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Abstract

Human breast cancer cell proliferation involves a complex interaction between growth factors, steroid hormones and
peptide hormones. The interaction of growth factors, such as epidermal growth factor (EGF), with their receptors on breast
cancer cells can lead to the hydrolysis of phospholipids and release of fatty acid such as arachidonic acid, which can be
further metabolized by cyclooxygenase (COX) and lipoxygenase (LOX) pathways to produce prostaglandins. The high
concentration of prostaglandins has been associated with chronic inflammatory diseases and several types of human
cancers. This is due to the over expression COX, LOX and other inflammatory enzymes. Ten peptides were designed and
synthesized by solid phase peptide synthesis and analyzed in vitro for enzyme inhibition. Out of these peptides, YWCS had
shown significant inhibitory effects. The dissociation constant (KD) was determined by surface plasmon resonance (SPR)
analysis and was found to be 3.3961028 M and 8.661028 M for YWCS and baicalein (positive control), respectively. The
kinetic constant Ki was 72.4561027 M as determined by kinetic assay. The peptide significantly reduced the cell viability of
estrogen positive MCF-7 and estrogen negative MDA-MB-231 cell line with the half maximal concentration (IC50) of 75 mM
and 400 mM, respectively. The peptide also induced 49.8% and 20.8% apoptosis in breast cancer cells MCF-7 and MDA-MB-
231, respectively. The YWCS was also found to be least hemolytic at a concentration of 358 mM. In vivo studies had shown
that the peptide significantly inhibits tumor growth in mice (p,0.017). This peptide can be used as a lead compound and
complement for ongoing efforts to develop differentiation therapies for breast cancer.
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Introduction

LOX plays an essential role in the biosynthesis of leukotrienes

(LTs). LTs are potent biological mediators in the pathophysiology

of inflammatory diseases and host defense reactions. These

properties imply a significant role for LTB4 in the pathogenesis

of inflammatory diseases such as asthma, atherosclerosis and

cancer [1–4]. The metabolism of arachidonic acid via COX or

LOX pathway generates eicosonoids which has been implicated in

the pathogenesis of a variety of human diseases, including cancer,

and may play important roles in tumor promotion, progression

and metastasis. The involvement of LOX-12 expression and

function in tumor growth and metastasis has been reported in both

murine and human tumor cell lines [5]. LOX-12, product 12-

HETE is one of the most important lipid metabolites to influence

tumor progression [6]. It has been reported that LOX-12 is over

expressed in tumor tissues including prostrate, breast, colorectal

and lung cancer [7–10]. The tumor suppressive and anti-

angiogenesis effects of LOX-12 inhibitors may provide a new

approach to the treatment of human breast cancer. The

development of peptides as drugs is increasingly attracting the

attention of pharmaceutical companies. The advantages of

peptides as drugs include their high specificity, potency, and

activity. These peptides may be responsible for molecular

recognition and other biological processes. Small peptides as a

drug are very specific in nature. Also, peptide drugs pose other

advantages over therapeutic proteins, owing to their higher

solubility, better stability, more bio-availability and negligible

immune response. This study reports, in vitro and in vivo evaluation

of peptide inhibitors against human LOX-12.

Materials and Methods

Ethics Statement
The volunteers of the study provided written informed consent

and the Ethics Committee of All India Institute of Medical

Sciences (AIIMS) approved the study protocol and the permit

number is A-9/25.07.2007. The in vivo study was carried out in

strict accordance with the recommendations in the guide for the

care and use of laboratory animals of the AIIMS. The protocol
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was approved by the committee on the ethics of animal

experiments of AIIMS (Permit Number: 549/IAEC/10).

Cloning, expression, purification and characterization of
human LOX-12

The total RNA was isolated from MCF-7 cell line (National

centre for cell sciences, Pune, India) and converted to total cDNA

by using reverse transcriptase. The specific primer for human

LOX-12 was used for amplification and cloned into pGEMT easy

cloning vector (Promega) and subcloned in pET28a bacterial

expression vector. E. coli BL21 codon+ competant cells (Novagen)

were transformed with the expression vector containing His-

tagged LOX-12 using standard Novagen procedure. The cells

were grown at 310K in Luria-Bertani (LB) medium containing

50 mg/ml Kanamycin to an absorbance of 0.6 at 600 nm. The

expression was induced by the addition of 1 mM isopropyl-b-D-

thiogalactosidase (IPTG). The cells were grown for 4 h at 37uC
and centrifuged at 8,000 g for 10 min. The cell pellet was

resuspended in 10 ml of buffer (20 mM Tris-HCl pH–8.0,

150 mM NaCl). The cells were lysed by using sonicator(Sonics)

using 5 sec pulse On and 9 sec Off for 5 minute and centrifuged at

12,000 g for 20 min to remove the inclusion bodies. The protein

was purified from inclusion bodies under denaturing condition

using urea and refolded by passing through the column of Ni-

NTA-Agarose (5 ml, QIAGEN) equilibrated in binding buffer.

The bound protein was eluted with buffer containing 300 mM

imidazole. The protein was characterized by SDS-PAGE using

Laemmli system of buffers [11] and was then subjected to western

blotting. Gels were electroblotted (Protean Trans blot cells; Bio-

Rad) onto nitrocellulose membranes. The human LOX-12

primary antibody (1:500) and secondary antibody (anti-goat

alkaline phosphatase-conjugated; Santa Cruz Biotechnology, Inc)

were used for development of the blot.

Activity assay of Recombinant Human LOX-12
The activity of purified recombinant LOX-12 was determined

by using the conjugated diene method of biochemical assay.

Enzyme activity was indirectly measured by estimating the rate of

product formation. Hydroperoxy lipid product of the reaction

contains a conjugated diene which strongly absorbs at 234 nm.

The purified enzyme was used for activity assay. The assay

mixture contained 20 mM arachidonic acid (substrate), 0.2%

Tween-20, 50 mM potassium phosphate buffer pH 7.2 and

1.0 mM purified enzyme. The change in absorbance at 234 nm

was observed and the activity was calculated.

Synthesis of Peptides
The peptides were synthesized by solid phase peptide

synthesizer PS3 (Protein technology, USA) using Fmoc and Wang

resin chemistry [12]. The solvent used for the synthesis was

dimethylformamide (DMF). 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tet-

ramethyluronium hexafluorophosphate (HBTU) was used as an

activator of the Fmoc amino acids (Chem Impex, USA). Fmoc was

deprotected by 20% piperidine and wang resin was cleaved by

Trifluoroacetic acid (TFA). The peptides were precipitated from

dry ether.

Analytical RP-HPLC of Peptides
The purity of peptides was verified by analytical RP-HPLC,

C18 reversed phase column (RPC) (1.6610 cm, Amersham

Bioscience). 1 mg/mL of peptide was loaded to the RPC. The

linear gradients were formed by passing two different solvents,

where solvent A was 0.05% aqueous TFA, pH 2 and solvent B was

0.05% TFA in acetonitrile. The flow rate was 0.25 mL/min at

room temperature. The molecular weights were confirmed by

MALDI-TOF.

Kinetics and inhibition studies of the peptides by
spectrophotometer

For inhibition study, the human LOX-12 was incubated with

peptide for 30 min, which was then added to the reaction buffer

containing arachidonic acid (substrate), 0.2% Tween-20, 50 mM

potassium phosphate buffer pH 7.2. The change in absorbance

was monitored at 269 nm and the percentage of inhibition was

calculated. A control reaction was always carried out without any

peptide inhibitor to ensure the activity of protein under

experimental conditions.

For kinetic assay, the above experiment was done with four

different concentrations of peptides (25–100 mM). For each

concentration of peptide the experiment was repeated with six

different concentrations (20–120 mM) of substrate, arachidonic

acid. The enzyme concentration was constant (1.0 mM) through-

out the assay. The competitive kinetic constant (Ki) was calculated

graphically using the Michaelis-Menton equation in graphpad

prism software. The graph of activity vs. concentration of

arachidonic acid was plotted.

Binding studies of peptides with purified LOX-12 by SPR
The binding interaction between LOX-12 with peptides was

performed using a biosensor based on SPR. The interaction

phenomenon of two biological molecules can be monitored

directly by the SPR. The phenomenon of SPR was studied by

Otto [13] and Kretschmann and Raether [14] and it was used as a

chemical detection method by Nylander et al [15]. An automatic

instrument BIAcore 2000 (Pharmacia Bioscience) was used. Six

histidine-tag which were attached to the N-terminal position of

LOX-12 was an ideal tag for immobilization due to strong

rebinding effect caused by the high surface density of immobilized

Ni2+–nitriloacetic acid (NTA) on the chips. The binding of analyte

i.e., the peptide in solution can be studied by monitoring the

change in the resonance unit (RU) values of the sensorgram, where

the progress of the interaction was plotted against time, revealing

the binding characteristics. Analysis of binding property i.e., the

association constant (KA) for the formation of multi-molecular

complex and dissociation constant (KD) were achieved in very

short time and with a small amount of samples. First the flow cell

was activated by passing nickel chloride and 60 ml of His-LOX-12

(50 mg/ml) was injected over the flow cell at the flow rate of 5 ml/

min. 350 RU of LOX-12 was immobilized under these conditions,

where 1 RU corresponds to immobilized protein concentration of

,1 pg/mm2. The analyte i.e., peptide inhibitors at a concentra-

tion of 25 mM were passed over the immobilized LOX-12 at a

flow rate of 10 ml/min and the sensogram was run for 4 min,

likewise two more concentrations i.e, 50 and 75 mM of peptides of

same volume were passed over the chip and the change in

sensogram was observed. The graph shows the change in RU

values with time for different concentration of peptides. The rate

constants KA and KD were obtained by fitting the primary

sensorgram data using the BIA evaluation 3.0 software. The

dissociation rate constant is derived using equation:

Rt~Rt0
e-kD(t-t0)

Where, Rt is the response at time t, Rto is the amplitudes of the

initial response and KD is the dissociation rate constant. The

association rate constant, KA can be derived using equation given

Identification of Novel Inhibitor for Human LOX-12
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below from the measured KD values.

Rt~Rmax½1{e{(KACzKD)(t{t0)�

Where, Rt is the response at time t, Rmax is the maximum

response, C is the concentration of the analyte in the solution.

Measurement of Minimal hemolytic concentration (MHC)
The effect of peptide on hemolysis was determined by using

human red blood cells (hRBC from volunteer). The freshly

collected hRBC were centrifuged for 10 mins to remove the buffy

coat and washed with phosphate buffered saline (PBS: 35 mM

Na2HPO4, pH 7.0 and 150 mM NaCl). 100 ml of the hRBC

(suspended in 1% (v/v) in PBS) and 10 ml peptide solution were

added into the sterile 96 well plates in triplicate. The plates were

incubated for 1 h at 37uC and centrifuged at 10006g for 5 mins.

The supernatant were transferred to fresh 96 well plates, where

hemoglobin released was monitored by measuring the absorbance

spectrophotometrically at 541 nm. Similar steps were carried out

for Gentamycin, as a control. The percentage of hemolysis

(determined in PBS and 0.1% Triton X-100) was calculated from

the standard graph which was plotted with % hemolysis of

prepared RBCs vs optical densities.

Tumor cell cytotoxicity of the inhibitory peptides by MTT
assay

Cytotoxic effect of LOX-12 inhibitory peptides was analyzed on

MCF-7 (ER+) and MDA-MB-231 (ER+) breast cancer cell lines by

MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bro-

mide] dye reduction assay. Briefly, 36103 cells/100 ml media were

seeded in 96-well plates 24 h before the experiment. The cells were

then incubated with different concentrations of the peptides for 24,

48 and 72 h as indicated. The cells were treated with DMSO (same

concentration as used to solubilise the peptide) which was then

subtracted from all the cytotoxic values.10 ml/well MTT-solution

(10 mg/ml in PBS) was then added and plates were further

incubated for 3 h at 37uC. The formazan crystals formed were

dissolved by adding 100 ml/well of dimethyl sulfoxide (DMSO).

Absorbance was measured by a microplate reader at 570 nm with a

reference filter 650 nm. 100 ml of medium with 10 ml of MTT

stock-solution and 100 ml of DMSO was used as a blank solution to

correct the background. The data obtained was presented as

percentage viability in the best-fit (linear) dose response curve. The

IC50 values at 95% confidence intervals was calculated for all cell

lines. Each concentration was used in triplicate. The peptide AIRS

was used as a negative control. The MTT assay of peptide AIRS is

submitted as a supplementary data [Figure S1].

Assessment of apoptosis by annexin-V binding assay and
Flow Cytometry

The frequency of apoptosis in MCF7 cells and MDA-MB-231 by

the treatment with YWCS was assayed by annexin-V binding assay.

Briefly, MCF7 cells and MDA-MB-231 were pulsed with the

peptide for 72 h. After termination of the culture, cells were stained

with annexin-V apoptosis detection kit (Biolegend) according to the

manufacturer’s instructions. The cells were washed twice with PBS,

and resuspended in annexin-V binding buffer. To the cell

suspension, 5 ml of FITC-conjugated annexin-V (Biolegend) and

10 ml of propidium iodide (PI) (50 mg/ml) solution were added and

further incubated for 15 min at room temperature. About 10,000

events were acquired in FACS Canto flow cytometer (Becton–

Dickinson, USA). The frequency of annexin-positive (apoptotic)

cells was determined using BD FACSDiva software.

FITC labeling of peptides and their intracellular
localization

For labeling of peptides with Flourescein isothiocyanate (FITC),

1:1 equivalent of NH2-YWCS-wang resin and FITC in DMF were

stirred together overnight. The peptide labeled with FITC was

then cleaved from the resin using the standard procedure. To

evaluate the localization of the inhibitory peptide in MCF-7 and

MDA-MB231 cell line, cells were seeded on cover slips in 6-well

plates and allowed to adhere for 24 h. They were then treated with

the FITC-labeled peptide and incubated further for 48 h. The

cells were then washed with PBS, fixed with 4% paraformaldehyde

for 15 min and stained with 50 mg/ml PI for nuclear staining. The

cells were visualized under Confocal microscope (Nikon) for green

(FITC) and red (PI) fluorescence to check the intracellular

localization of the peptides.

Preliminary study of peptide action in tumor mice model
In-vivo animal experimentation of peptide for anticancer activity

was done using mice model. Swiss albino mice were obtained from

Central animal facility, AIIMS at 55–65 days of age. The animals

were housed in polycarbonated cages, bedded with husk. The

animal facility was environmentally controlled; mice were

maintained at normal room temperature with suitable relative

humidity and 12 h light, 12 h dark cycle. Animals were fed chow

food and purified water ad libitum throughout the study. Animals

were randomized into 5mice per cage in 3 groups (Group I, II and

III) for the study.

Tumor Induction
Ehrlich’s Ascites Tumor cell line (EAT) (murine breast

carcinoma), was used for tumor induction. The cell line was

maintained in-vivo by passaging weekly intraperitonealy (i.p) from

mice to mice. For tumor induction, 14 million cells approximately

150 ml volumes was injected to the animal in a group

subcutaneously on the dorsal side of the body (back) and kept

under observation for tumor onset.

Tumor size was recorded by vernier calipers and tumor volume

was calculated using the formula: V = 0.56L6W2, where L is the

length (long axis) and W is the width (short axis).

Evaluation of peptide action after injection in
experimental mice

In Group I (control, untreated) only tumor cell line was

administered. In group II, YWCS peptide was administered when

the tumor volume reached 0.2260.10 cm3 on day 10, at a dose of

200 mmol intravenously (i.v) per mouse once daily for 20 days from

day 11 to day 30. In group III, same concentration of peptide was

injected intravenously (i.v) simultaneously after injecting tumor

cells subcutaneously on day one. During experimental period mice

were under observation till sacrificed.

Statistical analysis
The statistical analysis was carried out using the Graphpad

Instat 3 software and p,0.05 was considered statistically

significant. For the comparison of the findings, paired and

unpaired t-test was performed.

Results

Purification and Characterization of Human LOX-12
Human LOX-12 protein was purified from inclusion bodies by

the method of on-column refolding as described in the material

and methods section. Approximately 20 mg of protein was

Identification of Novel Inhibitor for Human LOX-12
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recovered from the Ni2+-NTA affinity column. In SDS-PAGE

approximately 90–95% purity of the protein was observed (data

not shown). This was followed by western blotting showing the

presence of LOX-12 in the inclusion bodies of the bacterial cell

extract (Figure 1A).

Activity Assay of Human LOX-12
The activity of purified recombinant LOX-12 was determined

by using the conjugated diene method of biochemical assay.

Enzyme activity was indirectly measured by estimating the rate of

product formation. The graph (activity profile) of absorbance vs.

time is shown in Figure 1B.

Screening of peptides
The activity assay for LOX-12 in presence of 10 different

peptides with substrate was performed by using spectrophotom-

eter. The assay was performed at 269 nm which gives the

absorption maxima for the product LTB4. Table 1 shows the

percentage inhibition for the 10 peptides. The peptide YWCS

showed maximum inhibition of 80%.

Determination of kinetic constant (Ki)
Competitive kinetic constant of the best peptide YWCS was

calculated using graphpad prism software. A linearised analysis of

the data (Michaelis-Menten equation) [16] showed a competitive

mode of inhibition (Figure 1C). The Ki value obtained for the

peptide YWCS was 72.4561027 M. The direct plots of reaction

velocity versus substrate concentration demonstrated classical

steady-state kinetic behavior.

Figure 1. Western blot showing LOX-12 expression: (A) Molecular weight marker, supernatant of bacterial extract, inclusion bodies
of bacterial cell extract, flow-through of the Ni-NTA column, purified refolded protein, (B) Activity profile of purified LOX-12. (C)
Michaelis-Menten plot of LOX-12 activity versus arachidonic acid concentration showing decrease in activity at different concentrations (0, 25, 50,
75,100 mM) of YWCS. (D) Sensogram showing binding of different concentrations of YWCS (25, 50 and 75 mM) on immobilized with His-LOX-12 over
the Ni2+-NTA chip.
doi:10.1371/journal.pone.0032521.g001

Table 1. The peptides screened as inhibitors of LOX-12.

Serial number Peptide Studied % inhibition

1 YWG 71.6

2 AIYW 69.3

3 YW 73.2

4 FWY 80.4

5 FYS 79.8

6 YWCS 86.1

7 WFA 73.5

8 WFC 72.1

9 WKS 53.2

10 FWCS 74.2

11 Baicalein 85.1

Inhibition assays were performed in triplicates and average values have been
reported.
YWCS was found to be inhibit the activity of protein by 86.1%.
doi:10.1371/journal.pone.0032521.t001
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PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e32521



Figure 2. Graph showing percentage of hemolysis with different concentrations (0–358 mM) of YWCS and of gentamycin as a
control.
doi:10.1371/journal.pone.0032521.g002

Figure 3. Dose-response curve: (A) showing % viability of MCF-7 cells at 0–150 mM concentrations of YWCS (0.05% DMSO as a
vehicle control), for three different time points (24, 48 and 72 h). IC50 was found to be 75 mM at 72 h. (B) showing % viability of MDA-
MB-231 cells at 0–500 mM concentration of YWCS (0.05% DMSO as a vehicle control), for three different time points (24,48 and 72 h). IC50 was found
to be 400 mM at 72 h.
doi:10.1371/journal.pone.0032521.g003
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SPR analysis
The plot (Figure 1D) shows the sensorgram for the binding of

the varying concentrations of the peptide. The changes in RU with

varying concentration of peptide showed the change of mass on

the LOX-12 immobilized on chip with time. The binding of

peptide YWCS with LOX-12 was the strongest due to the faster

on (association), KA = 2.956107 M was well as slower off rate

(dissociation) KD = 3.3961028 M.

Assay for hemagglutinating activity
The haemolytic activity of the peptide was determined to ensure

the toxicity to erythrocytes using human RBCs. The concentration

upto 358 mM of the peptide lysed only 22% human erythrocytes

(Figure 2).

Cytotoxic activity of peptides on breast cancer cell line
MCF-7 cells were treated with 0–150 mM (0.05% DMSO as a

vehicle control) and MDA-MB-231 was treated with 0–500 mM

(0.05% DMSO as a vehicle control) of the LOX-12 inhibitory

peptides for 24, 48 and 72 h to perform the cytotoxic activity.

The half maximal concentration (IC50) of 75 mM was obtained

which represents the concentration of the peptide at which the

cell growth is inhibited by 50%. The percentage cells viability by

peptide at concentrations 25, 50, 100, 150 mM was 88.6, 85.7,

31.2, 21.1% respectively at 72 hrs. In case of MDA- MB 231,

the IC50 value was 400 mM. The percentage of cell viability

after the treatment of peptide at concentrations 50, 100,

150,200,250,300,350,400 and 500 mM was 92, 87.46, 80.36,

72.51, 7.37,64.95, 54.76, 48.19, 43.07% respectively at 72 h.

The dose-response curves have been shown in Figure 3a
and 3b.

Apoptotic activity of YWCS on MCF-7 and MDA-MB-231
cells

The apoptotic activity of the peptide YWCS was performed

using annexin-V binding assay. Apoptosis induction was observed

as early as 72 h. In this experiment MCF-7 cells were treated with

50, 75 and 100 mM peptide YWCS (0.05% DMSO as a vehicle

control) and the mean percentage apoptotic cell were 41.265.8,

49.866.5 and 58.367.5, respectively, The mean percentage of

apoptotic cell were 15.061.2, 20.863.2 and 22.161.5 treated

with 350, 400 and 450 mM of peptide concentrations (0.05%

DMSO as a vehicle control) respectively in MDA-MB-231 cells,

The frequency of apoptotic cells was significantly higher in

peptide-treated cells; MCF-7 (p,0.0001) and MDA-MB231

(p,0.0010) compared to the untreated controls The frequency

Figure 4. Apoptotic analysis of cancer cells with YWCS by flow cytometry; MCF-7 cells: (A) untreated cells (0.05% DMSO as a vehicle
control), (B–D) treated with 50, 75 and 100 mM YWCS respectively, (E) treated with baicalein. MDA-MB231 cells :(F) untreated cells (0.05%
DMSO as a vehicle control), (G–I) treated with 350,400 and 450 mM YWCS respectively,(J) treated with baicalein. (K) and (L) bar diagram showing
mean percentage of apoptotic cells of the above cell lines treated and untreated with peptide and baicalein.[*** represent the comparison of bar of
treated cells with the untreated cells].
doi:10.1371/journal.pone.0032521.g004
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of the cells in the early phase of apoptosis for all the treatments is

shown in Figure 4.

Intracellular localization of FITC labeled peptides
YWCS was tagged with FITC to observe its intracellular

localization in MCF-7 and MDA-MB-231 breast cancer cell lines.

The fluorescein-conjugated peptide was seems to be entered to

cytoplasmic regions of the cells. (Figure 5).

In vivo study: Efficacy of YWCS peptide for antitumoral
activity administrated on Swiss albino mice implanted
with EAT tumor cell line

During the period of study, there was no significant variation

in the weight of animals. The antitumor effect of YWCS peptide

administration on Swiss albino mice implanted with EAT tumor

cell line are shown in Table 2. All the control (untreated mice)

showed progressive increase in tumor volume, reaching

2.0960.06 cm3 on day 20 to 4.560.24 cm3 on day 30

(Fig. 6a). In contrast, the administration of YWCS peptide

200 mmol intravenously (i.v) once daily for 20 days from day 11

to day 30 in group II, the tumor volume reached

1.6260.49 cm3 on day 20 and 3.0461.06 cm3 on day 30

(Fig. 6a). A significant (p,0.017) difference was observed in the

tumor volume between group I and group II mice on day 20

and day 30 (Fig. 6a).

200 mmol of YWCS peptide was intravenously (i.v) adminis-

tered simultaneously after injecting EAT cell line at day one in

group III animals and kept them under observation for 20 days.

No tumor was observed in this group (Fig. 6b). A significant

variation was observed between group I and group III on day 20.

Group I (control) showed tumor initiation and progression both, in

contrast, group III (peptide treated) showed no tumor initiation.

In addition to this, Group I (control) and group II (peptide

treated for 20 days) showed liver and spleen enlargement in all the

sacrificed animals, but in group III, the size of liver and spleen was

similar to the healthy mice. Preliminary study of YWCS peptide

action showed that it could significantly suppress the growth of

tumor as well as prevented the initiation of tumor.

Figure 5. Confocal microscopy pictures showing localization of FITC-labelled YWCS in MCF-7 and MDA-MB-231 cells. White arrows in
the merged image show that the peptide enters the cell cytoplasm. (A) MCF-7 cells treated with 75 mM YWCS. (B) MDA-MB-231 cells treated with
400 mM YWCS peptide.
doi:10.1371/journal.pone.0032521.g005

Table 2. Antitumor activity on YWCS peptide on EAT tumor bearing mice.

Groups and treatment Tumor volume, cm3

Day 10 Day 20 Day 30

Group I Control* (non treated) 0.04860.0009 2.0960.06 4.560.24

Group II YWCS peptide treated 200 mmol from day 11–30 0.2260.10 1.6260.49 3.0461.06

Group III EAT tumor cell line+peptide injected (i.v) No tumor onset No tumor onset No tumor

doi:10.1371/journal.pone.0032521.t002
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Discussion

There are three isoform of human LOX i.e; LOX-5, LOX-12

and LOX-15. It has been reported earlier that LOX-12 is over

expressed in breast cancer [9]. The structure of active site of 5, 12

and 15 LOX are similar. The inhibitor of LOX-5 like curcumin

and zileuton are anti-cancer agent [17–18]. Baicalein, which is the

specific inhibitor of LOX-12 showed anti cancer activity in

different cancer cell line [19]. Though the complex structure of

LOX-12 with inhibitor is not known, the available complex

structure with other LOX had shown that the presence of an

aromatic moiety with hydroxyl group and a hydrophobic residue

in the inhibitor are important for the affinity towards the active site

residue of LOX [20–21]. Earlier we have reported FWY as a

strong inhibitor of soybean LOX [22] In this study ten peptides

were screened for inhibition (Table 1).The first five peptides in

table 1 were reported in our previous paper [22] which had

already shown a good percentage of inhibition with soybean LOX-

3. So we carried out their inhibition test with human LOX-12.

The other five peptides were also designed keeping the two key

features in mind i.e; presence of an aromatic moiety with hydroxyl

group and hydrophobic residues which are important moieties for

the affinity to the active site of the protein.

The peptide YWCS showed highest affinity to LOX-12 among

the other peptides (Table 1). This peptide was confirmed to be a

competitive inhibitor in the presence of substrate. The binding

affinity of this peptide with LOX-12 was also confirmed by SPR

technology, where the dissociation constant was approximately in

nanomolar concentration range which was much higher than the

known inhibitors of LOX-12.

The LOX-12 metabolite, 12-HETE, has been reported to

increase the proliferation and invasion of breast cancer cells, by

mechanisms such as induction of collagenase secretion from the

cell [23]. This effects of LOX-12 can be blocked by inhibitors of

LOX-12 [24–25].

The association of breast cancer and estrogen receptor is very

well known. The breast cancer patients with ER+ have been

reported to have positive response to chemotherapy and good

prognosis [26–28]. Accordingly both the breast cancer cell line

MCF-7 (ER+) and MDA-MB-231 (ER2) were used to see the

effect of peptide on it. The peptide potentially inhibited the cell

growth of MCF-7 (ER+) and MDA-MB-231(ER2) in a dose and

time –dependent manner and also induced apoptosis in both the

breast cancer cell lines. Hence, cell death observed in breast

cancer cells treated with peptide inhibitor was via apoptosis

induction, which appear to be independent of the hormone

receptor status. The invasive breast cancer cell line MDA-MB231

expressed higher level of LOX-12 as compared to MCF7 [29].

The dose of peptide required for the cytotoxicity and apoptosis

was higher in case of MDA-MB231 compare to MCF-7. This

difference in dosage of peptide inhibitor of LOX-12 may be

assumed due to the difference in expression of LOX-12 in MDA-

MB231 and MCF-7 cell line. The exact reason yet to be

elucidated.

The appearance of permeabilized cells labeled with fluorescein-

conjugated peptide suggests that the peptide was internalized and

resided in the cytoplasmic region of the MCF-7 and MDA-

MB231cells. The peptide was proved to be specific inhibitor of

cystosolic enzyme LOX-12.

It was found that the peptide YWCS prevented the initiation of

tumor growth in mice when it was injected simultaneously with

tumor cell and it also slow down the tumor progression

significantly when the peptide dose was administered after 10

days of tumor growth. Thus we can speculate that LOX-12 under

in vivo conditions is more important for the progression of the

disease.

It can be summarized that the tetrapeptide designed on the basis

of the structure of LOX-12 is a potent inhibitor of LOX-12 and

can be a selective anti breast cancer agent due to its strong anti-

cancer property. The hemolytic studies showed that the peptide

was nearly non-toxic to human erythrocytes. This aspect of the

peptide showed that it can be delivered via the intravenous route,

although further evaluation is necessary.

Figure 6. In vivo experiments showing effect of YWCS on tumor initiation and progression: (A)- Group I; untreated mice, Group II;
treated mice with peptide after 20 days of treatment (treatment started after 10 days of tumor growth), Group III; peptide induce
simultaneously with EAT tumor cells showing no tumor initiation and (B)The tumor size of Group I and Group II mice after sacrifice.
doi:10.1371/journal.pone.0032521.g006
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In light of the above discussion we may state that YWCS can

surely set a platform for the development of a promising anti

cancer drug in future. This peptide can be use as a lead compound

and complement for ongoing efforts to develop differentiation

therapies for breast cancer.

Supporting Information

Figure S1 MTT assay of peptide AIRS (Negative control).
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