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Abstract

Prion diseases are fatal neurodegenerative diseases associated with the conversion of cellular prion protein (PrPC) in the
central nervous system into the infectious isoform (PrPSc). The mechanics of conversion are almost entirely unknown, with
understanding stymied by the lack of an atomic-level structure for PrPSc. A number of pathogenic PrPC mutants exist that
are characterized by an increased propensity for conversion into PrPSc and that differ from wild-type by only a single amino-
acid point mutation in their primary structure. These mutations are known to perturb the stability and conformational
dynamics of the protein. Understanding of how this occurs may provide insight into the mechanism of PrPC conversion. In
this work we sought to explore wild-type and pathogenic mutant prion protein structure and dynamics by analysis of the
current fluctuations through an organic a-hemolysin nanometer-scale pore (nanopore) in which a single prion protein has
been captured electrophoretically. In doing this, we find that wild-type and D178N mutant PrPC, (a PrPC mutant associated
with both Fatal Familial Insomnia and Creutzfeldt-Jakob disease), exhibit easily distinguishable current signatures and
kinetics inside the pore and we further demonstrate, with the use of Hidden Markov Model signal processing, accurate
discrimination between these two proteins at the single molecule level based on the kinetics of a single PrPC capture event.
Moreover, we present a four-state model to describe wild-type PrPC kinetics in the pore as a first step in our investigation on
characterizing the differences in kinetics and conformational dynamics between wild-type and D178N mutant PrPC. These
results demonstrate the potential of nanopore analysis for highly sensitive, real-time protein and small molecule detection
based on single molecule kinetics inside a nanopore, and show the utility of this technique as an assay to probe differences
in stability between wild-type and mutant prion proteins at the single molecule level.
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Introduction

Prion diseases are a class of fatal neurodegenerative diseases

affecting both humans and animals that are associated with the

accumulation of PrPSc in the central nervous system [1,2,3,4], a

pathological isoform of normal cellular prion protein (PrPC). The

widely accepted protein-only hypothesis of prion disease patho-

genesis implicates PrPSc as the principal and possibly sole

infectious agent, capable of self-replication by post-translational

interaction with PrPC stimulating its conversion into PrPSc (a

process known as template-directed conversion) [1,2,3]. The

mechanics of template-directed conversion, however, are almost

entirely unknown, stymied by the lack of an atomic-level structure

for PrPSc, primarily due to its insolubility and tendency to

aggregate [5,6]. A number of pathogenic PrPC mutants exist that

are characterized by an increased propensity for conversion into

PrPSc and that differ from wild-type by only a single amino-acid

point mutation in their primary structure. These mutations are

known to perturb the stability properties and conformational

dynamics of the protein [7,8,9]. Understanding of how this occurs

may provide insight into the mechanism of PrPC conversion in

disease. In this work we sought to explore prion protein structure

and dynamics, for both wild-type and pathogenic mutant PrPC by

analysis of the current fluctuations through a nanometer-scale pore

in which a single prion protein has been captured. This method of

biomolecule analysis, known as single-molecule nanopore analysis,

has emerged as a powerful tool for investigating and characterizing

the structure and dynamics of individual biomolecules

[10,11,12,13]. The technique involves electrophoretically driving

an individual biomolecule (immersed in an electrolyte) into a

nanometer-scale pore (nanopore) formed in an insulating mem-

brane (e.g. an organic nanopore formed in a lipid bilayer). Direct

monitoring of the ionic current through the pore enables detection

of individual biomolecule capture events which are characterized

by a substantial reduction in the nanopore current relative to an

open-pore. Once captured, the ionic current through the pore

serves as an extremely sensitive metric and rich source of

information on the conformational dynamics and structural
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properties of the captured molecule [11,12,13]. To date, single-

molecule nanopore analysis has been predominantly applied

towards characterizing the structure and properties of individual

DNA molecules. This has been primarily due to the enormous

potential of nanopore analysis to form the basis of a low-cost, high-

throughput DNA sequencing technology [14,15]. Analysis of

proteins and polypeptides by comparison has only recently begun

and has shown much promise as a means by which to probe the

unfolding kinetics of proteins [16,17], characterize protein-pore

interactions [18,19,20] and to study the transport properties of

proteins through pores [18,21,22]. A major challenge, however,

with nanopore protein analysis (in comparison to nucleic acid

analysis for example) is that in contrast to heavily charged

biopolymers such as DNA, the charge distribution of proteins and

polypeptides can be highly irregular, positive, negative or neutral,

significantly affecting the ability to capture proteins in the pore.

Here we present results demonstrating capture of individual wild-

type and D178N mutant PrPC molecules into an organic a-

hemolysin nanopore (mutant D178N is a pathogenic PrPC mutant

associated with both Fatal Familial Insomnia and Creutzfeldt-

Jakob disease [23,24]). We show that these two proteins, which

differ from each other by only a single amino-acid point mutation

in their primary structure, exhibit easily distinguishable current

signatures and kinetics inside the pore and we further demonstrate,

with the use of Hidden Markov Model signal processing, accurate

detection and discrimination between these two proteins at the

single molecule level based on the kinetics of a single PrPC capture

event. In addition, we present a four-state model to describe wild-

type PrPC kinetics in the pore which represents a first step in our

investigation into characterizing the differences in kinetics and

conformational dynamics between wild-type and D178N mutant

PrPC.

Materials and Methods

PrPC Constructs
PrPC (both wild-type and mutant) was expressed and purified by

the PrioNet Prion Protein & Plasmid Production Platform Facility

(refer to File S1 for details on expression and purification

protocol).Truncated Syrian Hamster PrPC (residues 120–232–

designated ShPrP(120–232)) was used in order to investigate the

structure and dynamics of the PrPC structural core. To facilitate

capture of PrPC inside the nanopore, the N-terminus of

ShPrP(120–232) was adapted with four positively charged

amino-acid residues (KKRR) (designated KKRR-ShPrP(120–

232)). We expect these additional residues to have a minimal

effect on the overall structure and stability of PrPC based on

previous studies whereby truncated PrPC (of various lengths) was

adapted with a 22 residue N-terminal fusion tag, which was found

to have no influence on PrPC structural stability [25,26,27]. Three

PrPC constructs were investigated in this study, namely:

ShPrP(120–232), KKRR-ShPrP(120–232) and KKRR-

ShPrP(120–232)-D178N (i.e. mutant PrPC).

Nanopore Experiments
a-hemolysin (a-HL) nanopores were formed using a method

adapted from that of Akeson et al. [28]. Briefly, a black lipid

membrane of 1,2-diphytanoyl-sn-glycero-3-phosphocholine

(Avanti Polar Lipids Inc., Alabaster, AL) and hexadecane

(Sigma-Aldrich, St. Louis, MO) is formed across a 25 mm PTFE

aperture connecting two baths filled with electrolyte (Figure 1.

Details on lipid bilayer formation are described elsewhere [29]).

Owing to the low charge density of KKRR-ShPrP(120–232)

(relative to heavily charged biopolymers such as DNA and RNA),

and thus decreased ability to capture PrPC in the pore,

experiments were conducted under asymmetric salt conditions

which, through a combination of electric field enhancement

around the entrance of the pore and osmotic flow [30,31],

substantially increases the nanopore-capture rate of small mole-

cules in solution (relative to symmetric salt conditions) [30,31].

PrPC was preloaded on the trans side of the pore in 0.3 M KCl,

45 mM NaPO4, 10 mM HEPES, pH 8.0 solution (final PrPC

concentration was ,13.4 mM). We do not expect oligomerization,

aggregation or precipitation of PrPC under these solution

conditions based on mass spec results of KKRR-ShPrP(120–232)

in solution and on previous studies with various full-length and

truncated forms of PrPC in high salt [32,33]. Our mass spec data

confirms the presence of monomeric PrPC in solution and the

absence of dimers (data not shown), suggesting the absence of

higher-order oligomers as well. Evidence in the literature indicates

that the aggregation propensity of PrPC in the presence of high salt

is due to interactions of anions in solution with glycine groups in

the glycine-rich unstructured PrPC N-terminus (i.e. residues 23–

119), and is therefore a property of full-length PrPC (i.e. PrPC(23–

232)) [32,33]. Moreover, studies of truncated PrPC (i.e. PrPC(120–

232)) in high salt buffer (0.5 M NaCl) find no change in secondary

structure content compared to salt-free buffer and do not report of

aggregation or precipitation of PrPC in solution [32]. In contrast to

the trans side of the pore the cis side contained 3 M KCl, 10 mM

HEPES, pH 8.0 solution. All experiments were conducted (and

maintained) at a temperature of 20uC 60.1uC. An Axon Axopatch

200 B patch clamp amplifier is used to measure the ionic current.

Data is low-pass filtered at 10 kHz by a 4-pole Bessel filter and

sampled at 100 kHz. Experiments were conducted with a single a-

HL pore incorporated in the lipid bilayer. Formation of an a-HL

pore was done under symmetric salt conditions (i.e. 0.3 M KCl on

both the cis and trans sides of the pore) by injection of free subunits

into solution (on the cis side of the pore) which subsequently self-

assemble into heptameric, membrane-spanning pores or by

injection of preformed heptameric a-HL into solution which

spontaneously forms into a transmembrane pore in a lipid bilayer

Figure 1. Cartoon illustrating the capture of an individual PrPC

molecule into an a-hemolysin nanopore. PrPC is electrophoreti-
cally driven into the a-HL nanopore (voltage polarity given by the plus
and minus signs) via its positively charged N-terminus. The trans
chamber contains 0.3 M KCl, 45 mM NaPO4, 10 mM HEPES, pH 8.0
solution at a PrPC concentration of 13.4 mM. The cis chamber contains
3 M KCl, 10 mM HEPES, pH 8.0 solution. The salt-concentration gradient
across the pore generates an osmotic flow from trans-to-cis and
enhances the electric field around the entrance of the trans-side of the
pore [30,31] thereby substantially increasing the nanopore-capture rate
of PrPC in solution relative to symmetric salt conditions [30,31].
Experiments were conducted (and maintained) at a temperature of
20uC 60.1uC.
doi:10.1371/journal.pone.0054982.g001

Nanopore Analysis of PrPC
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Figure 2. Nanopore capture rate and KKRR-ShPrP(120–232) average event lifetime as a function of voltage (3 M KCl cis, 0.3 M KCl
trans). (a) Shown is the capture rate as a function of voltage for KKRR-ShPrP(120–232) (blue), ShPrP(120–232) (red) and the buffer-only control
(green). In the case of the buffer-only control the capture rate represents the rate of pore gating as a function of voltage. Both KKRR-ShPrP(120–232)
and ShPrP(120–232) exhibit capture kinetics that are exponentially dependent on voltage consistent with the applied voltage acting on the positively
charged residues at the N-terminus (five in the case of KKRR-ShPrP(120–232) and one in the case of ShPrP(120–232)) to decrease the energy barrier
height for entry into the pore, thereby exponentially increasing the capture rate. In addition, the capture rate for KKRR-ShPrP(120–232) is between
one and one-and-a-half orders of magnitude higher than ShPrP(120–232) indicating that the large majority of captures of KKRR-ShPrP(120–232)
involve threading of the N-terminus through the pore. Error bars represent the standard error on the mean, and were determined via bootstrapping
in the case of ShPrP(120–232) and the buffer-only control, whereas in the case of KKRR-ShPrP(120–232) error bars were determined based on two
separate datasets. (b) The average event lifetime for KKRR-ShPrP(120–232) increases exponentially with voltage consistent with PrPC escape from the
pore (as opposed to translocation) over an electrostatic energy barrier (governed by the applied voltage). The standard deviation of the event lifetime
distribution indicates the presence of both short and very long time events (i.e. .1 s). Error bars represent standard error on the mean and were
determined based on two separate datasets.
doi:10.1371/journal.pone.0054982.g002

Nanopore Analysis of PrPC
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[34]. Confirmation of a single pore incorporation is achieved by

applying a +100 mV electric potential across the membrane (trans

side positive) and observing a specific step-wise increase in the

current (,+28 pA at +100 mV and ,220 pA at 2100 mV).

Once this is observed, the RMS current noise on the pore (5 kHz

bandwidth using a Butterworth filter – independent of the 10 kHz

low-pass Bessel filter) is then probed at +100 mV and +200 mV to

confirm that a heptameric pore has incorporated into the bilayer

(as opposed to an anomalous structure, e.g. a hexameric pore). At

+100 mV the upper limit for the 5 kHz noise (indicative of a

heptameric pore), for our experimental setup, is ,0.80 pA RMS,

and at +200 mV the upper limit is ,1.20 pA RMS. If both the

current and noise are within specification, the cis side of the pore is

then perfused with 3 M KCl, 10 mM HEPES, pH 8.0 solution

several times to ensure that any free, unbound a-HL has been

removed from solution and to ensure that the salt concentration on

the cis-side of the pore has been increased to 3 M KCl. Custom-

built data acquisition software (described elsewhere [35]) is used to

apply large positive voltages (e.g. +160 mV or greater) across the

pore (and record the corresponding current and voltage) thereby

electrophoretically driving individual PrPC molecules in solution

into the pore. Several thousand individual PrPC capture events

were recorded at each voltage in the range of +160 mV to

+240 mV for each PrPC construct.

PrPC Capture Rate & KKRR-ShPrP (120–232) Event
Lifetime

To confirm that KKRR-ShPrP(120–232) enters the pore N-

terminal first, we characterized and compared the nanopore

capture rate as a function of voltage for KKRR-ShPrP(120–232),

ShPrP(120–232), and a buffer only control (indicative of the pore

gating rate under the given buffer conditions – i.e. asymmetric salt

concentration, Figure 2A). The capture rate for KKRR-

ShPrP(120–232) and ShPrP(120–232) is exponentially dependent

on voltage, consistent with the capture process being dominated by

an energy barrier whereby, according to classical Kramer’s theory,

the applied voltage acts on the N-terminal positive charges (five in

the case of KKRR-ShPrP(120–232) and one in the case of

ShPrP(120–232)), decreasing the energy barrier height for entry

into the pore, thereby exponentially increasing the rate of PrPC

capture. Moreover, the nanopore-capture rate of KKRR-

ShPrP(120–232) is between one and one-and-a-half orders of

magnitude higher (depending on voltage) than the capture rate of

ShPrP(120–232), reflecting the greater charge density at the N-

terminus in the case of KKRR-ShPrP(120–232). These results

indicate that the large majority of captures of KKRR-ShPrP(120–

232) involve threading of the N-terminus through the pore.

The average event lifetime for KKRR-ShPrP(120–232) as a

function of voltage is shown in Figure 2B. The event lifetime

increases exponentially with voltage, consistent with PrPC escape

from the pore (as opposed to translocation) being the dominant

mode of termination of an event, and requiring crossing an

Figure 3. All-point current histogram for KKRR-ShPrP(120–232) and KKRR-ShPrP(120–232)-D178N. Ionic current histogram of all PrPC

capture events from all voltages, with ionic current normalized by the open-pore current (I0) at a given voltage, for KKRR-ShPrP(120–232) (blue) and
KKRR-ShPrP(120–232)-D178N (red). Ionic current is median filtered to 2.99 ms per data-point. The histograms exhibit multiple peaks with varying
degrees of overlap indicative of complex PrPC kinetics in the pore. Moreover, the histograms exhibit clear distinguishable features (e.g. the near
absence of the peak at I/I0 ,0 pA with respect to KKRR-ShPrP(120–232)-D178N).
doi:10.1371/journal.pone.0054982.g003

Nanopore Analysis of PrPC
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electrostatic energy barrier (governed by the applied voltage). The

standard deviation of the event lifetime distribution shows the

lifetime spanning several orders of magnitude indicating the

presence of both short and very long time events (i.e. .1 s) (refer

to File S1 regarding details on how the capture rate and average

event lifetime are determined).

Results and Discussion

Figure 3 shows the ionic current histograms for all PrPC capture

events from all voltages, with ionic current normalized by the

open-pore current at a given voltage, for KKRR-ShPrP(120–232)

and KKRR-ShPrP(120–232)-D178N. Both histograms display

multiple peaks, with varying degrees of overlap, indicative of

complex PrPC kinetics inside the pore. Moreover, the histograms

exhibit clear distinguishable features (e.g. the near absence of the

peak at I/I0 ,0 pA with respect to mutant PrPC), indicating

differences in conformational dynamics between the two proteins

in the pore.

In order to model PrPC kinetics in the pore and characterize

signal statistics we developed a signal processing algorithm based

on Hidden Markov Models (HMMs). HMM signal processing is a

powerful technique by which to extract and characterize low-level

signals buried in background noise [36,37,38]. The approach has

Figure 4. KKRR-ShPrP(120–232) event histogram and initial and optimal HMM models. (a) (Left) The KKRR-ShPrP(120–232) event
histogram (blue) is divided into three regimes/states a high-state (black), mid-state (green) and low-state (red). The location of the peak and width of
the distribution for each state in our initial model represents our best guess of the location and size of a given regime. (Right) The model
parameters: p (i.e. the initial condition or probability that an event begins in a given state), q (the location of the peak of the Gaussian distribution, in
terms of I/I0, for a given state), b (the standard deviation on the Gaussian of each state, which defines a state’s noise properties), and A (the state-to-
state transition probability matrix). In our initial model we assume ignorance of the probabilities and therefore assume p to be uniformly distributed
(i.e. an event is assumed equally likely to begin in any of the three states). Similarly with the transition probability matrix A, we assume all transitions
to be equally likely (e.g. if in the low-state there is an equal probability for remaining in the low-state as there is for transitioning into the mid-state or
the high-state). (b) (Left) After 40 iterations of the EM algorithm the optimal three-state model that best describes the data (i.e. the maximum
likelihood model estimate) is converged upon. The low-state, far from encompassing all of the low current (as was presumed in our initial model) is
very narrow and well defined, while the mid and high states both broaden out (the peak of the mid-state also shifts to a deeper conductance level
relative to the initial model). (Right) The corresponding optimal model parameters.
doi:10.1371/journal.pone.0054982.g004

Nanopore Analysis of PrPC
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been previously applied in characterizing the complex kinetics of

DNA hairpins trapped in the a-HL nanopore [39,40]. HMM

analysis requires an initial model for the system defined by the

following parameters: State levels in terms of I/I0 (q), the initial

condition (p) (i.e. the probability that an event begins in a given

state), the transition probabilities between states (A), and the noise

properties (the standard deviation on a Gaussian) of each state (b).

These parameters represent best guesses and can be estimated,

with respect to q and b, from the event histogram. Once the initial

model is developed and provided with the corresponding data, the

HMM operates through an expectation maximization (EM)

algorithm improving upon the model parameters with each

iteration until convergence to an optimal set of parameters that

best describes the data, based on model likelihood, i.e. HMM

analysis converges to the maximum likelihood model estimate (we

refer the reader to [36,41] for details regarding HMM theory and

its implementation). We model PrPC kinetics in the pore as a

three-state system. Our choice of three states to describe PrPC

kinetics is based on parsimony i.e. selecting a model with the

fewest parameters that describes the data well. Moreover, our

choice is based on wild-type PrPC kinetics and in particular on a

qualitative assessment of the form of the wild-type histogram. As

mentioned previously, the histogram displays multiple peaks, with

varying degrees of overlap. We find, however, that the peaks are

concentrated into roughly three regimes. A simple description of

the histogram, therefore, is one in which the current is split into a

Figure 5. KKRR-ShPrP(120–232)-D178N event histogram and initial and optimal HMM models. (a) (Left) The KKRR-ShPrP(120–232)-
D178N event histogram (red), and the corresponding high-state (black), mid-state (green) and low-state (blue) that make up the initial model for
HMM analysis. The location of the peak (q) and width of the distribution (b) for each state are the same as for the optimal KKRR-ShPrP(120–232)
model (Figure 4B). This choice for q and b serves to highlight how the individual states evolve and differ from that of wild-type PrPC. (Right) The
corresponding initial model parameters. Similar to the initial model for KKRR-ShPrP(120–232) (Figure 4A) we assume ignorance of the probabilities
and therefore assume p to be uniformly distributed. Likewise, with the transition probability matrix (A), we assume all transitions to be equally likely.
(b) (Left) After 36 iterations of the EM algorithm the optimal three-state model that best describes the data (i.e. the maximum likelihood model
estimate) is converged upon. The individual states (properties and kinetics) are significantly different from wild-type PrPC (Figure 4B), highlighting the
importance of amino-acid residue D178 to the dynamics and structural stability of PrPC (Right) The corresponding optimal model parameters.
doi:10.1371/journal.pone.0054982.g005
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high, mid and low regime (i.e. three states - refer to Figure 4A,

which shows our initial wild-type PrPC HMM model and best

guess at the location and size of each regime). For ease of

comparison between wild-type and D178N mutant PrPC we

model mutant kinetics in the pore as a three-state system as well.

The initial and optimal (post-HMM processed) models are shown

in Figures 4 and 5 for KKRR-ShPrP(120–232) and KKRR-

ShPrP(120–232)-D178N respectively.

The optimal three-state model for wild-type and mutant PrPC

(Figures 4B and 5B respectively) reveal significant differences in

both state properties and kinetics between the two proteins,

highlighting the importance of amino acid residue D178 to the

dynamics and structural stability of PrPC. It is known that residue

D178 in wild-type PrPC stabilizes the protein through salt-bridge

interactions with R164 (the C-terminus of b-strand 2) and by

hydrogen bonding to Y128 (the N-terminal Tyr of b-strand 1)

[42,43,44,45]. In mutant D178N therefore, these stabilizing forces

are no longer present, the loss of which appears to significantly

affect the conformational dynamics of mutant PrPC in the pore.

The clear distinction between these two proteins also highlights

the sensitivity of nanopore analysis in detecting changes in

biomolecule structure and demonstrates the potential of using

this technique for detection and identification of small molecules

and proteins in solution based on differences in kinetics in a

nanopore. In order to explore this potential we characterized

protein-calling accuracy between wild-type and D178N mutant

PrPC at the single event level, based on kinetic differences in the

pore (i.e. given a single event we characterized the accuracy with

which it can be determined which protein, either wild-type or

mutant, produced the event based on kinetics). In this regard we

investigated two cases in particular:

1) Where all events are analyzed, regardless of event lifetime

and

2) Where only those events that have a lifetime of $1 s are

analyzed

Case 2 allows us to characterize how protein-calling accuracy

changes as we limit our study to long-time events (i.e. those events

with long observation times and therefore better statistics for

discriminating between the two proteins). In order to make

individual calls given an event we developed a protein-calling

algorithm based on HMM model likelihood. The method by

which we characterize protein-calling accuracy and the results

obtained are described in the following.

Case 1
Of all wild-type and mutant PrPC events we first simulate a

50:50 mix dataset. Therefore 500 wild-type events and 500 mutant

events are randomly selected and combined to form a simulated

50:50 mix of 1000 events. The remaining events for both wild-type

and mutant form the training sets for the corresponding protein by

which to build optimal HMM models (refer to Figures S1 and S2

in File S1 for the determined optimal wild-type and mutant

models, respectively). Protein-calling accuracy is assessed by

calling the individual events from the 50:50 mix dataset (i.e. the

blind, unanalyzed events). Individual events are called as either

wild-type or mutant using our HMM protein-calling algorithm.

The algorithm works as follows: Given an individual event and the

optimal wild-type and mutant HMM models (as determined via

HMM analysis of the respective training data) the algorithm

calculates the likelihood function of the event given each model

(i.e. P(E|lwild-type) and P(E|lmutant), where E is the event and l
represents a given model). The algorithm then calls an event as

either wild-type or mutant based on maximum likelihood (i.e. the

protein-call is based on whichever of the two determined

likelihood functions is largest). The protein-calling results are

given in Table 1. The results are given in terms of the wild-type

and mutant predictive value. This is defined as the likelihood that

an event which is called as either wild-type or mutant is called

correctly (e.g. if the algorithm calls an event as mutant there is a

0.86 likelihood that the event is a mutant event).

Case 2
In characterizing protein-calling accuracy in case 2 the method

is the same as described for case 1 with the difference being that in

case 2 we are only interested in events that have an event lifetime

of $1 s. In other words, all events making up the training sets

(wild-type and mutant) and the generated 50:50 mix dataset have

an event lifetime of $1 s (refer to Figures S3 and S4 in File S1 for

the determined optimal wild-type and mutant models in this case,

respectively). The total number of events for the 50:50 mix dataset

is 176. The results, in terms of predictive value are given in

Table 1.

These results show, not surprisingly, that predictive value (i.e.

protein calling accuracy) improves when considering only long-

time events. This is primarily due to the fact that long-time events

can be better assessed in terms of their kinetics than short-time

events (i.e. the amount of data available to characterize an event

increases proportionately with the event lifetime) thereby improv-

ing protein-calling accuracy. In particular, the mutant at short

times has a greater propensity for being called as wild-type than at

long-times (i.e. mutant kinetics at short-times is less distinguishable

from wild-type than at long-times). We note here that of all wild-

type events, ,92% of them have an event lifetime of ,0.1 s.

Similarly of all D178N mutant events, ,66% have an event

lifetime of ,0.1 s. Therefore the majority of observed events (the

large majority in the case of wild-type PrPC) are short-lived. Even

in the case of short-lived events which are between 1 and 33

datapoints long (i.e. events are filtered to 2.99 ms per datapoint),

with a large proportion of events having an event lifetime of

#0.01 s (i.e. between 1 and 3 datapoints long 2 ,30% of events

in the case of wild-type PrPC), the results show that wild-type and

Table 1. Wild-type and mutant predictive value.

Case 1 Case 2

# of events in 50:50 mix 1000 176

Wild-type predictive value 0.71 0.85

Mutant predictive value 0.86 0.90

Case 1 refers to the situation whereby all events, regardless of event lifetime,
are analyzed. The simulated 50:50 mix dataset forms the individual events to be
protein-called by which wild-type and mutant predictive value is determined.
These events are randomly selected from the total number of wild-type and
mutant events. After selection (and removal from the total number of events),
the remaining events form the training sets for both wild-type and mutant.
Wild-type predictive value refers to the likelihood that an event is in fact a wild-
type event given that the protein-calling algorithm has called it as wild-type.
Similarly the mutant predictive value refers to the likelihood that an event is in
fact a mutant event given that the protein-calling algorithm has called it as
mutant. Case 2 refers to the case whereby only those events that have an event
lifetime of $1 s are analyzed (i.e. only long time events makeup the training
sets for both wild-type and mutant and the generated 50:50 mix dataset). The
predictive value, not surprisingly, improves when only considering long-time
events which is primarily due to the fact that long-time events can be better
assessed in terms of their kinetics than short-time events (i.e. the amount of
data available to characterize an event is proportional to the event lifetime)
thereby improving protein-calling accuracy.
doi:10.1371/journal.pone.0054982.t001
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mutant PrPC are easily distinguished based on their kinetics in the

pore. The results substantially improve, particularly in the case of

wild-type predictive value, when only long-time events are

considered. These results demonstrate that nanopore analysis in

combination with HMM signal processing can be used to detect

and discriminate between wild-type and mutant PrPC at the single

event level based on their kinetics in the pore. These results

therefore show the potential of using this technique as an assay to

probe differences in stability between wild-type and mutant prion

proteins at the single molecule level, which opens up the possibility

of studying small molecule-PrPC interactions and the effects of

these molecules on PrPC stability as a possible screen for small

molecules that improve the stability properties of the protein.

Moreover, the ability to discriminate between two proteins that

differ by only single-amino acid point mutation demonstrates the

sensitivity of this approach in detecting subtle changes in

biomolecule structure, and points to the possibility of developing

this technique for highly sensitive, real-time detection and

identification of small molecules and proteins in solution, with

potential applications in disease biomarker and pathogen detec-

tion.

We return now to a more detailed analysis of PrPC kinetics in

the pore with the goal of characterizing the kinetic differences

between wild-type and D178N mutant PrPC. We limit our

discussion here specifically to the kinetics of wild-type PrPC (see

Figure 6. KKRR-ShPrP(120–232) mid-state statistics as a function of voltage. (Top) A sample KKRR-ShPrP(120–232) event (blue) with the
most likely state sequence (i.e. Viterbi path) overlayed (red) as determined by a Viterbi analysis of the event. The sample event highlights the
dependence of mid-state statistics (i.e. the transition rates out of the mid-state) on how the mid-state is entered. The event qualitatively shows that if
the mid-state is entered from the high state then a transition back to the high-state is more likely than a transition into the low-state. Likewise,
transitions into the mid-state from the low-state are more likely to return to the low-state as opposed to entering the high-state. (Bottom left) Mid-
state transition rate into the high-state as a function of voltage, depending on how the mid-state is entered. If the mid-state is entered from the high-
state (blue) the transition rate back into the high-state is between one and two orders of magnitude higher (depending on voltage) than the
transition rate into the high-state when the mid-state is entered from the low-state (red). (Bottom right) Mid-state transition rate into the low-state
as a function of voltage, depending on how the mid-state is entered. If the mid-state is entered from the low-state (red) the transition rate back into
the low-state is between one and two orders of magnitude higher (depending on voltage) than the transition rate into the low-state when the mid-
state is entered from the high-state (blue).
doi:10.1371/journal.pone.0054982.g006

Figure 7. Four-state model characterizing KKRR-ShPrP(120–
232) kinetics in the pore. H, MH, L, and ML refer to the high, mid-
high, low, and mid-low states respectively (N.B. PrPC can escape from
the pore from each state, which is not explicitly shown in the four-state
model). HMM analysis of KKRR-ShPrP(120–232) in combination with the
mid-state analysis (refer to text) yields the information on how the
states are connected.
doi:10.1371/journal.pone.0054982.g007
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below for a discussion D178N mutant kinetics). The optimal

model shown in Figure 4B is a model of the kinetics of PrPC in the

pore over all voltages. To characterize the voltage-dependence of

PrPC kinetics the voltage-specific optimal model must be

determined. This is done by HMM analysis of only those events

at a given voltage whereby the optimal model (Figure 4B) serves as

the initial model for the voltage-specific HMM analysis, with the

caveat that the state levels (q) and noise properties of each state (b)

remain constant during the analysis (i.e. only p and A are updated

during the voltage-specific HMM analysis). The voltage-specific

HMM analysis therefore, improves the estimate of the initial

condition and the transition probabilities for a given voltage.

Given the voltage-specific optimal model and an individual event

the most likely state sequence for the event is then determined (i.e.

the event Viterbi path) via the Viterbi algorithm (refer to [41]

regarding the theory and implementation of the Viterbi algo-

rithm). State properties, such as the lifetime distribution of each

state, and state-to-state transition rates are then determined by

analyzing the Viterbi path for all events (refer to File S1 for details

on how the state-to-state transition rates are determined). Shown

in Figure 6 are the statistics of the mid-state (i.e. the transition rate

from the mid-state to the high and low states as a function of

voltage), highlighting the dependence of mid-state statistics on how

it is entered. For example, the transition rate from the mid-state to

the low-state differs by one-to-two orders of magnitude depending

on if the mid-state is entered from the high-state versus if it is

entered from the low-state. In general for a single state, we would

expect the transition rates in Figure 6 (bottom left) and Figure 6

(bottom right) to be within an error bar of each other (assuming

the rates are Gaussian distributed). Given their degree of

separation, between two and four error bars depending on

voltage, these results indicate that the mid-state is more accurately

modeled as two separate states a mid-high and a mid-low state, to

distinguish between transitions into the mid-state from the high-

state (mid-high state) versus mid-state transitions from the low-

state (mid-low state). Given this, together with the results from the

HMM analysis of the data (i.e. the state-to-state transition

probabilities), we can model KKRR-ShPrP(120–232) kinetics in

the pore as a four-state system (Figure 7).

Given the detailed kinetics of wild-type PrPC in the pore, the

voltage-dependence of all the state-to-state transition rates can be

determined, which may yield information on the different

conformations of PrPC in the pore. For example, transitions that

exhibit an exponential dependence on voltage (i.e. Arrhenius

kinetics) indicate energy barrier crossing processes and therefore

yield clues on the types of conformations and conformational

transitions that can makeup said processes. This together with

computational modeling of PrPC trapped inside the pore should

reveal detailed information on the specific conformations of PrPC

in the pore. With respect to D178N mutant kinetics and how it

compares with wild-type we find that given the substantial

difference in state properties between these two constructs (i.e.

Figures 4B and 5B) no simple comparisons can be made. As

mentioned previously, residue D178 plays an important role in

maintaining the structural stability of PrPC. This loss of stability, in

the case of the mutant, likely enables it to adopt a variety of

conformations inside the pore that are inaccessible to wild-type,

which complicates the comparison between these two constructs,

and hints at the need for additional states in a description of

mutant kinetics in the pore. In order to make meaningful

comparisons with wild-type PrPC, therefore, a more detailed

analysis of mutant kinetics is required.

Conclusions
We probed wild-type and D178N mutant PrPC structure and

dynamics by analyzing the current fluctuations through an a-HL

nanopore in which a single PrPC molecule has been captured

electrophoretically. We have shown that these two proteins

(proteins that differ by only a single amino-acid point mutation)

exhibit easily distinguishable current signatures and kinetics inside

the pore and have demonstrated, with the use of HMM signal

processing, accurate detection and discrimination between these

two proteins at the single molecule level based on the kinetics of a

single PrPC capture event. This method of protein analysis may be

useful as an assay to probe differences in stability between wild-

type and mutant prion proteins at the single molecule level,

opening up the possibility to study small molecule-PrPC interac-

tions and their effects on PrPC stability as a possible screen for

small molecules that improve the stability properties of the protein.

Moreover, our results demonstrate the sensitivity of nanopore

analysis in detecting subtle changes in biomolecule structure and

show its potential for highly sensitive, real-time protein and small

molecule detection and identification based on single molecule

kinetics inside a nanopore with potential applications in disease

biomarker and pathogen detection. In addition, we developed a

four-state model to characterize wild-type PrPC kinetics in the pore

which represents a first step in our investigation on characterizing

the differences in kinetics and conformational dynamics between

wild-type and D178N mutant PrPC, a comparison of which may

ultimately yield clues into the molecular mechanism of PrPC

conversion in disease. These results demonstrate the ability of

nanopore analysis to probe the detailed kinetics and conforma-

tional dynamics of a single biomolecule and point to the potential

of using this technique in probing the molecular properties of

other clinically relevant proteins (e.g. Ab oligomers, a-synuclein,

etc…).

Supporting Information

File S1 PrPC expression and purification protocol, case
1 and case 2 optimal models, and additional details on
data analysis.
(DOCX)
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