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Front and center: Maturational
dysregulation of frontal lobe
functional neuroanatomic
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Frontal lobe function may not universally explain all forms of attention

deficit hyperactivity disorder (ADHD) but the frontal lobe hypothesis described

supports an internally consistent model for integrating the numerous

behaviors associated with ADHD. The paper examines the developmental

trajectories of frontal and prefrontal lobe development, framing ADHD

as maturational dysregulation concluding that the cognitive, motor, and

behavioral abilities of the presumptive majority of ADHD children may not

primarily be disordered or dysfunctional but reflect maturational dysregulation

that is inconsistent with the psychomotor and cognitive expectations for the

child’s chronological and mental age. ADHD children demonstrate decreased

activation of the right and middle prefrontal cortex. Prefrontal and frontal lobe

regions have an exuberant network of shared pathways with the diencephalic

region, also having a regulatory function in arousal as well as with the

ascending reticular formation which has a capacity for response suppression

to task-irrelevant stimuli. Prefrontal lesions oftentimes are associated with the

regulatory breakdown of goal-directed activity and impulsivity. In conclusion,

a presumptive majority of childhood ADHD may result from maturational

dysregulation of the frontal lobes with effects on the direct, indirect and/or,

hyperdirect pathways.

KEYWORDS

ADHD, frontal lobe, prefrontal cortex, indirect pathway, direct pathway, hyperdirect
pathway

Introduction

We think that attention deficit hyperactivity disorder (ADHD) results
from differences, when compared with the normally developing child, in the
trajectory of cortical maturation and well as from deviations in the trajectory
of asymmetric brain development (Rubia, 2007; Janssen T. W. P. et al., 2017;
Bouziane et al., 2018; Ha et al., 2020). These developmental differences in the
development of hemispheric asymmetries significantly relate to the expression
of the characteristics of ADHD and can explain many of the symptoms that are
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evidenced (Ha et al., 2020; Chen et al., 2021; Postema et al.,
2021). The condition speaks to the relationship between the
functions of the hemispheres. Overactivity of the left hemisphere
can lead to hyperactivity of movement and hyperkinetic
behavior (Wasserstein and Stefanatos, 2016; Helfer et al.,
2020). The right hemisphere is mainly responsible for attention
especially sustained attention which is the main attentional
deficit in ADHD (Longo et al., 2015; Bartolomeo and Malkinson,
2019). Therefore, underdevelopment of the right hemisphere
is related to the attentional deficit (Zou and Yang, 2021).
This hyperreactivity of one cerebral hemisphere combined
with underdevelopment of contralateral hemisphere speaks to
the nature of many neurobehavioral disorders (Melillo and
Leisman, 2009; Douglas et al., 2018).

The beginning of the brain’s developmental interregional
communication differences in ADHD as compared with
neurotypical children has been thought to commence in utero
or early in post-partum development (Hanć et al., 2018; Vizzini
et al., 2019; Xi and Wu, 2021). The right hemisphere develops
first in the womb and for the first 3 years (Uda et al., 2015;
Caccappolo and Honig, 2016). Early childhood functional brain
asymmetry has been confirmed by cerebral blood flow changes
measured at rest between 1 and 3 years of age, blood flow
studies demonstrate the predominance of the right hemispheric,
largely associated with the activity in the posterior associative
area (Paniukov et al., 2020). Asymmetry modulates to the left
after approximately 3 years of age (Tzourio-Mazoyer et al.,
2017). After 3 years of age, the time course of changes appears
to follow the emergence of functions localized initially on the
right, but later on the left hemisphere (i.e., visuospatial and
later language abilities) (Spagna et al., 2016; Olulade et al.,
2020). These findings support the hypothesis that, in human
infancy and early childhood, the right hemisphere develops
its functions earlier than the left (Chiron et al., 1997; Melillo
and Leisman, 2010, 2015). The left hemisphere takes the lead
in development for the next 3 years (Chiron et al., 1997;
Melillo and Leisman, 2010, 2015).

This one-side-at-a-time developmental activity of the
hemispheres is thought to be an important factor that is highly
associated with the development and lateralization of the brain
in infancy and early childhood (Melillo and Leisman, 2010).
This asymmetry and lateralization impart great advantage to
the brain as it leads to regional specialization which increases
the efficiency of the brain (Duboc et al., 2015). The brain does
not like redundancy as it renders its ability to communicate
between regions less optimized and slows down the brain’s
responsivity to internal and external stimulation and adversity
(Hiratani and Fukai, 2018).

In order to speed-up brain responsivity to external or
internal voluntary action control, fronto-basal ganglia pathways
must play a significant role in the control of voluntary action
and in motor response inhibition. Response inhibition can be
facilitated by a fast hyperdirect pathway that would connect the

right inferior frontal gyrus and the pre-supplementary motor
area with the subthalamic nucleus or, through the indirect
pathway between the cortex and caudate. These considerations
are explored further below.

Top-down and bottom-up
communication in ADHD

The brain develops from the bottom up starting in the lower
brainstem and with the brainstem nuclei acting as precursors
to higher levels of brain development and with the ultimate
development of Brodmann areas that have both structural and
functional differences (Zelazo, 2015; Onofrj et al., 2022). Once
there is bottom-up completion of development there then can
be completion of top-down development which allows the brain
and neocortex to ultimately control all functions of the body
(Emberson et al., 2015). As part of this top-down development,
the brain and especially the prefrontal cortex develops feedback
pathways with the basal ganglia and thalamus that ultimately
control and regulate much of human behavior (Petrovic and
Castellanos, 2016; Emberson, 2017; Choi et al., 2018). There
are at least five loops with connections from the prefrontal
cortex to the basal ganglia and entering the direct or indirect
pathways. The direct pathway is facilitatory and the indirect
pathway, inhibitory.

Direct, indirect, and hyperdirect
pathways in ADHD

The original model by Alexander et al. (1986) described five
feedback loops that included the promotor area [Broca’s Area
(BA) 6] to control motor function, the dorsolateral prefrontal
cortex (BA 9, 46) for executive function (EF), the frontal eye
field (BA 8) for control of volitional saccadic eye movement,
the orbitofrontal cortex (OFC) (BA 11, 12) for control of social
behavior and the anterior cingulate (AC) (BA 24, 25, 32, 33) for
control of motivation. Middleton and Strick (2000), however,
created a revised version of this that expanded the number of
feedback loops to seven motor subcircuits, three oculomotor
circuits, four dorsolateral prefrontal circuits (DLPFC), five OFC
circuits, and two cingulate circuits.

All of these circuits project from a specific area of the
cortex to the basal ganglia and from there to the thalamus
then returning to the cortex (Zikopoulos and Barbas, 2007;
Sherman, 2011). Each one of these circuits projects either to
the indirect or direct pathways and will either activate or
inhibit a specific behavior or function in the direct pathway
or in the indirect pathway, respectively. Motor behavior is
in large measure dependent on a dynamic balance between
these two pathways where neither pathway gains dominance
over the other (Cui et al., 2013; Macpherson et al., 2014;
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FIGURE 1

Representation of the direct vs. indirect pathways of the basal
ganglia indicating facilitatory vs. inhibitory components of
motor activity. In the direct pathway, Input from the cerebral
cortex to the striatum is associated with triggering of inhibitory
neurons in the striatum. This subsequently is associated with
increased inhibitory output projecting to the globus
pallidus-internal [GPi]. Subsequently, decreased inhibitory
output from GPi to the ventral anterior [VA] and ventral lateral
[VL] nuclei of the thalamus is evidenced that in turn projects
through excitatory pathways to the premotor cortex. The direct
pathway regulates motor and premotor cortical excitation that is
involved in planning and movement initiation. The indirect
pathway, when appropriately functioning, should inhibit
movement when cortically generated excitatory activity enables
inhibitory neurons in globus pallidus external [GPe]. These
subsequently inhibit tonic inhibitory output neurons associated
with decreased tonic inhibition of the subthalamic nucleus
[STN]. The result is increased excitatory output to GPi. Excitatory
input to GPi adds inhibitory output from GPi to the thalamus
which, in turn, decreases excitatory feedback to cerebral cortex.
The result, under normal circumstances, should lead to the
inhibition of motor activity. Dopamine supports the activity of
the direct pathway suppressing activity of indirect pathway. The
hyperdirect pathway is exceptional as it circumvents the
striatum with a direct link from the cortex to the subthalamic
nucleus, then directing excitatory projections to the GPi. The
hyperdirect pathway is key for containing non-purposeful
movement. When the system is impaired, individuals are less
able to inhibit unplanned motor activity.

Hikosaka et al., 2019; Kwak and Jung, 2019). The pathways are
represented in Figure 1.

There exists an additional pathway that plays a significant
role in oscillating between direct and indirect pathways and is
critical to this dynamic balance between these pathways and
behavioral flexibility. This is termed the hyperdirect pathway
and it originates from the right cerebral hemisphere alone
(Koirala et al., 2018; Chen et al., 2020). There are two regions
of the right hemisphere that are the points of origin of the
hyperdirect pathway which specifically activates the indirect
pathway at the caudate and putamen and specifically connects
to the subthalamic nucleus of Luys, the main source of the
indirect pathway’s effect (Chen et al., 2020; Temiz et al., 2020).
The hyperdirect pathway has one component arising from the
premotor area (BA 6) in the right hemisphere. This pathway
primarily inhibits motor activity (Chen et al., 2020).

The hyperdirect pathway suppresses unwanted movement
and it will subsequently inhibit movement once an action has
been completed (Nambu et al., 2002; Chen et al., 2020). If
there exists a motor activity deficit or underdevelopment of
this pathway and its connections, overactivity of the premotor
loop on the left hemisphere will likely be evidenced (Singer
et al., 2015; Dalley and Robbins, 2017; Guo et al., 2018;
Temiz et al., 2020; Sival et al., 2022), which will, in turn,
activate the direct pathway and increase motor activity that
can be exemplified by motor tics (Leisman and Sheldon,
2022), or stereotypical movements not infrequently evidenced
in hyperkinetic disorders such as ADHD, Tourette’s syndrome,
autism spectrum disorder (ASD), etc. (Melillo and Leisman,
2009; Temiz et al., 2020; Hannah and Aron, 2021). The other
part of the hyperdirect pathway arises from the inferior frontal
gyrus (BA 44, 45, 47) in the right hemisphere alone (Chen et al.,
2020; Narayanan et al., 2020). This is thought to regulate the
limbic, and associative loops, which includes the DLPFC, OFC,
and the AC by specifically activating the indirect pathway to
eliminate unwanted or inappropriate, emotions, social behavior,
thoughts, etc. (Janssen M. L. et al., 2017; Temiz et al., 2020).

Therefore, in ADHD, we can see that many of the
symptoms can be explained by overactivity of the left
hemisphere’s connections to the direct pathway related to the
underdevelopment and underactivity of the right hemisphere
and the indirect and hyperdirect pathways (Chen et al.,
2016; Hauser et al., 2016; Ziegler et al., 2016) This can
explain the hyperactive motor behavior seen in ADHD with
overactivity of BA 6 in the left hemisphere associated with
underdevelopment of BA 6 on the right. This also can explain
the underdevelopment of sustained attention abilities which
is related to the ventral attention network, lateralized more
to the right hemisphere and subserving sustained attention
(Vossel et al., 2014) and is reflected in Figure 2. This is also
connected to the salience network represented in Figure 3
which is predominately constituted by the insula cortex (IC)
(BA 13) and the (AC) (BA 25,32) (Sridharan et al., 2008;
Menon, 2011; Nekovarova et al., 2014). This developmental
maturational imbalance between all of these loops can explain
of the symptoms seen in ADHD.

Central executive and default
mode networks in ADHD: In
support of goal-directed behavior

Default mode network

Neuroimaging studies have led us to theorize that the
fundamental differences between rest and agency can be based
on an organized level of baseline activity that is diminished
during goal-oriented cognition. It has also been thought that the
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brain maintains a “default mode” in the absence of cognitive
demands (Gusnard and Raichle, 2001; Gusnard et al., 2001;
Raichle and Gusnard, 2005) so as to enable a readiness state
that is capable of responding to changes in one’s environment
(Raichle et al., 2001). The Default Mode Network (DMN) is a
network of coherent brain regions active during daydreaming
or unfocused behavior. Some investigators have linked activity
of the DMN to the processing of self-referential information as
brain regions such as the posterior cingulate (PCC) and medial
prefrontal cortex (mPFC) have been demonstrated to subserve
self-reflection, introspective mental imagery, and self-awareness
(Northoff et al., 2006; Buckner et al., 2008; Schneider et al.,
2008).

A meta-analysis (Spreng et al., 2009) identified components
of the DMN, such as the anterior cingulate cortex (ACC),
the PCC, mPFC, and the middle temporal gyrus and. Central
Executive Network (CEN) activation tasks have been reliably
confirmed to stimulate decrease activation (deactivation)
in the DMN. McKiernan et al. (2003) demonstrated that
with increased task difficulty, task-related deactivation
increased. Two studies by Fransson (Fransson, 2006; Fransson
and Marrelec, 2008) examined DMN connectivity during
challenging cognitive tasks and found significantly reduced
functional connectivity within the DMN with excessive
working memory load.

Different groups (Buckner et al., 2008; Spreng and Grady,
2010) have discussed the notion that the DMN might consist
of numerous subsystems. Uddin et al. (2009, 2010) and
Uddin (2021) showed significant differences by examining
the anticorrelations of seed regions in the PCC and mPFC.
This indicated that distinct nodes of the DMN may modulate
activity in task-positive networks differently. Alterations in
connectivity of the DMN have been discussed as possible
biomarkers for psychiatric conditions such as autism (Calhoun
et al., 2008). Specifically related to ADHD, Rubia et al. (2014),
have noted that individuals with ADHD have greater gray
matter volume in nodes within the DMN. When performing
a task, the DMN activity infringes on the task-positive
cognitive systems necessary for task completion (Rubia et al.,
2014). We acknowledge that our personal DMN has been
active when we suddenly return from having been “zoned-
out” and realize it. When we engage in goal-oriented tasks
that are attention-demanding, the DMN decreases its activity.
Although in normal development, difficulties inhibiting or
deactivating the DMN is likely, individuals with ADHD
have significantly greater difficulty in inhibiting the DMN.
In other words, individuals with ADHD have a stronger
gravitational pull toward this cognitive resting state and, as a
result, it requires significantly greater effort to gravitate away
from it and attend to the task. Uddin et al. (2008) found
reduced DMN nodal homogeneity in ADHD individuals when
compared to age-matched controls, that was most evidenced
between the precuneus and other DMN regions. This finding

provides further support for the notion that altered precuneus
connectivity is implicated in ADHD.

Central executive network

The CEN is usually related to the appropriate functioning of
the PFC and related regions such as the cingulate cortex (Cohen,
2017). The CEN has often been considered synonymous with the
earlier concept of EF. In both, behavioral regulatory activity can
optimize goal-directed behavior and prevent automaticity in a
way similar to the difference between automatic and controlled
responding (Schneider and Shiffrin, 1977). This approximately
aligns with the distinction between habit and goal-directed
responsivity (Balleine and O’Doherty, 2010). One would expect
the absence of the CEN to produce automatic behavior as
controlled responses are flexible and goal-directed.

Miller and Cohen (2001) thought that the CEN “. . .stems
from the active maintenance of patterns of activity in the PFC
that represent goals and the means to achieve them. They
provide bias signals to other brain structures whose net effect
is to guide the flow of activity along neural pathways that
establish the proper mappings between inputs, internal states,
and outputs needed to perform a given task” (p. 167). This
conception of the role of PFC in the CEN basically consists
of the contextual biasing of attention (e.g., instructions) to
exert attentional control and to resolve conflicts. In a modified
Stroop task, Kerns et al. (2005) found that the theory was
supported by an fMRI study demonstrating that ACC activation
was supplemented by activity in the DLPFC associated with top-
down adjustments of response control. Therefore, in Miller and
Cohen’s (2001) model, the ACC can identify conflict resolved
by the top-down biasing of response options from the DLPFC.
This theoretical scheme has provided support for a CEN process
mediated by interactive PFC circuitry.

Both the CEN and DMN are lateralized (Sripada et al.,
2014). The CEN tends to be more left (Silk et al., 2016) and
more focused on the external environment (Antshel et al.,
2014) which is overactive in ADHD (Bilevicius et al., 2018).
The DMN tends to be more lateralized to the right (Sripada
et al., 2014) and appears to be more internally focused (Lanier
et al., 2021) the results of which are significant features of
ADHD (Seli et al., 2015). Individuals with ADHD manifest a
reduced connection to their bodies (Wiersema and Godefroid,
2018) as well as reduced sensory awareness of body parts
(Sanz-Cervera et al., 2017).

Additionally, not only is there a reported decrease in pain
perception (Wolff et al., 2016) as well as sensory perception to
tactile (Puts et al., 2017) and proprioceptive stimulation (Tseng
et al., 2018; Tarbanie, 2020), but individuals with ADHD also
have reduced interoception (Kutscheidt et al., 2019) which is
related to the functioning of the right insula and the salience
network (Uddin, 2015; Zhang et al., 2019) which, in turn, is
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FIGURE 2

Interaction between the dorsal attention networks and ventral (salience) enables active control of attention in relation to bottom-up sensory
stimulation and top-down goals. The top-down dorsal-frontoparietal system which includes the frontal eye fields (FEF) and the intraparietal
sulcus that supports voluntary attention to particular aspect of the visual field locations or objects and the ventral-frontoparietal system is
concerned with attention to unexpected features. The ventral attention network involves the ventral-frontal cortex and the temporoparietal
junction (TPJ), and usually responds to behaviorally relevant but unexpected stimuli. The biasing of sensory areas toward particular stimuli
derives from the frontoparietal cortex. There exists a connection between sensory cortical areas involving the intraparietal sulcus and the FEF.
These two areas have top-down influences on the orienting of attention. These top-down effects are known to out-weigh bottom up effects
from the visual cortex (after Vossel et al., 2014 with permission).

associated with the ventral attention network and sustained
attentional function (Janssen et al., 2018). Salience also tends
to be more lateralized to the right hemisphere (Uddin, 2015;
Zhang et al., 2019). In addition, the left DLPFC supports setting
goals (Vetter et al., 2018) and the left hemisphere is more active
when sustaining goals OFC and goal intensity (Chiang et al.,
2015), in turn, largely associated with the left hemisphere’s BA
44 (Pagliaccio et al., 2017).

Developmental delay in
neuroanatomic maturational
dysfunction of the frontal lobes in
ADHD

The frontal lobes exemplify a complex neurological system.
The prefrontal cortex is integrated within the frontal lobes
and is thought to combine intentional responses that require
intended and synchronized action sequences (Laubach et al.,
2015). Frontal lobe complexity is demonstrated by prefrontal
cortex interconnectedness with the motor regions of the

frontal lobes (Bernard et al., 2016), the posterior associative
cortex (Barbas, 2015; Fuster, 2015), the limbic (motivational)
(Barbas, 2015; Tucker and Luu, 2021), and ascending reticular
activating system (arousal) (Jang and Kwon, 2015). These
interconnections, in particular, with the dorso thalamic nucleus
projections, describe the primary features of prefrontal cortical
organization (Leisman and Melillo, 2012; Bubb et al., 2017;
Kamali et al., 2020).

There are three classes of neuropsychological functioning
associated with the prefrontal cortex: regulatory, social, and
executive (Fuster, 2015). The prefrontal cortex supports the
maintenance of set, in problem-solving tasks (Friedman and
Robbins, 2022), and in implementing strategic and sequential
planning (Desrochers et al., 2015; Schuck et al., 2015),
performing mental representations of a task (Monk et al., 2021),
planning and self-monitoring of performance (Joensson et al.,
2015), abiding by social rules (Rozzi and Fogassi, 2017), and
employing environmental cues (Fuster, 2015; Hall-McMaster
et al., 2017). In adults with lesions of the frontal lobes,
there exists evidence of impairment in action or response
planning, anticipation of events, establishment of goals, self-
monitoring ability, cognitive flexibility with comorbidities with
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FIGURE 3

The salience network is theorized to mediate switching between the default mode network (DMN) and central executive network (CEN)
(adapted from Vossel et al., 2014, with permission).

conditions such as ticking behavior (Leisman and Sheldon,
2022) and other neurobehavioral disorders such as ASD and
OCD (Melillo and Leisman, 2009). Frontal lobe lesioned adults
present with disinhibition, perseverative behavior, and difficulty
in employing environmental cues to modulate behavior (Fuster,
2015; Serrien and Sovijärvi-Spapé, 2015).

Frontal lobe lesions in adults allows us to observe
hyperactivity control mechanisms more readily (Clay et al.,
2019; Hagiescu, 2021). Hyperactivity, both in childhood
and in adulthood, can be viewed as a disturbance of higher
levels of cortical inhibition manifested as an absence of
orienting responses inhibition (Posner et al., 1998; Brown
et al., 2021; Williams and Das, 2021), an inhibitory deficit
of inappropriate responses (Posner et al., 1998) and/or a
disinhibition of inhibitory cortical reflexes (Neely et al.,
2017), or retained primitive reflexes (Melillo and Leisman,
2010; Melillo et al., 2020; Bob et al., 2021; Sigafoos et al.,
2021). Given the apparent similarity in the behavioral
manifestations of ADHD and adults with dysfunction
of or damage to the frontal lobe, we can hypothesize a
common origin for ADHD and frontal lobe dysfunction,
even though it has long been argued (Fletcher and
Taylor, 1984, p. 46; cf. Fletcher, 2021), that, “Similarity of
behavior in the absence of independent assessment does
not provide sufficient evidence of common origins” in
adults and children.

ADHD as a manifestation of maturational dysregulation
has been largely supported by MRI studies. Volumetric
measurements of right and left hemispheres, of gray and

white matter within each lobe, and cerebral and cerebellar
volume have been reported to be approximately 4% smaller
in ADHD individuals relative to controls (Castellanos et al.,
2002). Significant differences have also been noted in cortical
thickness (Shaw et al., 2007). While in ADHD and control g
children, peak cortical thickness was developed earlier in the
sensory regions as compared to association cortical regions.
However, control children developed peak thickness between
7 and 8 years, of age relative to ADHD children who attained
it later, between 10 and 11 years. This evidence supports a
common course of regional brain development sequencing in
both ADHD and control children but with cortical maturational
dysregulation in ADHD.

More evidence in support of widespread volumetric
reductions in ADHD subjects comes from cross-sectional
studies comparing ADHD and control subjects in smaller
samples than in the above studies (see reviews Seidman
et al., 2005; Shaw and Rabin, 2009). While there are many
mixed findings in this body of work, the majority indicated
that volumes were reduced in ADHD subjects relative to
age-matched controls. The loci of the reported reductions
are in multimodal association cortices such as the frontal
lobes and its subregions, premotor cortex, posterior cingulate,
anterior and medial temporal lobes, cerebellar lobules, and
basal ganglia structures (caudate, globus pallidus, putamen, and
ventral striatum).

Cognitive and motor affect assessment in the context
of the frontal lobe hypothesis of ADHD has been partly
obstructed by argument about the developmental stage at which
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functioning of the frontal lobes matures. Earlier, Luria (2012)
had proposed that prefrontal regions are not capable of agency
and preparedness for action until between of 4 to 7 years of
age under normal circumstances. Golden, on the other hand
(Bradley and Golden, 2001; Golden and Hines, 2010) noted
that the frontal areas do not become functionally mature until
much later, in adolescence. Since Luria and Golden, we have
learned that frontal lobe behaviors develop rapidly from the age
of approximately 6 years and almost reach adult levels of control
between 10 and 12 years of age (Norbom et al., 2020; Wang et al.,
2020).

Conclusion

The issue of developmental trajectories is singularly
important as it frames the disorder of ADHD as a maturational
dysfunction. The result, therefore, is that the cognitive and
behavioral abilities of the ADHD child are not disordered or
dysfunctional, but are rather developmentally inappropriate for
the child’s chronological and mental age.

Compared to neurotypical children, those with ADHD
demonstrate decreased activation of the right and middle
prefrontal cortex across all age groups (Yasumura et al., 2019).
However, while frontal lobe function may not universally
explain all forms of ADHD, the frontal lobe hypothesis
described here does provide an internally consistent model
for the elucidation of many of the findings associated with
ADHD. Prefrontal regions of the frontal lobes have an exuberant
network of shared pathways with the diencephalic region
(Bubb et al., 2017), which has a regulatory function in arousal
(Martella et al., 2020), as well as with the ascending reticular
formation which, for reasons previously indicated, has a capacity
for response suppression to task-irrelevant stimuli. Prefrontal
lesions oftentimes are associated with regulatory breakdown
of goal-directed activity and impulsivity. Individuals with
frontal and prefrontal lesions have an impediment in subduing
ongoing activities independent of environmental feedback and

demonstrate amplified responsiveness to extraneous stimuli
(impulsivity and distractibility), associated with deficient goal-
directed behavior. Frontal lobe lesions in adult humans often
leads to hyperactivity/hyperreactivity. In childhood, however,
we are likely looking at ADHD as a problem of the trajectory of
normal maturation of the frontal lobes with effects on the direct,
indirect and/or hyperdirect pathways.
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