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Joint and separate 
exposure to alcohol and 
∆9-tetrahydrocannabinol produced 
distinct effects on glucose and 
insulin homeostasis in male rats
Nnamdi G. Nelson1, Michael J. Weingarten2, Wen Xuan Law2, Daniel T. Sangiamo1 & 
 Nu-Chu Liang1,2

Cannabis and alcohol co-use is common, and the trend may increase further given the current 
popularity of cannabis legalization. However, the metabolic consequences of such co-use are unclear. 
Here, we investigated how co-administration of alcohol and ∆9-tetrahydrocannabinol (THC), the main 
psychoactive constituent of cannabis, affects body weight and visceral adiposity, and glucose and 
insulin homeostasis in rats. For 16 consecutive days during adolescence, male rats drank saccharin or 
alcohol after receiving subcutaneous oil or THC injections in Experiment 1 and voluntarily consumed 
alcohol, THC edible, or both drugs in Experiment 2. Experiment 1 showed that following abstinence, 
drug co-exposure reduced visceral fat and the amount of insulin required to clear glucose during an 
oral glucose tolerance test (OGTT). In Experiment 2, rats received a high-fat diet (HFD) after 3-week 
abstinence. Although adolescent drug use did not interact with the HFD to worsen hyperglycemia and 
hyperinsulinemia during an OGTT, HFD-fed rats that co-used alcohol and THC had the lowest insulin 
levels 75 min after an insulin injection, suggesting an altered rate of insulin secretion and degradation. 
These results suggest that THC and alcohol co-exposure can distinctly alter the physiology of glucose 
and insulin homeostasis in a rodent model.

The wide prevalence and burdensome nature of obesity and metabolic syndrome echoes the need for more studies 
to shed light on the predisposing and protective factors at play. Previous studies have established that early-life 
nutritional deficits or surfeits can influence neurological and metabolic health throughout the lifespan1, as does 
active or passive exposure to exogenous drugs like alcohol and cannabinoids2,3. Prolonged consumption of diets 
rich in calories, salt, saturated fatty acids, and refined sugars but low in fiber (“Western diet”) coupled with a 
sedentary lifestyle are notable contributors to the overweight/obese phenotype4. The contribution of exoge-
nous drugs, especially alcohol and marijuana co-use, to the high rate of metabolic disorders has been scarcely 
investigated.

Use and co-use of alcohol and marijuana often begin during adolescence5. This drug use behavior is wor-
risome considering the wealth of empirical evidence suggesting that the adolescent brain is susceptible to 
the influence of exogenous compounds6,7. Notably, alcohol or cannabis use during adolescence can alter the 
ontogeny of neural systems that regulate cognitive and reward-related behaviors8,9 to provoke aberrant brain 
functioning later in life10,11. Similar neural alterations can translate into an increased motivation to consume 
palatable, energy-dense diets during young adulthood12,13. Despite the popularity of alcohol and cannabis 
co-use14, there is paucity of studies on how such co-use affects energy balance and metabolic outcomes during 
abstinence.

Epidemiological data have implicated chronic alcohol use with abdominal adiposity and some facets of met-
abolic syndrome, including leptin and insulin resistance, and type-2 diabetes15. Other researchers conclude 
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that moderate alcohol consumption may either be beneficial to cardio-metabolic health or have null effects16. 
Meanwhile, few human studies reported the metabolic effects of marijuana use17,18, and there has been no preclin-
ical investigation on this topic. Human laboratory studies have documented that marijuana smoking can acutely 
increase plasma insulin concentration and alter glucose tolerance19,20 or have no effect on glucose homeostasis21 in 
adult subjects. A cross-sectional, case-control study reported that chronic marijuana smoking can reduce circu-
lating HDL-cholesterol and increase adipose tissue hypertrophy and insulin resistance without significant detri-
ment to pancreatic β-cell function22. These reports suggest that repeated cannabis use may alter insulin control of 
glucose homeostasis. Importantly, given that alcohol and cannabis co-administration is common and may be on 
the rise due to the current social atmosphere of cannabis legalization, how alcohol and ∆9-tetrahydrocannabinol 
(THC), the main psychoactive constituent of cannabis, interact to affect energy balance and glucose homeostasis 
deserves investigation.

Previously, we demonstrated that male rats that chronically consumed moderate alcohol doses showed 
early signs of insulin insensitivity23. The lack of systematic investigation of the lasting behavioral and met-
abolic effects of alcohol and THC co-administration prompted us to undertake this study using a rodent 
model of adolescent exposure of the two drugs24. Given the negative metabolic outcomes of short-term 
Western diet consumption in young subjects25,26, we sought to investigate whether high-fat diet (HFD) 
exposure would exacerbate the impact of prior alcohol and THC use. We hypothesized that, compared to 
separate administration of alcohol and THC, their co-administration during adolescence would lead to 
lasting alterations in feeding behavior that will prime the subject for heightened reactivity to metabolic 
challenges in adulthood. Hence, we predicted that rats previously co-exposed to alcohol and THC would 
demonstrate hyperphagia and increased adiposity when presented with an HFD compared with the drug 
naïve rats. We also expected that combined drug co-use and HFD overconsumption would greatly impair 
glucose tolerance and insulin sensitivity during adulthood. Accordingly, Experiment 1 investigated how 
repeated alcohol drinking, subcutaneous THC injection, or combinational exposure of the two drugs during 
adolescence affect metabolic measures e.g., body fat, blood glucose and insulin responses to an oral load of 
glucose challenge. Consumption of edibles prepared with marijuana extract is popular among medical and 
recreational marijuana users27. Thus, Experiment 2 investigated how adolescent voluntary consumption of 
alcohol and THC edibles, alone or in combination, affect feeding and metabolic responses to HFD during 
early adulthood (See Fig. 1 for experimental timeline).

Figure 1.  (A) Timeline of chronic subcutaneous THC injection and voluntary alcohol drinking in Experiment 
1 (EtOH, n = 8; CTL, THC, and COM, n = 10/group). The 3 mg/kg/day THC lasted for eight days, while the 
5 and 10 mg/kg/day THC each lasted for four days. An oral glucose tolerance test (OGTT) was performed on 
P54 after an overnight fast. (B) Timeline of chronic oral THC consumption and voluntary alcohol drinking 
in Experiment 2. The table indicates the schedules and duration for drinking and drug exposure. The shaded 
portion of the table indicates the last 3 h of the dark cycle when access to the test fluid occurred. From P67, some 
rats continued consuming regular chow diet while the others received 45% high-fat diet. Glucose and insulin 
tolerance tests were performed on P71 and P76, respectively [Chow (CTL, n = 14; EtOH, n = 12; THC, n = 10; 
COM, n = 11) and HF (CTL and COM, n = 11/group; EtOH and THC, n = 12/group)].
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Results
Experiment 1: Results.  Combined subcutaneous THC injection and alcohol consumption reduced visceral 
fat composition.  Alcohol, food intake, and weight gain during drug treatment and abstinence are presented in 
our previous published manuscript24. In brief, THC dose-dependently increased food intake during the initial 
3 h after subcutaneous injections but did not alter alcohol consumption and blood ethanol concentration (BEC) 
during the same period. Voluntary alcohol consumption acutely reduced food intake when it was consumed alone 
(EtOH group) or when THC was on-board in the COM group. Further, THC or alcohol had no effect on daily 
caloric intake and weight gain during treatment. However, the COM group gained the least amount of weight 
during the week of abstinence compared with the EtOH and THC groups24. On the eighth day of abstinence 
(P53), the respective body weights of the CTL (241.7 ± 3.5 g), EtOH (248.4 ± 3.5 g), THC (238.2 ± 6.1 g), and 
COM (234.0 ± 4.4 g) groups were statistically indistinguishable. Yet, the COM group had lower percent visceral 
fat on P54 compared with the EtOH group [F(3,34) = 4.41, p < 0.02; post hoc, p < 0.009; Fig. 2A].

Combined subcutaneous THC injection and alcohol consumption reduced plasma insulin concentration follow-
ing an oral load of glucose.  The 16 days of subcutaneous THC and moderate alcohol treatment did not alter 
fasting blood glucose levels (Fig. 2B). All of the groups of rats comparably cleared blood glucose across time 
during the OGTT [time effect, F(4,136) = 94.95, p < 0.0001; Fig. 2B]. The fasting plasma insulin concentration of 
the COM group was mildly lower than that of the THC group [group effect, F(3,27) = 3.00, p < 0.05; post hoc, 
p < 0.06; Fig. 2C]. Rats in each group had a slightly different profile of plasma insulin concentration during the 
2 h following the intragastric 2.0 g/kg glucose load [group, time, and group × time effects: F(3,27) = 2.58, p < 0.08, 
F(4,108) = 73.90, p < 0.0001, and F(12,108) = 2.01, p < 0.03, respectively]. At the 15-min time point, the plasma insulin 
level of the COM group was lower than that of both the EtOH (p < 0.009) and THC (p < 0.07) groups. Finally, the 
COM group demonstrated a trend for an overall reduced insulin response compared with the CTLs [insulin AUC: 
group effect, F(3,27) = 2.45, p < 0.09; post hoc, p < 0.09; Fig. 2D]. In support of our a priori hypothesis that drug 

Figure 2.  Chronic subcutaneous THC injections and voluntary alcohol consumption differently affected 
visceral fat composition and reduced insulin levels needed to clear glucose in Experiment 1 (CTL, n = 9; EtOH 
and THC, n = 7; COM, n = 8). (A) THC alone or in combination with alcohol reduced visceral fat composition. 
THC vs. EtOH: ^p < 0.1; COM vs. EtOH: *p < 0.009. The OGTT was conducted after nine days of abstinence. 
(B) Alcohol and THC alone or in combination had no effect on glucose clearance; and (C) combined chronic 
alcohol and THC exposure was associated with reduced plasma insulin levels at 15 min following the oral 
glucose load. COM vs. EtOH: *p < 0.009 and COM vs. THC: ^p < 0.07. (D) The COM group had a reduced 
AUC of plasma insulin curve compared with the CTLs (t-test: ^p < 0.05).
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combination will elicit unique effects, independent samples t-test revealed that the area under the insulin curve 
of the COM group was significantly lower than that of the CTLs [t(15) = 2.19, p < 0.05].

Experiment 2: Results.  Male rats readily consumed THC-laced cookies.  Most rats consumed the 
THC-laced cookie within minutes. Two and four rats from the THC and COM groups, respectively, had bits of 
leftover cookies by the time a second cookie was delivered. The subsequent data of these rats were excluded from 
analyses.

Consumption of THC edible reduced intakes of saccharin but not alcohol.  The CTL and THC rats consumed 
increasing amounts of saccharin across treatment days [F(3,135) = 78.37, p < 0.0001]. But the THC rats consumed 
less saccharin compared with the CTLs [F(1,45) = 4.93, p <= 0.04; Fig. 3A]. The EtOH and COM groups consumed 
similar doses of alcohol across treatment days (Fig. 3B). Despite no group effect on alcohol intake, COM rats 
appeared to reduce alcohol intake during consumption of higher doses of THC (6 and 10 mg/kg/day). On the 
days BECs were measured, EtOH (1.36 ± 0.07 g/kg) and COM (1.20 ± 0.08 g/kg) rats consumed similar doses of 
alcohol within 1 h following 8 mg/kg/day THC consumption. Both groups of rats attained comparable BECs of 
25.50 ± 4.08 mg/dl and 25.95 ± 5.67 mg/dl, respectively. After 3 h of alcohol access following 10 mg/kg/day THC 
consumption, EtOH (1.65 ± 0.10 g/kg) and COM (1.45 ± 0.13 g/kg) rats consumed comparable alcohol doses and 
attained BECs of 13.57 ± 3.63 mg/dl and 18.35 ± 5.30 mg/dl, respectively. The BECs attained after both 1- and 
3-h alcohol drinking significantly correlated with the ingested dose in both the EtOH [r = 0.74, p < 0.0002 and 
r = 0.64, p < 0.008, respectively] and COM [r = 0.65, p < 0.004 and r = 0.91, p < 0.0001, respectively] groups.

Adolescent alcohol and THC co-use facilitated weight gain in response to HFD during early adult-
hood.  Consumption of THC-laced cookies on the previous day blunted chow intake during the last 3 h of the 

Figure 3.  Chronic oral THC consumption reduced saccharin intake and chow intake during the last 3 h of the 
dark cycle and weight gain, whereas moderate alcohol alone or when combined with oral THC reduced 3-h 
chow intake (CTL, n = 25; EtOH, n = 24; THC and COM, n = 22/group). (A) THC rats consumed less saccharin 
compared with the CTL rats. *p < 0.04. (B) EtOH and COM rats consumed similar doses of alcohol during each 
THC dose. COM rats’ alcohol intake during 6 and 10 mg/kg/day THC consumption was lower than their intake 
during 3 mg/kg/day THC consumption: ^p < 0.03. (C) Drinking 5% alcohol reduced 3-h chow intake and 
augmented the somewhat hypophagic effect of oral THC. CTL vs. COM: *p < 0.005; CTL vs. THC and COM: 
#p < 0.004; CTL vs. EtOH: ^p < 0.06; EtOH vs. COM: @p < 0.03. (D) Oral THC suppressed weight gain in the 
THC group compared with both the CTL and EtOH groups: *p < 0.02.
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dark cycle on the next day in the THC and COM groups relative to the CTLs [F(3,89) = 8.46, p < 0.0001; post hoc, 
both p < 0.007; Fig. 3C]. The EtOH group consumed less 3-h chow compared with the CTL group (p < 0.04). The 
lower 3-h chow intake by THC and COM rats compared with the CTLs was retained after intake was normalized 
to body weight. There were no group differences in daily caloric intake during the 16-day treatment period, but 
the THC rats gained less weight than did the EtOH and CTL rats [F(3,89) = 5.39, p < 0.002; post hoc, both p < 0.02; 
Fig. 3D].

Compared with chow-fed controls, rats that consumed 45% HFD for four days (P67–P70) demonstrated 
hyperphagia [F(1,38) = 412.58, p < 0.0001] and modest weight gain [F(1,38) = 5.11, p < 0.03]. There were no 
drug effects on daily chow or HFD intake during the 9-day test period. As expected, the HFD-fed rats con-
sumed approximately 30% more daily calories [F(1,38) = 252.48, p < 0.0001; Fig. 4A] and gained more weight 
[F(1,38) = 25.23, p < 0.0001; Fig. 4B] compared with the chow-fed rats. Under the HFD condition, the COM group 
gained more weight than the CTLs did [t(20) = −2.21, p < 0.04].

Adolescent THC and alcohol co-use did not affect glucose and insulin tolerance following short-term HFD chal-
lenge during early adulthood.  The HFD consumers had elevated basal blood glucose (Fig. 5A,B) and insulin 
concentrations (Fig. 5D,E) relative to the chow consumers following a mild fast [F(1,24) = 42.25 and 28.92, respec-
tively; both p < 0.0001]. During the OGTT, three-way repeated-measures ANOVA uncovered no effect of drug 
treatment and diet on blood glucose clearance and plasma insulin concentrations across time. The HFD groups 
demonstrated greater area under curve (AUC) of blood glucose [F(1,24) = 78.52, p < 0.0001; Fig. 5C] and plasma 
insulin [F(1,24) = 32.78, p < 0.0001; Fig. 5F] concentrations compared with the chow groups. Within each diet 
condition, there were no effects of prior alcohol and THC exposure on the metabolic parameters. Because there 
was no effect of prior drug exposure on blood glucose levels during the ITT, we collapsed the groups by diet 
condition. The HFD-fed groups had higher fasting blood glucose concentrations compared with the chow-fed 
groups [diet × time effect: F(1,88) = 4.61, p < 0.04; post hoc, p < 0.002; Fig. 6A]. There was, however, no diet effect 
on blood glucose level at the 75-min time point – indicating that the nine-day HFD consumption did not alter 
insulin sensitivity in the rats. Furthermore, the HFD-fed rats had higher percent visceral fat [F(1,38) = 84.56, 
p < 0.0001; Fig. 6B] and trunk plasma leptin concentration [F(1,23) = 10.48, p < 0.004; Fig. 6C], with no effect 
of prior drug use. Percent visceral fat was positively correlated with plasma leptin in both the chow- [r = 0.39, 
p < 0.009] and HFD-fed [r = 0.58, p < 0.0007] groups. Under the HFD condition, and mirroring the body weight 
results, the COM group had slightly higher percent visceral fat compared with the CTLs [t(20) = −2.02, p < 0.06]. 
Neither drug treatment nor diet condition influenced trunk insulin levels taken 75 min after the insulin injection 
(Fig. 6D). Finally, a t-test based on our a priori hypothesis that co-use of alcohol and THC would produce distinct 
effect from the use of either drug alone revealed that, under the HFD condition, the COM group had significantly 
lower trunk insulin levels than did the EtOH group [t(21) = 3.02, p < 0.007; Fig. 6D].

Discussion
Our data reveal that 16 days of separate and combined alcohol and THC exposure can have distinct effects on 
subsequent glucose and insulin homeostasis in young male rats. Experiment 1 showed that compared to the 
CTL, EtOH, and THC groups, the COM rats had the lowest insulin levels to clear glucose during an OGTT 
that occurred during abstinence. The seemingly increased insulin sensitivity corroborated with low weight gain 
and the lowest visceral fat in the COM rats among all treatment groups. Experiment 2 investigated glucose and 

Figure 4.  Chronic oral THC and voluntary alcohol consumption, alone or when combined, had no effect on 
daily caloric intake and weight gain during abstinence (from P67–P75) [Chow (CTL, n = 14; EtOH, n = 12; 
THC, n = 10; COM, n = 11) and HFD (CTL and COM, n = 11/group; EtOH and THC, n = 12/group)]. (A) Rats 
maintained on 45% HFD consumed more average daily calories compared with intake by those maintained 
on regular chow diet: *p < 0.0001. (B) HFD-fed rats gained more weight compared with the chow-fed rats: 
*p < 0.0001 by ANOVA. Under the HFD condition, the COM rats gained more weight compared with the 
CTLs: #p < 0.04 by t-test.
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insulin homeostasis under different dietary exposures following longer abstinence from edible THC and alcohol 
co-use. Although the influences of adolescent drug use on glucose metabolism disappeared after approximately 
one-month of forced drug abstinence, the COM rats gained the most body weight and visceral fat after a 9-day 
HFD challenge. The findings of the two experiments suggest that the beneficial effects of moderate alcohol and 
THC co-administration on glucose and insulin homeostasis manifest soon after 16 days of drug exposure and no 
benefit is obtained as the length of abstinence increases. Importantly, they highlight that HFD consumption can 
reverse the beneficial effects of THC and moderate alcohol on energy metabolism and homeostasis.

Under the chow feeding condition, rats that received subcutaneous THC injections (THC or COM group) had 
reduced adiposity and plasma insulin concentrations (Experiment 1); and those that consumed THC via cookies 
showed no changes in those parameters (Experiment 2). In addition to the different time points of the adiposity 
assessment, the differing pharmacokinetic profiles of injected versus oral THC may also contribute to distinct 
results of the two experiments. The consumption of edibles prepared with marijuana extract is popular among 
medical and recreational marijuana users27. Consumption of THC via cookie infusion used in Experiment 2 is 
more reflective of how the drug is consumed today. Past studies show that humans who consumed THC via an 
edible product can display more than one peak plasma THC concentration; and the duration of the effects of the 
THC can be longer when it is consumed orally versus when it is inhaled or delivered intravenously28. However, 
due to first-pass hepatic metabolism, plasma levels of THC are lower when THC or cannabis is consumed orally 
compared to when smoked or injected24,28,29. Overall, unlike smoked or parenterally administered THC, the bio-
availability of orally consumed THC tends to be low and more erratic.

The effects of THC on glucose homeostasis in humans can depend not only on the administered dose, but 
also on the route of administration19. One study showed that intravenous THC impaired glucose tolerance but 
smoked THC had no effect. Such observations may be explained by the subjects’ prior experience with marijuana 
smoking19, by the fact that the bioavailability of THC is slightly greater following intravenous cannabis adminis-
tration compared with inhalation30, or by unknown variables that await elucidation. Epidemiological reports on 
the metabolic effects of alcohol or marijuana often statistically control for the use of other drugs or screen for and 
exclude participants with a history of poly-substance use. Ours is the first preclinical rodent study to 1) investi-
gate the effects of THC administered parenterally and via an edible product on subsequent glucose homeostasis 
and insulin sensitivity, and 2) examine the long-term effects of adolescent alcohol and oral THC co-exposure on 
feeding behavior and metabolic outcomes during young adulthood. We demonstrated that moderate daily use 

Figure 5.  Effects of oral THC, moderate alcohol, and diet on glucose tolerance (Chow, n = 10–12/group 
and HFD, n = 7–8/group). Prior drug exposure had no effect on glucose clearance in rats (A) perpetually 
maintained on chow diet, and those (B) that consumed HFD for 4 days (P67–P70) after the diet switch (see 
Fig. 1B). (C) Area under curve revealed that 4-day HFD consumption altered glucose tolerance with no 
significant effect of prior drug exposure: *p < 0.0001. Prior drug exposure had no effect on insulin release in 
response to the oral glucose loads in both groups of rats that were (D) perpetually maintained on chow diet, 
and those (E) that consumed HFD for 4 days (P67–P70) after the diet switch. (F) Area under curve revealed 
that 4-day HFD consumption potentiated insulin release with no significant effect of prior drug exposure: 
*p < 0.0001.
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of alcohol or THC alone had no significant effects, but co-use of the two can produce additive or even opposite 
effects on circulating insulin levels and adiposity (Figs 2 and 6).

Alcohol and THC can interact in unique and complex ways to affect physiology. A past study demonstrated 
that smoking cannabis after drinking alcohol can reduce BECs attained and the psychoactive effects of alcohol in 
humans31. However, others have observed no effect of smoked THC on BEC32. Intriguingly, other human studies 
found that drinking before smoking or vaporizing cannabis increases blood levels of THC33,34. In this and our 
previous study24, subcutaneous or oral THC did not alter BEC in rats. We also observed that moderate alcohol 
consumption following subcutaneous THC injection resulted in lower plasma levels of the active THC metabolite 
11-hydroxy-THC24. Our preliminary finding calls for further investigation of the long-term effects of alcohol and 
cannabis co-use on glucose homeostasis, including studies to decipher the cellular and pharmacokinetic mecha-
nisms that mediate the outcomes.

In consonance with our previous findings24, subcutaneous and oral THC differently affect saccharin and alco-
hol intake. Whereas subcutaneous THC had no significant effects, rats that consumed THC-laced cookies sub-
sequently consumed less saccharin and alcohol solution during the last 3 h of the dark cycle. We have previously 
shown that oral THC can reduce alcohol intake to the extent of complete avoidance24. By contrast, subcutaneous 
and oral THC had similar effects on food intake and body weight. Except for extremely high doses e.g., 20 mg/kg24,  
neither route of THC administration altered daily calorie intake. Repeated administration via either route 
modestly suppressed weight gain during treatment. These findings concur with those of other researchers35,36. 
There is notable individual variation in the effect of THC on appetite since not all marijuana users overconsume 
sweet or calorie-rich foods when high37. Epidemiological research has also uncovered that chronic marijuana 
users can either be of normal weight or have lower body mass index or waist circumference compared with 
never-users, prompting opinions about the possible weight-reducing effect of cannabis18,38. Furthermore, a very 

Figure 6.  Effects of oral THC, moderate alcohol, and diet on some metabolic parameters (Chow, n = 10–12/
group and HFD, n = 7–12/group). Nine days of HF diet feeding (A) increased fasting blood glucose with no 
effect on insulin sensitivity during the insulin tolerance test: *p < 0.002, (B) increased visceral fat composition: 
*p < 0.0001, (C) increased plasma leptin concentration: *p < 0.004, and (D) had no effect on plasma insulin 
concentration. Visceral fat composition positively correlated with leptin measured in trunk plasma in both the 
chow- (r = 0.39, p < 0.009) and HFD-fed (r = 0.58, p < 0.0007) groups. Prior alcohol or oral THC consumption 
did not significantly influence the above measures. However, under the HFD condition, t-test revealed that the 
COM rats tended to have higher visceral adiposity compared with the CTLs: ^p < 0.06 and lower trunk insulin 
compared with the EtOH group #p < 0.007.
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low dose (0.001 mg/kg) of ∆8-THC, which is supposedly a more stable and potent CB1R agonist than ∆9-THC, 
stimulated food intake but did not promote weight gain in mice39. Notwithstanding, our observed null effect of 
oral THC on daily caloric intake goes against the acclaimed hyperphagic effects of cannabis or THC13,35,40. Our 
findings, instead, reinforce the conclusion that depending on its interaction with CB1R on GABAergic or gluta-
matergic neurons, THC can produce opposite effects on appetite41. The complexities of cannabinoid signaling in 
the brain feeding circuits, sensory systems, and peripheral tissues involved in energy balance regulation are yet to 
be untangled, and research efforts in these domains have blossomed in recent years41–43.

Contrary to our hypothesis that the impact of alcohol and THC on the adolescent brain will facilitate future 
overconsumption of caloric dense foods, we observed that separate or combined alcohol and THC exposure did 
not exacerbate hyperphagia on a palatable 45% HFD during abstinence. This contrary observation can be due to 
several factors. First, although researchers who have used similar adolescent THC exposure timelines (parenteral 
administration) observed persistent neural and behavioral abnormalities during abstinence36,44, our 16-day oral 
drug exposure duration may have been insufficient to elicit sustained brain changes that can engender abnor-
mal feeding behavior during abstinence. Second, any brain abnormalities caused by drug treatments might have 
been mitigated during the three-week abstinent/washout period. Studies have observed brain-region-specific 
downregulation and desensitization of CB1R following chronic alcohol or THC exposure that resolved to varying 
extents during abstinence36,45,46. Hence, a shorter washout period or even an earlier onset and simultaneous con-
sumption of HFD with drug treatment may uncover robust drug/diet interaction. Third, the type of HFD (45%) 
used and the short duration (nine days) of high-fat diet exposure may have precluded observation of overeating 
and adverse long-term effects of adolescent drug exposure on energy metabolism47,48. Prolonged exposure to 
HFD alters the organization and function of neurons and glia in the hypothalamus to promote obesity and met-
abolic dysfunctions49. An exposure that extends for a longer period may exacerbate the higher weight gain and 
visceral fat observed in the COM rats to reveal dysregulation of glucose and insulin homeostasis.

An elevated fasting glucose concentration within normal physiological ranges is an independent risk factor 
for the later onset of type 2 diabetes in otherwise healthy male subjects50. In support of our a priori hypothesis in 
Experiment 2, pairwise comparison revealed that the COM rats that consumed HFD gained more weight and had 
higher visceral adiposities compared with the CTLs on the same diet. Although the HFD-consuming rats in our 
study were not obese per se, it is plausible that the increased visceral adiposity may be associated with alterations 
to endocannabinoid tone in peripheral tissues like pancreas and visceral fat. Compared with non-obese humans, 
obese individuals have changes to the peripheral endocannabinoid tone51,52. We found that short-term (4–9 days) 
HFD feeding resulted in modest signs of glucose intolerance and elevated fasting blood glucose concentration, 
visceral adiposity, and plasma leptin concentration. It is worth noting that we compared the behavioral and meta-
bolic effects of 45% HFD to that of standard chow diet. Use of control low-fat diet (LFD) is a preferable option for 
metabolic studies53, but standard chow diet (SD) can be a bona fide substitute when low-fat diet is not available. 
This point is buttressed by the recent observation that an 18-week consumption of SD or LFD elicited similar phe-
notypic, behavioral, and metabolic effects in rodents48. More follow-up studies on the effects of moderate alcohol 
and THC use on energy balance and glucose homeostasis are warranted.

We also observed insignificant effects of drug or diet on insulin sensitivity assessed via the ITT. Besides the 
fact that we should have measured blood glucose level at least once before the 75-min time point post insulin 
injection during the ITT, the 1 U/kg insulin dose we administered to the rats may have been too high to reveal 
subtle drug- or diet-induced changes in insulin sensitivity. Alcohol exposure or cannabinoids acting via CB1/CB2 
receptors can stimulate or augment insulin secretion from pancreatic β-cells22,40,54,55. Furthermore, prolonged 
HFD consumption induces insulin resistance and hyperinsulinemia25. High or low insulin concentration under 
basal conditions reflects an imbalance in the amount or rate of insulin secretion and degradation by insulin 
degrading enzymes in the liver and kidneys. Compared with chow-fed rats, we found that those exposed to HFD 
expressed modest hyperglycemia and hyperinsulinemia following a mild fast and during the OGTT. However, 
HFD feeding had negligible effects on plasma insulin levels when measured 75 min after exogenous administra-
tion of 1 U/kg insulin (Fig. 6A). The differing outcome of insulin levels during the OGTT and following the ITT 
suggest that 1 U/kg bolus of exogenous insulin may differently affect insulin secretion and/or degradation in 
chow and HFD rats. Considering that alcohol, cannabinoid, and HFD exposure can compromise hepatic enzyme 
function to promote hyperinsulinemia and impair insulin signaling56,57, our findings counter the expectation of 
increased trunk insulin level in the HFD-fed COM group. Instead, our a priori comparisons revealed that the 
HFD-fed COM group did have lower insulin concentrations compared with the EtOH group (Fig. 6D). Other 
researchers have posited that cannabinoids can have opposing effects on insulin secretion in ex vivo pancreatic 
islet preparations58, and the effect of alcohol on insulin secretion is unclear55.

In summary, we aimed to investigate how THC alone or when combined with moderate alcohol during ado-
lescence will affect subsequent glucose and insulin tolerance during young adulthood in male rats. Our data show 
that combined subcutaneous THC and alcohol drinking can distinctly reduce the amount of insulin needed for 
the proper clearance of an oral glucose load compared with the effect of either drug alone. We also noticed that 
following approximately one-month of abstinence from edible THC and alcohol co-use, glucose and insulin 
tolerance were normalized to that of subjects without drug exposure. Metabolic challenge with an HFD revealed 
a drug-diet interaction such that rats that co-used THC and alcohol (COM) gained the most weight and visceral 
fat. These HFD-fed COM rats also appeared to have faster clearance of an exogenous insulin injection than the 
EtOH rats with the same HFD challenge. Thus, we provide preliminary evidence to show that THC and alcohol 
co-exposure can distinctly alter the physiology of glucose and insulin homeostasis in a preclinical rodent model. 
Research on the effects of alcohol and THC co-exposure in females, during other developmental stages, and with 
other rodent strains will show whether the effects we observed are universal. Such research will also provide a 
glimpse into how the drugs could impact metabolic health in human populations.
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Materials and Methods
Subjects.  The subjects comprised of a total of 139 male Long-Evan rats (Envigo, Indianapolis, IN, USA) 
received on postnatal day 22 (P22). They were semi-pair housed in large polyethylene tubs with transparent 
Plexiglas cage dividers that enabled measurement of food and fluid intake for each rat. The colony was maintained 
in a temperature and humidity-controlled vivarium on a 12-h light/dark cycle (lights on at 11:30 AM). During 
habituation and drug exposure, rats had ad libitum access to a standard rodent chow (3.1 kcal/g; 58% carbohy-
drate, 24% protein, and 18% fat from soybean oil; 2018 Teklad global rodent diets 2018, Indianapolis, IN, USA). 
Tap water was provided in glass bottles fitted with stainless steel sippers. Daily animal handling and care occurred 
at 8:00 AM when body weight, food, and water intakes were recorded. All study protocols were approved by the 
Institutional Animal Care and Use Committee (IACUC) at the University of Illinois at Urbana-Champaign, and 
they conformed to the guidelines stipulated in the Guide for the care and use of laboratory animals by the National 
Research Council, 2011.

Test fluids (saccharin, alcohol) and ∆9-tetrahydrocannabinol (THC).  Saccharin (0.1%) solution 
and sweetened 10% or 5% ethanol solution (v/v) were prepared as we previously described24. The appropriate 
volume of 200 proof alcohol was mixed in 0.1% saccharine solution to make the sweetened alcohol solutions. 
Test fluids were presented at home cages in plastic bottles fitted with stainless steel sipper tubes that minimize 
spillage and evaporation. THC for subcutaneous injection or cookie infusion (Goldfish Grahams Fudge Brownie, 
Pepperidge Farm; Norwalk, CT, USA) was prepared by suspending the contents of 10 mg dronabinol capsules 
(Actavis Pharm, Inc.; Parsippany, NJ, USA) in a sesame oil vehicle24.

Experiment 1: Procedures.  Forty male rats were the subjects of Experiment 1. The experimental proce-
dures that we employed are detailed in Experiment 1a of our past publication24. Briefly, following habituation and 
drinking training, the rats were divided into four groups (n = 10/group) by matching average body weight and 
saccharin intake: control (CTL) given saccharin and oil injection, ethanol (EtOH) given 10% ethanol (v/v) and oil 
injection, THC given saccharin and THC injection, and combination (COM) given 10% ethanol and THC injec-
tion. At 8:30 AM from P30–P45, animals received daily subcutaneous THC or oil injections immediately before 
test fluid access in their home cages. Chow and test fluid intakes were measured at 11:30 AM (3-h intakes) when 
test fluids were supplanted by tap water. Drug and test fluid exposures spanned 16 days (P30–P45). The 3 mg/kg/
day dose lasted for eight days, while 5 and 10 mg/kg/day doses each lasted for four days36. One rat in the EtOH 
group was discovered dead at 8:00 AM on P42. Another EtOH rat was accidentally injected with 10 mg/kg THC 
on P43. The subsequent data from this rat were excluded from analysis. Chow and water were freely available for 
one week after the last drug exposure day. The experimental timeline is summarized in Fig. 1A.

Oral glucose tolerance test (OGTT) and sacrifice.  Following an overnight 16-h fast, we performed the 
OGTT on P54 (Fig. 1A) according to our established protocol23. After fasting blood glucose was measured using 
an AlphaTRAK glucometer (Abbott Labs) and blood was collected using heparinized microcapillary tubes via a 
tail clip, a load of 2.0 g/kg 20% glucose solution was administered through oral gavage. Blood glucose levels were 
measured, and tail blood was collected at 15, 30, 60, and 120 min post glucose gavage. The blood samples were 
centrifuged at 1,000 × g for 15 min at 4 °C, and the plasma was collected and stored at −80 °C for later insulin 
measurement using an ELISA kit (ALPCO, Salem, NH, USA) as we have previously done23. Within 1 h after the 
OGTT, the animals were sacrificed, and their carcasses stored at 4 °C overnight. The epididymal and retroperito-
neal fat pads of each rat were dissected and weighed by researchers blinded to the group assignment. Visceral fat 
composition was calculated with reference to the body weight on the day of sacrifice59.

Experiment 2: Procedures.  Drug training and exposure procedures were performed, as we have previ-
ously described24. The 99 rats were first habituated to the vivarium for four days. From P26–P29, the animals 
were trained to consume 0.1% saccharin along with chow during the last 3 h of the dark cycle (8:30–11:30 AM). 
Following measurement of food and fluid intakes, the first and second oil-laden cookies were respectively pro-
vided at 12:30 PM and 9:00 PM. At the end of training, rats were assigned to one of four groups: control (CTL, 
n = 25) given saccharin and oil-laden cookies, ethanol (EtOH, n = 24) given 5% ethanol (v/v) and oil-laden cook-
ies, THC (n = 24) given saccharin and THC-laden cookies, and combination (COM, n = 26) given 5% ethanol 
and THC-laden cookies. During the 16-day treatment period, rats first had 3-h access to saccharin or 5% alcohol 
(v/v) solution followed by a cookie laced with oil or THC (1.5, 3, or 5 mg/kg) presented twice per day at 12:30 PM 
and 9:00 PM (Fig. 1B). Each cumulative daily dose of 3, 6, 8, and 10 mg/kg THC lasted for four days. To ascertain 
how oral THC would affect blood ethanol concentration (BEC) in these rats, tail blood was sampled at 1-h during 
a day of 8 mg/kg/day THC consumption, and at 3-h during a day of 10 mg/kg/day THC consumption. BEC was 
analyzed in those samples using an ELISA kit (Cell Biolabs, San Diego, CA, USA) as we previously described24.

High-fat diet exposure and oral glucose tolerance test (OGTT).  Following three weeks abstinence, 
rats in all four groups were subdivided into a chow group that continued consuming regular chow diet (CTL and 
COM, n = 14/group; EtOH and THC, n = 12/group) or a high-fat diet (HFD) group whose diet was switched to a 
45% HFD (4.73 kcal/g; 45% fat from lard and soybean oil, 35% carbohydrate, and 20% protein; D12451, Research 
Diets, New Brunswick, NJ, USA; CTL, n = 11; EtOH, THC, and COM, n = 12/group). On the fourth day of this 
diet regimen (P70), rats were overnight food-restricted such that their intake was 70% of their respective intake 
on P69. OGTT was performed in the middle of the light cycle (between 2:00 and 7:00 PM) on P71 according to 
our established protocol23 and as described in Experiment 1 above.

Insulin tolerance test (ITT) and tissue harvest.  After the OGTT, rats were returned to their home cages 
to resume ad libitum access to their respective diets for four more days (P71–P74). On P75, they were mildly 
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food-restricted to 90% of their average free-feeding intakes on previous two consecutive days (P72 and P73) 
following the OGTT. Between 2:00 and 7:00 PM on P76, fasting blood glucose levels were measured before rats 
were intraperitoneally injected with 1.0 U/kg of insulin (Humulin R, U-100; Lilly USA, LLC, Indianapolis, IN, 
USA). The 1.0 U/kg insulin dose was chosen based on its use by other researchers to assess systemic insulin 
sensitivity60. Seventy-five min later, blood glucose was measured before rats were rapidly decapitated. Trunk 
blood was collected into EDTA-coated tubes, centrifuged and plasma was collected to measure plasma levels of 
insulin (ALPCO, Salem, NH, USA) and leptin (Cat. #90040; Crystal Chem, Elk Grove Village, IL, USA). Animal 
carcasses were stored at 4 °C overnight. Epididymal and retroperitoneal fat pads were dissected and weighed by 
researchers blinded to the group assignment. Percent visceral fat composition was calculated with reference to the 
body weight on the day of sacrifice59.

Statistical analysis.  Data are presented as mean ± standard error of the mean (SEM) and were analyzed 
by factorial ANOVA or repeated-measures ANOVA (Statistica 13.3; TIBCO Software Inc.; Palo Alto, CA, 
USA). Statistically significant main effects and interactions were accompanied with Tukey’s HSD post hoc tests. 
Comparison between two groups within a diet condition was conducted with independent samples t-test. The 
linear relationship between ingested alcohol dose and BEC, as well as between plasma leptin and percent visceral 
fat were analyzed by Pearson’s correlation. P < 0.05 was considered significant.

Data Availability
The raw data of the results presented in this manuscript are available upon request.
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