classifier.	
A minimum area under curve (AUC) of 0.94 was achieved.

To detect DME,Alsaih K et al.[29]	classified	DME	for	normal	
SD-OCT cubes collected from Singapore Eye Research Institute. 
After preprocessing, the histograms of oriented gradients 
and LBP were extracted as features. Feature sets were then 
transformed and compactly represented through principal 
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component	analysis.	Finally,	classification	was	analyzed	by	both	
linear and nonlinear SVMs and using RF. The work showed the 
highest	87.5%	sensitivity	and	87.5%	specificity	from	linear	SVM.

An interesting idea has been presented by Sidibé et al.,[30] where 
classification	between	DME	and	normal	OCT	cubes	was	treated	
as anomaly detection or one-class classification problem. 
A Gaussian mixture model (GMM) has been developed on 
the features extracted from the B-scans of normal OCT cubes. 
During	verification,	B‑scans	with	DME	pathology	presence	were	
supposed	to	be	flagged	as	an	anomaly,	while	the	normal	B‑scans	
were	identified	as	a	member	of	the	same	class	as	the	GMM	model.	
On	two	different	datasets,	the	method	showed	sensitivities	and	
specificities	better	than	contemporary	techniques.

In a very recent study,[31]	 a	 unique	 approach	has	 been	
adopted to find the retina region from a B-scan by first 
segmenting it through K-means and then applying Gaussian 
filtering	regularized	level	set	algorithm	to	identify	the	region	
of pathologies that correspond to DME. This two-step based 
robust algorithm achieved a comparable sensitivity and 
specificity	when	 compared	 against	manual	 segmentation.	
A notable claim of this algorithm is it being 66 times faster 
than the manual process.

The literature described above uses the conventional feature 
extraction-transformation-modeling trio, where a feature set 
has	been	transformed	first	and	then	modeled	using	traditional	
classification	techniques.	Like	other	application	areas,	we	also	
found that the performances of such traditional ML-based 
techniques	get	saturated	as	we	involve	more	data.	Next,	we	
discuss	 some	 identification	 techniques	 based	on	 advanced	
technologies such as DL.

Use of DL‑based techniques used for identifying DME
In	 this	 subsection,	 the	first	 two	paragraphs	describe	DME	
identification	 and	 pathology	 quantification	 using	 the	
segmentation approach, while the rest of the paragraphs 
contain conventional DL-based approaches adopted by various 

research	groups	to	address	pure	OCT	classification,	where	one	
of the classes is DME.

A	classical	DL‑based	approach	to	detect	and	quantify	retinal	
biomarkers was shown by Schlegl et al.[32] An autoencoder was 
used to detect patches of IRC and SRF for each B-scan in a cube 
and then aggregated over all the B-scans to calculate the total 
fluid	deposition	 for	 the	 cube.	The	method	was	 found	 to	be	
robust	enough	to	predict	the	fluid	detection	well	on	various	
diseases such as AMD and retinal vein occultations (RVO) 
other than DME. The author also showed the versatility of the 
algorithm	on	two	different	OCT	imaging	devices.

A	very	similar	approach	has	been	attempted	by	Lee	et al.,[6] 
where	the	detection	of	intraretinal	fluid	(IRF)	was	evaluated	
to estimate ME. Segmented maps were generated from OCT 
B‑scan	 to	detect	 IRF.	The	authors	used	 the	Dice	 coefficient	
to determine the match between expert annotations and the 
algorithm’s output. Around 1300 B-scans were involved to 
cross-validate the developed model that resulted in a Dice 
coefficient	of	0.911.

In another study[33], features were extracted from various 
layers of a VGG-16 network. These features were then modeled 
through	various	 classifiers	 to	 classify	between	normal	 and	
DME OCT cubes. This approach is not an end-to-end DL-based 
approach,	which	is	not	commonly	found	among	the	attempts	
done by various researchers. This article, however, shows 93.5% 
and	81%	sensitivity	and	specificity,	respectively.

In	this	context,	it	is	worth	mentioning	that	the	first	end‑to‑end	
DME	 classification	 technique	was	 proposed	 by	 Perdomo	
et al.[34] through a convolutional neural network (CNN)-based 
approach called OCT-NET. On a small dataset consisting of 32 
cubes	with	16	normal	and	16	DME,	the	classification	experiment	
showed	93.5%	as	equal	accuracy,	sensitivity,	and	specificity.

A pure DL-based approach has been reported by Ravi 
et al.,[35] where Inception-Resnet-v2 architecture was used to 
classify DME from a Normal OCT scan. The work showed 

Figure 1: Taxonomy of literature describing contribution toward DME
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100%	accuracy	(also	100%	sensitivity	and	specificity)	on	the	
same Singapore Eye Research Institute (SERI) dataset used 
earlier by Awais et al.[33] and Perdomo et al.[34] This also proves 
that the proposed method is the best among its predecessors.

A similar approach has been developed by De-Kuang 
Hwang[36] for DME screening using OCT data. A total of 
4932°CT images of 173 diabetic patients with DME who received 
intravitreal injections (IVIs) of either anti-VEGF or corticosteroid 
in Taipei Veterans General Hospital during January of 2017 to 
December of 2017 were collected for the study, out of which 3495 
images	passed	the	image	quality	control	and	were	used	in	this	
study. Two CNN architectures, InceptionV3 and VGG16, were 
applied to establish the AI models and achieved an accuracy of 
93.42% and 93.15%, respectively. The external validation of both 
the models was done using 227 DME and 135 non-DME OCT 
images, where InceptionV3 achieved an accuracy of 93.09%, 
a	sensitivity	of	95.15%,	and	a	specificity	of	89.48%,	while	the	
VGG16 model achieved 92.82% accuracy, 96.48% sensitivity, 
and	86.67%	specificity.

A	slightly	different	approach	based	on	the	multiscale	transfer	
learning	algorithm	was	attempted	by	Quan	Zhang	et al.[37] The 
algorithm was developed using 38,057°CT images (Drusen, 
DME, CNV, and Normal) in two parts: the self-enhancement 
model and the disease detection model. The two-dimensional 
CNN-based multiscale edge detection is the core of the 
self-enhancement module. The disease detection module was 
developed using Inception V3 architecture. This two-stage 
classification	module	achieved	94.5%	accuracy,	97.2%	precision,	
97.7% sensitivity, and 97% specificity in the independent 
testing dataset.

Varadarajan et al.[20] used OCT images for DME grading of 
fundus images. With this cross-modality grading approach, 
the DL model trained using only fundus images outperforms 
the	previous	models	in	terms	of	higher	specificity.	The	model	
can	also	detect	the	presence	of	intraretinal	fluid	(AUC:	0.81;	
95%	CI:	 0.81–0.86)	 and	 subretinal	fluid	 (AUC	0.88;	 95%	CI:	
0.85–0.91). This approach provides the possibility of using 
fundus images in DME diagnosis and achieved 81% accuracy, 
85%	sensitivity,	and	80%	specificity	when	evaluated	on	primary	
dataset while it achieved 88% accuracy, 57% sensitivity and 
91%	specificity	when	evaluated	on	the	secondary	validation	
set (EyePACS-DME dataset).

In a very recent study by Takumasa et al.,[38] a novel capsule 
network	has	been	proposed	to	address	a	four‑way	classification	
among DME, choroidal neovascular membrane, Drusen, and 
normal OCT scans. A very large dataset has been used to 
conduct the experiments, unlike previous approaches where 
the datasets were very small. This contribution reported 99.6% 
accuracy claiming 3.2% higher than those of contemporary 
methods.

Existing AI/ML‑based techniques determine the effectiveness of 
anti‑VEGF in DME patients
Lately,	 researchers	 are	 reporting	more	 on	 the	 efficacies	 of	
anti-VEGF treatment on DME rather than publishing their 
researchers on detection. It is well understood from the retina 
specialist	 that	 the	 anti‑VEGF	 injections	 are	 the	first	 line	of	
treatment to manage the DME, and they know that there would 
be	a	definite	reduction	of	central	subfield	thickness	(CST)	after	
the application of the anti-VEGF agent. However, they are 
unsure to what extent such a reduction would take place given 
the pre-medical condition of the patient.

An AI-based algorithm can play a very vital role here 
to provide clinicians with a near accurate estimate of such 

reduction	for	better	treatment	outcomes.	We	present	here	two	
such	 recent	 studies	 that	 attempted	 to	 represent	 this	newer	
concept within the regime of treatment optimization.

Shao et al.[39]	used	an	artificial	neural	network	 (ANN)	 to	
predict VA after ranibizumab treatment in DME. Ranibizumab, 
a	well‑known	anti‑VEGF	agent,	is	safe	and	effective	for	DME	
treatment	as	it	stops	fluid	leakage,	reverses	macular	thickening,	
and improves vision. To train the ANN, the authors used 
patient	demographic	information,	a	little	clinical	information,	
diabetes type or condition, systemic diseases, eye status, and 
treatment timetables. On a publicly available dataset from 
the	National	Institutes	of	Health,	the	algorithm	finds	a	good	
correlation between predicted VA against the ground truth 
on various time periods such as 52, 78, and 104 weeks. The 
method however neither used any OCT images nor predicted 
CST values directly.

On a complementary method as shown by [24], only OCT 
images have been used to predict CST of post-treatment of 
127 subjects. Here, pre-treatment OCT images have been 
considered	as	input	to	a	CNN,	while	the	differential	thickness	
has	been	chosen	as	output/target.	The	authors	proposed	a	novel	
prediction	algorithm	called	CADNet,	a	modification	of	the	VGG	
network.	For	fine‑tuning	the	model,	5‑fold	cross‑validation	has	
been chosen to generalize the performance of the algorithm that 
shows an average AUC of 0.866 in discriminating responsive 
from non-responsive patients.

A similar task was attempted by Cao et al.[40] with a 
different	approach.	As	feature	extractions,	features	like	retinal	
layer segmentation and disruption ratio, intraretinal and 
subretinal	fluid	segmentation	and	area	quantization,	number	of	
hyperreflective	dots,	and	optical	density	ratio	of	intraretinal	and	
subretinal	fluid	measurements	are	extracted	using	DL	techniques.	
The	classification	of	anti‑VEGF	response	was	performed	using	
RF and SVMs with different kernel functions. Among all 
experimented	classifiers,	RF	achieved	the	best	performance	of	
90.7%	specificity,	87.7%	sensitivity,	and	95.1%	AUC.

Instead of classifying the response of the anti-VEGF 
treatment, Liu et al.[41] predicted the post-injection CST value 
using	the	combined	both	DL	and	traditional	ML	techniques.	The	
deep fusion features were extracted from the OCT images using 
an ensemble of three convolutional neural networks, AlexNet, 
Vgg16, and ResNet18. These features were then combined 
with the clinical parameters, such as the measurement data, 
CFT, age, gender, baseline BCVA, and serum glucose, followed 
by the ensemble such as RF, SVM, decision tree, and Lasso 
continuous ML (CML) models to predict the CFT and BCVA 
values.	This	multilevel	 ensemble	 technique	 achieved	mean	
absolute	error	(MAE),	root	mean	square	error	(RMSE),	and	R2 
values of the best-performing model in the training set as 66.59, 
93.73, and 0.71, respectively, for CFT prediction. While for BCVA 
prediction, the MAE, RMSE, and R2 of the best-performing 
model in the training set was 0.19, 0.29, and 0.60, respectively. 
On the external validation set, the system achieved MAE, RMSR, 
and R2 of 68.08, 97.63, and 0.74, respectively, for CFT prediction 
and 0.13, 0.20, and 0.68, respectively, for BCVA prediction.

The	effect	of	anti‑VEGF	treatment	in	terms	of	volumetric	
change	of	 intraretinal	fluid	 (IRF)	and	 subretinal	fluid	 (SRF)	
was examined by Roberts et al.[42] The IRF and SRF were 
quantified	using	a	DL‑based	approach	and	the	performance	
of such an algorithm was also described in a study.[24] This 
post-hoc analysis of a randomized clinical trial of 570 patients 
concludes	 that	 the	Aflibercept	was	 associated	with	greater	
reduction of IRF volume compared with bevacizumab after 
the	first	injection.
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Contd...

Table 1: Summary of research articles on applicability of AI in DME management

Year of 
publication

Author Objective Dataset Methodology Performance Metrics

Sep 2014 Pratul P. 
Srinivasan 
et al.[25]

Automatic detection of 
DME and dry AMD from 
OCT images

45°CT cubes with 15 in 
each of three categories, 
Normal, AMD, and DME

A traditional approach 
to extract HOG feature 
vector from denoised 
SD-OCT images followed 
by SVM classifier.

Achieved 100% 
accuracy for AMD and 
DME classification 
while 86.67% accuracy 
for Normal OCT cube 
classification

Jul 2016 Guillaume 
Lemaître et al.
[26]

DME classification of 
SD-OCT volumes using 
local binary patterns

The dataset, 32°CT 
volumes (16 DME 
and 16 normal cases) 
was acquired by the 
Singapore Eye Research 
Institute (SERI), using 
CIRRUS (Carl Zeiss 
Meditec, Inc., Dublin, 
CA) SD-OCT device

As a feature extraction 
tool, LBP was used 
followed by feature 
transformation using 
Bag-of-Word. Several 
classifiers, k‑NN, LR, 
RF, GB, and SVM, were 
involved.

The highest sensitivity 
(81.2%) was achieved 
using RF while the 
highest specificity 
(93.7%) was achieved 
by SVM.

Oct 2011 Yu-Ying Liu 
et al.[28]

Classification of Macular 
Hole (MH), Macular 
Edema (ME), and 
Age-related Macular 
Degeneration (AMD) 
from normal using 
SD-OCT cubes

131 ZEISS SD‑OCT 
cubes from 37 subjects 
across the four classes 
were considered as 
test data while 326 
scans from 136 subjects 
were used for the 
development

A multiscale texture 
and shape features 
have been considered 
as features followed by 
SVM as a classification 
technique.

Two-class SVM 
classifiers achieved 
AUC of 0.978, 0.969, 
0.941, and 0.975 for 
identifying normal 
macula, MH, ME, and 
AMD, respectively.

Jun 2017 Alsaih K  
et al.[29]

Machine learning 
techniques for diabetic 
macular edema (DME) 
classification on 
SD-OCT images

Singapore Eye Research 
Institute (SERI) dataset 
- 32°CT cubes with 16 
normal and 16 DME 
cubes

BM3D, flattering, and 
cropping were used as 
preprocessing followed 
by HOG and LBP feature 
extractions. Features 
were then transformed 
and represented 
through PCA. Linear 
and nonlinear SVM and 
RF were used for the 
classification.

Linear SVM achieved 
a sensitivity and 
specificity of 87.5% and 
87.5%, respectively.

Feb 2017 Désiré Sidibé 
et al.[30]

An anomaly detection 
approach for the 
identification of DME 
patients using SD-OCT 
images

Two different datasets:
1). SERI dataset - 32°CT 
cubes with 16 normal 
and 16 DME cubes
2). Duke dataset 
consists of 45 SD-OCT 
volumes from 15 DME 
patients, 15 AMD 
patients and 15 normal
subjects, respectively.

The normal OCT mages 
were modeled using 
GMM and abnormal OCT 
images were detected as 
outliers.

This anomaly detection 
method achieves a 
sensitivity of 80% and 
a specificity of 93% on 
the first dataset, and 
100% and 80% on the 
second dataset.

Apr 2020 Zhenhua 
Wang et al.[31]

Detection of DME in 
OCT image using an 
improved level set 
algorithm

The OCT dataset 
contains 100°CT images 
(10 normal images 
and 80 DR images 
with DME and 10 DR 
images with no signs of 
DME), acquired using 
Heidelberg SD-OCT 
device

A novel algorithm 
for the detection and 
segmentation of DME 
region in OCT image 
based on the K-means 
clustering algorithm 
and improved Selective 
Binary and Gaussian 
Filtering Regularized 
Level Set.

Algorithm achieved 
97.7% precision 
(97.7%), sensitivity 
(91.8%), and specificity 
(99.2%)
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Apr 2018 Thomas 
Schlegl  
et al.[32]

Automatic detection and 
quantification of macular 
fluid in OCT using deep 
learning

1200°CT volumes of 
patients (400 AMD, 400 
DME and 400 RVO) 
acquired with CIRRUSTM 
(Carl Zeiss Meditec, 
Dublin, CA) (600 cubes) 
or Heidelberg Spectralis 
(Heidelberg Engineering, 
Heidelberg, Germany) 
(600 cubes) OCT 
devices.

Deep learning-based 
algorithm to automatically 
detect and quantify 
intraretinal cystoid fluid 
(IRC) and subretinal fluid 
(SRF) was developed.

Algorithm achieved mean 
AUC of 0.94, a mean 
precision of 0.91, and 
a mean recall of 0.84 
for the detection and 
quantification of IRC for 
all 3 macular pathologies. 
While for the detection 
and measurement of 
SRF, the algorithm 
achieved an AUC of 0.92, 
a mean precision of 0.61, 
and a mean recall of 0.81.

Jun 2017 Cecilia S. Lee 
et al.[6]

Deep learning-based 
automated intraretinal 
fluid (IRF) segmentation 
to estimate macular 
edema in OCT

Around 1300°CT 
macular B-scan images 
were used for training 
and cross-validation.

A CNN architecture with 
18 convolutional layers 
was developed to detect 
the IRF in the OCT 
images.

The segmentation 
algorithm achieved 
a cross-validated 
Dice coefficient of 
0.911 compared with 
segmentations by 
experts.

Sep 2017 M. Awais  
et al.[33]

Classification of 
abnormal and normal 
OCT image volumes 
using a pre-trained 
CNN.

Singapore Eye Research 
Institute (SERI) dataset 
- 32°CT cubes with 16 
normal and 16 DME 
cubes acquired with 
CIRRUSTM (Carl Zeiss 
Meditec, Dublin, CA).

Classification was 
performed using different 
classifiers taking features 
from different layers of 
the VGG-16 network.

The algorithm achieved 
the best accuracy of 
87.5% while sensitivity 
and specificity being 
93.5% and 81%, 
respectively.

May 2018 Oscar 
Perdomo et al.
[34]

Automatic classification 
of normal and diabetic 
macular edema using 
SD-OCT volumes

Singapore Eye Research 
Institute (SERI) dataset 
- 32°CT cubes with 16 
normal and 16 DME 
cubes acquired with 
CIRRUSTM (Carl Zeiss 
Meditec, Dublin, CA).

12 layers OCT-NET, a 
CNN-based end-to-end 
classification technique 
was developed to classify 
the OCT volumes.

The classification 
experiment with 
OCT-NET achieved 
equal accuracy, 
sensitivity, and 
specificity of 93.5%.

Dec 2018 Ravi M. 
Kamble et al.
[35]

Classification of DME 
from normal OCT 
scan using DL-based 
approach.

Singapore Eye Research 
Institute (SERI) dataset 
- 32°CT cubes with 16 
normal and 16 DME 
cubes acquired with 
CIRRUSTM (Carl Zeiss 
Meditec, Dublin, CA).

Inception-Resnet-v2 
architecture was used for 
the classification of DME.

The technique achieved 
100% sensitivity and 
specificity on the SERI 
dataset.

April 2020 De-Kuang 
Hwang et al.[36]

OCT-based diabetic 
macula edema 
screening with artificial 
intelligence

3495°CT images were 
collected from 173 
diabetic patients with 
DME who received 
intravitreal injections 
(IVIs) of either 
anti-vascular endothelial 
growth factor (VEGF) 
or corticosteroid in 
Taipei Veterans General 
Hospital during January 
of 2017 to December of 
2017 were enrolled in 
the study.

Two CNN architectures 
(InceptionV3 and 
VGG16) have been 
applied to establish the 
AI models.

The performance 
of each AI model 
(InceptionV3 and 
VGG16) has been 
verified by For the 
validation data set, 
consist of 227 DME 
and 135 non-DME OCT 
images, the accuracy of 
the AI model based on 
VGG16 and InceptionV3 
architectures was 
92.82% and 93.09%, 
respectively while the 
achieved sensitivity was 
96.48% and 95.15% 
and the specificity 
was corresponding to 
86.67% and 89.63%, 
respectively. 
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Dec 2020 Quan Zhang 
et al.[37]

Identifying Diabetic 
Macular Edema and 
Other
Retinal Diseases by 
Optical Coherence
Tomography Image 
and Multiscale Deep 
Learning

A total of 38,057°CT 
images (Drusen, DME, 
CNV and Normal) to 
establish and evaluate 
the model. All data are 
OCT images of fundus 
retina. There were 37,457 
samples in the training 
dataset and 600 samples 
in the validation dataset

The classification system 
consists of two parts: 
first the multiscale edge 
detection and second 
is Inception V3 CNN 
architecture-based 
disease detection model.

The model reached 
94.5% accuracy, 97.2% 
precision,
97.7% sensitivity and 
97% specificity in the 
independent testing 
dataset

Jan 2020 Varadarajan 
et al.[20]

Predicting OCT-derived 
diabetic macular edema 
grades from fundus 
photographs using deep 
learning

Thailand dataset 
consists of 6039 fundus 
images from 4035 
patients were used for 
the development of 
the algorithm, During 
labeling Heidelberg 
Spectralis OCT data 
were used for quality 
labels.

The classification model 
was developed using 
Inception-v3 CNN-based 
architecture.

The model achieved 
accuracy, sensitivity, and 
specificity of 81%, 85%, 
and 80%, respectively 
for the primary validation 
set while 88% accuracy, 
57% sensitivity, and 
91% specificity when 
evaluated on the 
secondary validation set.

Mar 2020 Takumasa 
Tsuji et al.[38]

Classification of OCT 
images using a capsule
network

OCT dataset, consist 
of a training dataset of 
83,484 images and a test 
dataset of 1000 images 
- 250 images of each 
category, CNV, DME, 
drusen, and normal

Instead of CNN-based 
architecture, the capsule 
network has been 
applied for the OCT 
classification.

This contribution 
reported 99.6% 
accuracy claiming 3.2% 
higher than those of 
contemporary methods.

Nov 2018 Shao-Chun 
Chen et al.[39]

Predict the visual 
outcomes in Intravitreal 
Ranibizumab-treated 
patients with DME

Publicly available 
dataset from the National 
Institutes of Health 
(DRCR.net) consist 
of 674 patients while 
only 454 patients were 
followed
up for more than 52 
weeks.

Artificial neural network 
was used for the 
regression calculation 
with the target as the 
final visual acuity at 52, 
78, or 104 weeks.

For the training group, 
testing group, and 
validation group, the 
respective correlation 
coefficients were 0.75, 
0.77, and 0.70 (52 
weeks); 0.79, 0.80, and 
0.55 (78 weeks); and 
0.83, 0.47, and 0.81 
(104 weeks), while the 
mean standard errors of 
final visual acuity were 
6.50, 6.11, and 6.40 (52 
weeks); 5.91, 5.83, and 
7.59; (78 weeks); and 
5.39, 8.70, and 6.81 (104 
weeks), respectively

Feb 2020 Reza Rasti 
et al.[24]

Automatically predict the 
efficacy
of anti-VEGF treatment 
of DME in individual 
patients based on
OCT images

Spectralis SD-OCT 
data of 127 patients, 
who underwent three 
intravitreous anti-VEGF 
injections. The OCT 
images are acquired 
OCT before and after 
three consecutive 
anti-VEGF injections 
spaced 4 to 6 weeks 
apart.

CADNet predictive 
framework was developed 
with the modification 
of VGG-16 network. 
Differential retinal thickness 
was used to partition 
patients into responsive 
and non-responsive 
classes. only patients with 
showing significantly (more 
than 10%) reduced retinal 
thickness were counted 
as responsive, while 
patients showing minimally 
improved or increased 
retinal thickness were 
counted as non-responsive

The algorithm achieved 
an average AUC of 
0.866 in discriminating 
responsive from 
non-responsive 
patients, with an 
average precision, 
sensitivity, and 
specificity of 85.5%, 
80.1%, and 85.0%, 
respectively
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Jun 2020 Cao et al.[40] Predict the anti- VEGF
therapeutic response of 
DME patients from OCT 
at the initiation stage 
of treatment using a 
machine learning-based 
self-explainable system

Spectralis SD-OCT data 
with scanning
protocol used a 20° 
x 15° volume scan, 
consisting of 19 sections 
of 712 DME patients 
were collected at both 
baselines and after 3 
anti-VEGF injections. 
The reduction in Central 
Macular Thickness 
is considered for the 
response classification.

Using Deep Leaning 
techniques, various 
features like Retinal 
layer segmentation 
and disruption 
ratio, Intraretinal 
and subretinal fluid 
segmentation and area 
quantization, number of 
Hyperreflective dots, and 
Optical density ratio of 
intraretinal and subretinal 
fluid measurements 
are extracted followed 
by RF or SVM-based 
classification.

The RF classifier 
achieved the best 
performance of 90.7% 
specificity, 87.7% 
sensitivity, and 95.1% 
AUC.

Jan 2021 Baoyi Liu 
et al.[41]

Predict the post-injection 
CFT and BCVA values 
using ensembled 
techniques for the 
combi image and clinical 
parameters data of 
anti-VEGF treatment for 
DME patients

A total of 363°CT images 
and 7,587 clinical data 
records from 363 eyes 
were included in the 
training set (304 eyes) 
and external validation 
set (59 eyes).

Deep fusion features 
are extracted from the 
OCT images using the 
ensembled DL models. 
The features are 
combined with clinical 
parameters followed 
by the ensembled CML 
model to predict the CFT 
and BCVA values.

Ensembled system 
achieved MAE, RMSE, 
and R2 of 66.59, 93.73, 
and 0.71, respectively, 
for CFT prediction and 
0.19, 0.29, and 0.60 for 
BCVA prediction. While 
on the external validation 
set, the system achieved 
MAE, RMSE, and R2 
of 68.08, 97.63, and 
0.74, respectively, for 
CFT prediction and 
0.13, 0.20, and 0.68, 
respectively, for BCVA 
prediction.

Jul 2020 Roberts  
et al.[42]

Examine the volumetric 
change of IRF and 
SRF in DME during 
anti-vascular endothelial 
growth factor treatment 
using deep learning 
algorithms.

SD-OCT data of 570 
patients, who underwent 
anti-VEGF treatment 
for DME, collected from 
August 21, 2012, to 
October 18, 2018.

Preprocessing for 
automatic alignment 
and registration of the 
SD-OCT scans for the 
intra-patient registration.
A deep learning 
convolutional neural 
network approach was 
applied, which classifies 
voxels as background, 
IRF, or SRF.
IRF and SRF volumes 
were computed for the
central fovea (circle with 
a 1-mm diameter) and 
for the
parafovea (ring between 
1 and 3 mm surrounding 
the fovea)

The
presence of SRF 
at baseline was 
associated with a 
worse baseline BCVA 
ETDRS score of 63.2 
(approximate Snellen 
equivalent of 20/63) in 
eyes with SRF vs 66.9 
(approximate Snellen 
equivalent, 20/50) 
without SRF and a 
greater gain in ETDRS 
score every 4 weeks 
during follow-up in eyes 
with SRF at baseline vs 
0.4 in eyes without SRF 
at baseline.
Aflibercept was 
associated with greater 
reduction of IRF 
volume compared with 
bevacizumab after the 
first injection and every 
4 weeks thereafter. 
Ranibizumab was 
associated with a greater 
reduction of IRF after the 
first injection compared 
with bevacizumab.
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Discussion on relative success and failure of methods under 
comparison
The two types of problems—identification of DME and 
understanding treatment responses using anti-VEGF agents—
tackled by various researchers are summarized in Table 1. 
No two research works could be compared unless they used 
the	 same	dataset	with	 equal	 granularity	 and	performance	
metrics and the objectives of both methods were the same. It is 
generally	hard	to	find	publicly	available	datasets	in	healthcare	
due to data and patient privacy reasons. In this context, other 
than the SERI dataset, which comprises 32 OCT cubes with 
equal	composition	between	normal	and	DME	OCT	cubes,	to	
the best of our knowledge, no other existing publicly available 
datasets consist of DME. However, the traditional ML-based 
techniques	 lack	generalization	 as	 features	 are	handcrafted	
and may not describe the typical pathology cues, which 
could	be	common	across	a	class.	Hence,	the	classifiers	could	
be impacted by these lesser generalized features. From the 
classification	task	viewpoint,	the	conventional	classifiers	get	
saturated as the number of data grows; contrary to this, a 
DL‑based	classification	technique	does	not	suffer	from	this	
problem but demands larger data points for training. The 
above contributions lack considering both OCT and clinical 
parameters to train an AI model thereby predicting CST. The 
clinical	parameters	can	play	a	significant	role	in	the	efficacy	
of prediction models and can impact the treatment response. 
In the case of diseases like DME, interacting clinical factors 
such as duration of diabetes, glucose levels, HbA1C levels, 
previous treatments taken, number of anti-VEGF injections 
taken,	and	underlying	ophthalmic	conditions	can	influence	
the response toward the treatment. Images and clinical values 
are complementary, and we strongly believe a model that 
accommodates both data types would outperform those of 
single data stream-based modeling.

Conclusion
DME is one of the common complications that can occur at 
any stage of DR. The therapeutic aim of anti-VEGF injections 
in	patients	with	DME	is	to	improve	and	stabilize	the	quality	
of	 vision	 and,	 ultimately,	 to	 improve	 the	 quality	 of	 life	
which is severely threatened by visual loss. However, due 
to the complexity of the treatment regimen given to a DME 
patient and a large number of non-responders to anti-VEGF 
therapy, it has become essential to deploy a technology-based 
decision support method that can be useful for eye care 
providers to make informed decisions about recommending 
anti-VEGF treatment for the DME patients. The developed 
and validated AI tool holds huge potential in improving the 
efficiency	 of	DME	disease	management	 by	 providing	 the	
best line of treatment to patients resulting in the reduction 
of clinical burden for disease management to the retina 
specialist and huge cost savings to the patient by taking the 
optimal treatment. Such an AI-based tool can allow precise 
customizations in the therapeutic schedule for the patients, 
hence shifting the treatment goal from sight preservation 
to sight improvement. This will not only improve the 
quality	of	life	for	a	patient	(with	reduced	hospital	visits	and	
injection	burden)	but	also	give	confidence	to	the	patient	in	
the treatment. Such AI-based prediction models can become 
an integral feature of a digital health management platform 
and allow instant prediction of probability to respond toward 
anti-VEGF treatment thereby efficiently distributing the 
medical resources and reducing the disease burden.
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