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Abstract: Membrane fouling is a complicated issue in microfiltration and ultrafiltration. Clearly
identifying the dominant fouling mechanisms during the filtration process is of great significance for
the phased and targeted control of fouling. To this end, we propose a semi-empirical multiple linear
regression model to describe flux decline, incorporating the five fouling mechanisms (the first and
second kinds of standard blocking, complete blocking, intermediate blocking, and cake filtration)
based on the additivity of the permeate volume contributed by different coexisting mechanisms.
A piecewise fitting protocol was established to distinguish the fouling stages and find the significant
mechanisms in each stage. This approach was applied to a case study of a microfiltration membrane
filtering a model foulant solution composed of polysaccharide, protein, and humic substances, and the
model fitting unequivocally revealed that the dominant fouling mechanism evolved in the sequence
of initial adaptation, fast adsorption followed by slow adsorption inside the membrane pores, and the
gradual growth of a cake/gel layer on the membrane surface. The results were in good agreement
with the permeate properties (total organic carbon, ultraviolet absorbance, and fluorescence) during
the filtration process. This modeling approach proves to be simple and reliable for identifying the
main fouling mechanisms during membrane filtration with statistical confidence.

Keywords: fouling development model; filtration law; pore blocking; multiple linear regression;
statistical test

1. Introduction

Membrane fouling is an obstinate problem in microfiltration (MF, see Appendix C for all the
Abbreviations) and ultrafiltration (UF) for water and wastewater treatment [1–5]. Membrane fouling
refers to the process of flux decline (or increase in hydraulic resistance) during filtration due to the
deposition of suspended or soluble substances on the membrane surface, at the pore openings, or inside
the pores. As a result, membrane fouling reduces the efficiency of filtration. Membrane fouling includes
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organic fouling, inorganic fouling, and biofouling. Organic matter does not only cause organic fouling
which is prevalent in MF and UF systems; it is also seriously involved in inorganic–organic combined
fouling (such as impervious gel layers due to metal–organic complexation) and bio-organic fouling
(such as biofilms stubborn against cleaning). Among organic foulants, polysaccharides, proteins,
and humic acids are the most reported [6,7]. Upon removing the foulants from the membrane, frequent
physical or chemical cleaning will increase energy consumption, shorten membrane life and increase
operating costs. A realistic goal of fouling control is to preventively delay and mitigate fouling or to
more efficiently remove the deposited foulants in a well phased and targeted manner [8–10]. To this
end, it is of great significance to clearly identify the key mechanisms for the dynamic development of
membrane fouling, from internal pore blockage to external cake build-up, using appropriate analytical
or modeling approaches.

Classical filtration laws have been widely used to describe the fouling process. The classical
filtration laws include four basic types of fouling, which can be expressed by a collective expression:

d2t
dV2 = k(

dt
dV

)
N

or equivalently,
dR
dV

= kRN (1)

where t is filtration time, V is specific permeate volume, R is filtration resistance, k is a model coefficient,
and the characteristic exponent N indicates fouling modes: N = 2, 1.5, 1, and 0 represent complete
blocking (clogging at the pore opening), standard blocking (the first kind for instantaneous adsorption
of foulant on the pore wall), intermediate blocking (random deposition on the membrane surface) and
cake filtration (uniform growth of a cake or gel layer on the surface), respectively. Recently, the standard
blocking law has been extended to include the second kind (N = 2.5) for the case of slow adsorption
(e.g., hydrophilic foulant on hydrophilic pore walls) compared to permeate advection through the
pores [11]. Mathematical modeling plays an essential role in interpreting various fouling mechanisms
and processes. Through model fitting using Equation (1), it is plausible that the characteristic exponent
N, and, hence, the type of fouling mechanism can be determined.

However, the actual situation is often more complicated. First, a variety of mechanisms may
coexist. Regarding this, researchers have developed combined models incorporating different
fouling types. Many researchers have derived dually combined fouling models such as the
cake-complete blocking, cake-intermediate blocking, cake-standard blocking, complete-standard
blocking, and intermediate-standard blocking models [12–19]. Some have combined three or even four
mechanisms to interpret fouling behavior. Duclos-Orsello et al. developed a flux decline model that
combined three fouling mechanisms (standard blocking, complete blocking, and cake filtration) to
describe the MF process of a bovine serum albumin solution [20]. Kim et al. combined all the four classical
fouling modes into one mechanistic model to explain the effect of coexisting fouling mechanisms [21].
However, the forms of the combined models are often complex (the more combinations, the more
complex), thus requiring nonlinear regression [22] and even genetic algorithms for the model fitting [21].
Second, the main mechanism may vary largely during the filtration process. However, a large number
of researchers have used a fixed model to fit the whole process [23,24], and only a few have conducted
piecewise fitting using multiple models [12,25,26]. The unreasonable setting of the time range or the
number of time segments in the model fitting inevitably lead to deviations, such as the resultant
autocorrelation of time series that has seldom been mentioned in previous fouling studies.

In the present study, we propose a simple and straightforward multiple linear regression model
to describe the piecewise succession of five pore-blocking/cake-filtration fouling mechanisms during
the full filtration process, based on the idea of the linear additivity of filtration volumes under different
fouling mechanisms. The filtration curve (flux vs. volume) was fitted for each time segment, and the
stepwise regression technique was used to screen out insignificant mechanisms and to identify the
dominant mechanism in each time segment. The Durbin–Watson (DW) autocorrelation test was
employed to justify the most reliable setting of the number and length of the time segments [27].
By using the proposed method, one can easily access the profile of fouling mechanisms during the
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filtration process with statistical confidence. In comparison with the previous models, this method has
the merits of the more complete inclusion of possible mechanisms, the more complete coverage of
fouling stages, the more realistic handling of complex fouling caused by multiple foulants, and being
statistically more rigorous. This method will help evaluate membrane potential, characterize foulant
properties, and understand membrane–foulant interactions. MATLAB code is provided to support
convenient usage of this method.

2. Model

The expression of the classical filtration laws, as shown in Equation (1), can be transformed to
yield the flux vs. filtration volume relationship:

dJ
dV

= −kJ2−N (2)

where J is the filtration flux (J = dV/dt). The filtration curve can be described by five filtration models
with N = 2.5, 2, 1.5, 1, and 0, as shown schematically in Figure 1. By integrating Equation (2) on both
sides, the J–V relationships for these models are obtained as follows:

V −V0 =



k1(J0
0.5
− J0.5)

k2(J0
1.5
− J1.5)

k3(J0 − J)

k4(ln J0 − ln J)

k5(J−1
− J0

−1)

(1st− kind standard blocking, N = 1.5)

(2nd− kind standard blocking, N = 2.5)

(complete blocking, N = 2)

(intermediate blocking, N = 1)

(cake filtration, N = 0)

(3)

where the subscript “0” refers to the initial state.
It is possible that different fouling mechanisms can simultaneously occur at different positions of

the membrane. Assuming that fi is the proportion of membrane area occupied by the ith mechanism
and Vi is the resultant specific permeate volume, the contribution of various possible mechanisms to
the total V can be expressed by V =

∑
fiVi [28], as also illustrated in Figure 1. By substituting Vi using

Equation (3), a comprehensive model of membrane fouling can thus be established in the form of:

V =
∑

fiVi = k0 + k1(−J0.5) + k2(−J1.5) + k3(−J) + k4(− ln J) + k5(J−1) + ε (4)

where V is the specific permeate volume of the whole membrane, J is the membrane flux of the whole
membrane, k0 is a constant term, and k1, k2, k3, k4, and k5 are the coefficients of 1st kind of standard
blocking (fast adsorption), the 2nd kind of standard blocking (slow adsorption), complete blocking,
intermediate blocking, and cake filtration, respectively. Note that the original ki’s in Equation (3)
and the fi’s were incorporated into the ki’s in Equation (4). The error term, ε, encompasses errors
due to the random error of V and J, the deviation of N (as a result of, e.g., non-uniformity of the
pore structure [11,28,29] or polydispersity of the foulant particles [30]), the neglect of concentration
polarization (a feedback effect on foulant mass transfer), and other fouling mechanisms [7,28,31],
as well as possible interactive influences between different mechanisms (e.g., at adjacent areas of the
membrane) that cause the nonlinearity of Equation (4).

Taking V as the dependent variable and the five J-derived terms as independent variables,
Equation (4) can be used to fit the experimental J–V data via least-squares regression. However,
even though the multiple linear regression model takes account of all the five mechanisms, the fitting
may still fail because the proportions (fi or ki) of the mechanisms may change and the dominant
mechanism(s) may shift during the filtration process. Therefore, a single regression model only holds
in a time segment during which the mechanisms do not change significantly. In this context, it is
more realistic to perform piecewise fitting into each time segment respectively, rather than fit the same
model across the whole period. In each segment, the fitted result is validated by two criteria: (a) All
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significant coefficients (any of k1–k5) should be positive, and (b) the autocorrelation of time series
residuals should not be significant.Membranes 2020, 10, x FOR PEER REVIEW 4 of 15 
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The significance of the coefficients is judged by the t-test (by the convention that p < 0.05 means
significant), and a significantly positive ki means that the ith mechanism is significant in this segment.
The Durbin–Watson (DW) test is employed to judge the autocorrelation of time series residuals, i.e.,
the correlation between the regression residuals of two adjacent time points. In linear regression, it is
always assumed that the residuals are independent (uncorrelated). If the assumption of independence
is violated, the fitting results become problematic. For example, the positive correlation between error
terms tends to amplify the value of coefficient, making the predicted variables appear important,
even though they may, in fact, not be important. When fitting experimental data using Equation (4),
autocorrelation arises from the unreasonable division of the time span when (a) the time segment is
too long, which sacrifices the local accuracy of model fitting, or (b) the time segment is shorter than
the segment used for flux calculation (J = ∆V/∆t), which causes periodic oscillation of the residuals.
The autocorrelation is deemed to be significant when the p value of the DW test (pDW) is smaller
than 0.05.

The protocol for optimizing the piecewise fitting is as follows: (a) evenly divide the filtration
process V into n parts (n starts from 1), (b) conduct least-squares regression in the “stepwise” mode
in each segment to automatically screen out insignificant ki’s, and check the DW test results for the
remained significant ki’s, and (c) increase n and repeat the regression until the remained ki’s are all
significantly positive and the DW test is not significant for all of the segments.

The MATLAB codes for raw data processing (to calculate J, R, and dR/dV automatically from the
original t and V data) and for the piecewise fitting are provided in Appendices A and B, respectively.

3. Experimental

3.1. Membrane and Model Foulant Solution

Polyvinylidene fluoride (PVDF) flat-sheet membranes with a nominal pore size of 0.1 µm (VVLP,
Millipore, MA, USA) were employed in the fouling experiments. Prior to use, the membranes were
rinsed and immersed in Milli-Q water for 24 h, and then they were kept in a salt background solution
for 24 h to eliminate soluble impurities. The salt background solution consisted of 2 mM CaCl2, 1 mM
MgCl2, 2 mM NaHCO3, 12 mM NaCl, and 0.2 mM Na2SiO3 in accordance with the salt background
solution of the model foulant solution used in the fouling experiments.
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The model foulant solution was comprised of 16 mg/L sodium alginate (SA) (MACKLIN,
Shanghai, China), 8 mg/L humic acid (HA) (Aladdin, Shanghai, China), 4 mg/L bovine serum
albumin (BSA) (Sigma-Aldrich, Saint Louis, MO, USA), and the aforementioned salt background.
The polysaccharides/humics/proteins proportion was similar to that of membrane bioreactor
supernatants in municipal wastewater treatment [32]. The solution was prepared by: (a) dissolving the
organic foulant components in a 75% volume of Milli-Q water followed by 12 h of stirring, (b) adding
the salts with the other 25% volume of Milli-Q water followed by another 12 h of stirring, and (c) filtering
through a glass-fiber membrane (0.7 µm, GF/F, Whatman, Maidstone, UK) to remove undissolved
coarse particles from the liquid.

3.2. Filtration Test

A dead-end filtration system was employed for the fouling development test at room temperature
and constant pressure. The system consisted of a nitrogen cylinder, a pressure regulating value,
a liquid storage tank, a filtration cell (Amicon 8400, Millipore, MA, USA) with an effective filtration
area of 41.8 cm2 and a volume of 400 mL, an electronic balance (PL2002, Mettler Toledo, Zurich,
Switzerland), and a computer, as shown in Figure 2. The fouling test was carried out in the procedure
of: (a) pre-pressing the membrane under 5 kPa for 1 h to stabilize the deformation caused by pressure,
(b) pre-filtering 200 mL of the salt background solution to measure the initial filtration resistance of
the membrane, (c) pre-contacting the membrane with the model foulant solution at 5 kPa for 1 h
without filtration to adapt the physicochemical state of the membrane to the solution, and (d) filtering
the model foulant solution at 5 kPa with the water level in the filtration cell maintained at 200 mL
(the water level was maintained via pressure balance and the net volume filtered was supplemented by
the storage tank). The real-time filtration resistance R (m−1) was calculated according to Darcy’s law:

R =
P
µJ

=
P
µ
(

∆V
∆t

)
−1

(5)

where P is the trans-membrane pressure (Pa), µ is the dynamic viscosity of the permeate (Pa s,
approximately that of water) with the effect of temperature corrected, and J is the real-time filtration
flux (m/s) calculated as ∆V/∆t, where V is the specific permeate volume (m3/m2). For the calculation of
J, the time increment ∆t was found given a fixed ∆V of 0.002 m3/m2 (i.e., 0.2 cm3/cm2); see Appendix A
for details.
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3.3. Analytical Items

The total organic carbon (TOC) concentrations in the feed and permeate were determined using a
TOC analyzer (Multi N/C 3100, Jena, Germany). The ultraviolet–visible (UV–Vis) absorbance of the
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foulants was measured using a spectrophotometer (T3200, YOKE, Shanghai, China) with a scanning
range of 200–500 nm. The fluorescence signals of the permeate were scanned using a fluorescence
spectrophotometer (Cary Eclipse, Agilent, Palo Alto, CA, USA) in the 3D mode over the excitation
wavelength range of Ex = 200–400 nm and the emission wavelength range of Em = 250–500 nm.
The obtained excitation–emission matrix (EEM) spectra were treated according to the following
steps [33]: (a) subtracting pure water background, (b) removing Rayleigh and Raman scatterings,
(c) correcting the inner-filter effect using UV–Vis absorbance, and (d) standardizing the fluorescence
intensity (FI) into Raman units (R.U.) using the Raman signal of pure water as a reference.

4. Results and Discussion

4.1. Overview of Fouling Evolution

The development of membrane fouling can be reflected by the change of membrane flux (J) and
filtration resistance (R) with specific permeate volume (V). J and R were automatically calculated from
the raw t and V data at an interval of ∆V = 0.2 cm3/cm2, using the homemade MATLAB function
“VJR,” as given in Appendix A. As can be seen from Figure 3, R increased slowly when V was smaller
than 7 cm3/cm2, and it increased rapidly thereafter. There are several turning points in the J–V curve
(such as those roughly around V = 2, 7 and 9 cm3/cm2), implying that there must have been more than
one fouling mechanism over the whole process and the temporarily dominant mechanism was likely
to change with V. However, it is difficult to accurately distinguish different fouling stages of the whole
filtration process by only referring to the R–V or J–V curves. The further analysis of the R–V or J–V
relationship is required. Note that the seven stages marked in Figure 3, as well as the fitted curve,
were obtained by piecewise regression, as is described later in detail.
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Figure 3. Variation of membrane flux and filtration resistance during the filtration process. Data are
given as average from two repeated experiments with a relative error smaller than 4.4% (the error bars
are thus omitted for simplicity of presentation). The R-squared values for the fitting in stages 1–7 were
0.983, 0.990, 0.985, 0.983, 0.996, 0.980, and 0.987, respectively.

A classical method for examining a fouling mechanism (e.g., blocking mode) is to plot the
ln(dR/dV)~lnR data and determine the slope of the curve as the characteristic N value (Equation (1)).
In Figure 4, ln(dR/dV) is shown to have decreased slightly at the very beginning of the filtration
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(stage 1), increased almost linearly with lnR in the middle stages of 2–5, and gradually reached a
plateau after prolonged filtration (stages 6–7). Note that the so-termed seven stages were distinguished
according to piecewise regression, as is introduced later. The plateau (i.e., N = 0) indicates that a cake
or gel layer was eventually formed on the membrane surface. However, the large fluctuation of the
data points rendered a large uncertainty of slope calculation. The fluctuation was very likely due to
that the original V~t data that had been derived for many times to obtain dR/dV, and this concern
has also been seriously raised by a number of researchers [12,31]. Considering that there were five
possible mechanisms, we tentatively fitted the ln(dR/dV)~lnR data using a fifth-order polynomial
trend line. Monte Carlo simulation based on the distribution of fitting residuals showed that the 95%
confidence interval of the trend line was rather wide (Figure 4). Therefore, there was great uncertainty
in judging the mechanisms with N value from the slope of the trend line, especially in the rising section.
Alternatively, a better choice may have been fitting the J–V (or R–V) rather than dR/dV–R data to
reduce the uncertainty by using a piecewise fitting approach to deal with the changing mechanisms
over the stages.
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Figure 4. Relationship between dR/dV and R (filtration resistance) during the filtration process.
The R-squared value of the 5th order polynomial fitting was 0.907. The 95% confidence interval of the
5th order polynomial trend line was produced using a 999-times Monte Carlo simulation based on the
distribution of residuals.

4.2. Piecewise Fitting Results

The whole filtration process (V ≈ 12 cm3/cm2) was evenly divided into n segments (n = 1, 2,
...), and the segmented J–V data were subjected to piecewise fitting of the multiple linear model
(Equation (4)) using the homemade MATLAB function “StepwiseModel,” as given in Appendix B.
The appropriateness of the division was judged by a t-test for the significance of positive ki coefficients
and the DW test for the independence of the time series residuals. These tests were not successful until
the segment number n increased to 7. The seven stages are marked in Figure 3, where it can be seen
that the piecewise fitted J–V curve matched closely to the experimental data. As a consequence of the
piecewise fitting, the significant ki coefficients, as well as the DW test results along the seven stages,
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are shown in Figure 5. The pDW values were no smaller than 0.05, suggesting that the autocorrelations
of residuals were tolerable. From the ki coefficients, it is evident that the dominant fouling mechanism
evolved in a sequence of: cake filtration (difficult to explain, possibly due to sudden change of hydraulic
state at the beginning of filtration) (stage 1)→ fast adsorption inside the membrane pores (stages 2–3)
→ slow adsorption inside the membrane pores (stages 4–5)→ gradual growth of a cake layer on the
membrane surface (stages 6–7).
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In comparison with the piecewise multiple linear regression results, the apparent N values were
calculated using the conventional approach, i.e., from the slope of the ln(dR/dV)–lnR curve in Figure 4,
with their standard deviations estimated via Monte Carlo simulation. The results are shown in Figure 5.
It is obvious that the apparent N values exhibited great uncertainty due to the large fluctuation of the
ln(dR/dV)–lnR data. The uncertainty made some of the N values deviate widely from the theoretical
values. The deviation might have also been due to coexistence of multiple fouling mechanisms.
For example, at the first kind of standard blocking-dominated stage 3, the apparent N of around 2
might have partly been due to coexistence of the emerging second kind of standard blocking; at the
second kind of standard blocking-dominated stage 4, the apparent N of larger than 2.5 might have
partly been due to the noncircularity of the actual membrane pores [11] or the acceleration of pore
blocking efficiency when the adsorbed foulant concentration was approaching the gel point to form
microgels in the pore channels. These uncertainties rendered the apparent N unreliable for identifying
the main mechanism(s) during the filtration process. The apparent N value was sometimes even
misleading; for instance, a value of 2 seemingly pointed to a single mechanism of complete blocking,
whereas in fact it might have been a weighted average of two other mechanisms (e.g., first and second
kinds of standard blocking with the true N values of 1.5 and 2.5, respectively).

In contrast to the apparent N, the piecewise multiple linear regression model could unequivocally
identify the major mechanism(s) along the fouling stages with statistical confidence. The model was
conservative in terms of the five known mechanisms, as it incorporated any uncertain factors (such as
the aforementioned nonideality of membrane pores and fouling process) collectively into the error term
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(Equation (4)). The relative importance (signal-to-noise ratio) of the main mechanism(s) compared to
the error term was finally judged by statistical tests (F-test of the model or t-test of the coefficients).
Therefore, this approach is considered to be more robust than the conventional apparent N approach.

4.3. Interpreting the Transition of Major Mechanisms According to Foulant Composition

The modeling results were further evidenced by the consecutive measurements of the permeate
properties during the filtration process. The TOC measured the total dissolved organic matter (DOM),
UV absorbance at 254 nm (UV254) indicated the chromophoric portion of the DOM such as proteins
and other unsaturated components [34,35], and the averaged fluorescence intensity at the emission
wavelength range of 380–500 nm (FI380–500) mainly reflected the humic components of the DOM [33,36].
In Figure 6, the permeate TOC and UV254 both show a “Z”-shaped decreasing trend with the increase of
V. At stages 5–6, the TOC dropped sharply, indicating that the overall rejection rate of organic foulants
rose sharply due to the formation of a cake/gel layer on the membrane surface. At stage 7, the permeate
TOC became stable at a low level of 2–3 mg/L, indicating full coverage and the steady growth of the
cake/gel layer on the membrane surface. Correspondingly, the TOC rejection rate was below 10% at the
pre-cake stages (stages 1–4), but it grew to over 60% at the cake/gel layer stage (stage 7). The cake/gel
layer was mainly constructed of alginate since alginate was the major TOC contributor in the model
foulant solution. The same trend of UV254 suggested that the chromophoric portion of the DOM
(such as protein) also participated in the formation of the cake or gel layer. In contrast to the TOC
and UV254, the FI380–500 exhibited an “S”-shape increase during the filtration process, reflecting the
gradual breakthrough of some small fluorescent molecules (such as some humic species) through the
membrane and the cake/gel layer due to the equilibration of the dynamic adsorption [37,38]. The above
showed that polysaccharide (alginate) and protein fouled the membrane mainly through forming a
surface cake/gel layer (most likely polysaccharide formed the gel network and protein was trapped
in it [7]), while small molecular humic substances successively underwent fast and slow adsorption,
and they finally penetrated through the membrane and cake/gel layer. This is basically consistent with
the understanding in the literature [39,40]. All the effluent properties were in good agreement with the
model fitting results, which proves the rationality of the method proposed in this paper in identifying
the main fouling mechanism during the membrane filtration process.

Membranes 2020, 10, x FOR PEER REVIEW 9 of 15 

 

4.3. Interpreting the Transition of Major Mechanisms According to Foulant Composition 

The modeling results were further evidenced by the consecutive measurements of the permeate 
properties during the filtration process. The TOC measured the total dissolved organic matter 
(DOM), UV absorbance at 254 nm (UV254) indicated the chromophoric portion of the DOM such as 
proteins and other unsaturated components [34,35], and the averaged fluorescence intensity at the 
emission wavelength range of 380–500 nm (FI380–500) mainly reflected the humic components of the 
DOM [33,36]. In Figure 6, the permeate TOC and UV254 both show a “Z”-shaped decreasing trend 
with the increase of V. At stages 5–6, the TOC dropped sharply, indicating that the overall rejection 
rate of organic foulants rose sharply due to the formation of a cake/gel layer on the membrane surface. 
At stage 7, the permeate TOC became stable at a low level of 2–3 mg/L, indicating full coverage and 
the steady growth of the cake/gel layer on the membrane surface. Correspondingly, the TOC rejection 
rate was below 10% at the pre-cake stages (stages 1–4), but it grew to over 60% at the cake/gel layer 
stage (stage 7). The cake/gel layer was mainly constructed of alginate since alginate was the major 
TOC contributor in the model foulant solution. The same trend of UV254 suggested that the 
chromophoric portion of the DOM (such as protein) also participated in the formation of the cake or 
gel layer. In contrast to the TOC and UV254, the FI380–500 exhibited an “S”-shape increase during the 
filtration process, reflecting the gradual breakthrough of some small fluorescent molecules (such as 
some humic species) through the membrane and the cake/gel layer due to the equilibration of the 
dynamic adsorption [37,38]. The above showed that polysaccharide (alginate) and protein fouled the 
membrane mainly through forming a surface cake/gel layer (most likely polysaccharide formed the 
gel network and protein was trapped in it [7]), while small molecular humic substances successively 
underwent fast and slow adsorption, and they finally penetrated through the membrane and cake/gel 
layer. This is basically consistent with the understanding in the literature [39,40]. All the effluent 
properties were in good agreement with the model fitting results, which proves the rationality of the 
method proposed in this paper in identifying the main fouling mechanism during the membrane 
filtration process. 

 
Figure 6. Permeate properties during the filtration process. 

This comprehensive model, encompassing five mechanisms for pore blockage and cake 
filtration, should be widely applicable to various situations of dead-end filtration. For example, when 
the particle size is much smaller than the pore size, standard blocking may be more dominant in the 
model. In the case of small particle size and weak hydrophobicity, the blockage may fall into the 
regime of the second kind of standard blocking, which is slow but lasts long. If the particle size is 
comparable to the pore size, complete blocking may rapidly occur. Moreover, the evolution to gel 

Figure 6. Permeate properties during the filtration process.

This comprehensive model, encompassing five mechanisms for pore blockage and cake filtration,
should be widely applicable to various situations of dead-end filtration. For example, when the particle
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size is much smaller than the pore size, standard blocking may be more dominant in the model. In the
case of small particle size and weak hydrophobicity, the blockage may fall into the regime of the
second kind of standard blocking, which is slow but lasts long. If the particle size is comparable to the
pore size, complete blocking may rapidly occur. Moreover, the evolution to gel layer stage may be
postponed or advanced given different hardness ion concentrations for metal–organic complexing gel
layer formation. These situations are all within the scope of the comprehensive model.

5. Conclusions

In this paper, we proposed a semi-empirical multiple linear regression model that incorporates the
five fouling mechanisms (first and second kinds of standard blocking, complete blocking, intermediate
blocking, and cake filtration). MATLAB codes are provided for data processing and model fitting
(“VJR” and “StepwiseModel” in the Appendices), which enable the optimal segmentation of the
filtration process for the piecewise regression and refining of significant parameters with statistical
tests. This provides a simple and rigorous method for identifying the main fouling mechanisms during
the filtration process. In the case study of a Millipore MF membrane fouled by a model solution with
polysaccharide, protein, and humic components, the model fitting results showed that the dominant
fouling mechanism evolved in the order of: initial adaptation (stage1)→ fast adsorption inside the
membrane pores (stages 2–3)→ slow adsorption inside the membrane pores (stages 4–5)→ gradual
growth of a cake/gel layer on the membrane surface (stages 6–7). The model fitting results were in good
agreement with the permeate properties during the filtration process, which proves the rationality and
effectiveness of this method in fouling mechanism study. It also provides a tool to assess membrane
fouling potential, characterize foulant properties, and understand membrane–foulant interactions, all
of which will profoundly support optimal selection of membrane and targeted pretreatment of foulant
solution for efficient fouling control in industrial applications.

Author Contributions: Conceptualization, K.X., B.H., and C.W.; methodology, K.X., H.X., and J.Y.; software, K.X.;
validation, K.X. and H.X.; formal analysis, K.X.; investigation, H.X. and J.Y.; resources, X.W. (Xianghua Wen) and
X.H.; data curation, H.X.; writing—original draft preparation, H.X. and K.X.; writing—review and editing, X.W.
(Xiaomao Wang) and S.L.; visualization, H.X. and K.X.; supervision, K.X., C.W., X.W. (Xiaomao Wang), and X.H.;
project administration, K.X. and C.W.; funding acquisition, K.X., C.W., X.W. (Xianghua Wen), and X.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Beijing Natural Science Foundation (No. L182044), the CAS Youth
Innovation Promotion Association (No. 110500EA62), the Key Deployment Project of CAS Center for Ocean
Mega-Science (No. COMS2019Q15), the 100-Talent Program of Guangzhou University (No. RQ2020103) and the
Science and Technology Program of Guangzhou (No. 202002030150).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A MATLAB Code for Automatically Calculating V, J, R and dR/dV from the Raw Data
of Filtration

function [VJR_result] = VJR(tm)
% Input tm, of which the first column is filtration time (s), and the second column is effluent weight (g).
Both time and weight should start from 0. The output Result = [T,V,J,R,dRdV] corresponds to filtration
time (s), specific effluent volume (cm), flux (um/s), resistance (10ˆ11 mˆ-1), and dR/dV (10ˆ12 mˆ-2),
respectively. The output Result is presented at a default V interval of 0.1 cm. You may change it to
any value you like. The default membrane area is 41.8 cmˆ2, the default transmembrane pressure is
5 kPa, and the water density and viscosity are set as 1 g/cmˆ3 and 0.001 Pa.s. If different, please change
them accordingly.
t = tm(:,1);% Filtration time in s;
m = tm(:,2);% Effluent mass in g;
v = m/41.8;% Specific volume per area in cm; the membrane area is 41.8 cmˆ2; the water density is
1 g/cmˆ3;
interval = 0.1;% Interval of specific volume in cm;
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N = floor(max(v)/interval);
T = zeros(N,1);
V = zeros(N,1);
for k = 1:N
v1 = floor(v/k/interval);
v2 = 1-ceil(v1/N);
rn = sum(v2);
if (v(rn+1)-floor(v(rn+1)))<(ceil(v(rn))-v(rn));
rn = rn+1;
end
V (k) = v(rn);
T (k) = t(rn);
end
J = ([V;0;0]-[0;0;V])./([T;0;0]-[0;0;T]);
J = J(2:N)*1e4;% Filtration flux in um/s;
V = V(1:(N-1));
R = 5000/0.001./(J*1e-6)/1e11;% Filtration resistance in 10ˆ11 mˆ-1; the trans-membrane pressure is 5 kPa;
the effluent viscosity is 0.001 Pa.s;
dRdV = ([R;0;0]-[0;0;R])./([V;0;0]-[0;0;V]);
dRdV = dRdV(3:(N-1))*10;% dR/dV in 10ˆ12 mˆ-2;
R = R(2:(N-2));
J = J(2:(N-2));
V = V(2:(N-2));
T = T(2:(N-2));
VJR_result = [T,V,J,R,dRdV];
End

Appendix B MATLAB Code for Piecewise Fitting of the Multiple Linear Model to the J~V Data

function [Vhat,StepwiseResults] = StepwiseModel(VJR_result,N_interval)
% By inputting the filtration data (as VJR_result) and the stage number (i.e., how many stages you
want to divide the whole process into), this function computes the coefficient of each blocking mode
in the model of: V = k0 + k1*(-Jˆ0.5) + k2*(-Jˆ1.5) + k3*(-J) + k4*(-log(J)) + k5*(Jˆ-1),\ using stepwise
regression. The terms of k1...k5 correspond to the blocking modes of 1st kind of standard blocking
(fast adsorption), 2nd kind of standard blocking (slow adsorption), complete blocking, intermediate
blocking, and cake filtration, respectively. The outputs include the stats of the regression (estimation of
the coefficients and standard error, R squared, and Durbin–Watson statistics for autocorrelation) and
the predicted V values.
V = VJR_result(:,2);% VJR_result is the output of the function VJR for pretreatment of the filtration data;
J = VJR_result(:,3);
J = J/J(1);% Normalized by dividing with the initial flux;
JJ = [-J.ˆ0.5, -J.ˆ1.5, -J, -log(J), J.ˆ-1];
Int = round(length(V)/N_interval);
Vhat = V;
VN = zeros(N_interval,1);% Middle value of V in each stage;
R2 = zeros(N_interval,1);
DW = zeros(N_interval,1);% Durbin–Watson statistics;
pDW = zeros(N_interval,1);% p-value for DW test, <0.05 means significant autocorrelation between
sample points;
B = zeros(N_interval,5);% Coefficients of k1...k5;
SE = zeros(N_interval,5);% Standard error of k1...k5;
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for i = 1:N_interval
lower = (i-1)*Int+1;
upper = min((i*Int),length(V));
y = V(lower:upper);
X = JJ(lower:upper,:);
[b,se,~,inmodel,stats] = stepwisefit(X,y);
B(i,:) = b’.*inmodel;
SE(i,:) = se’.*inmodel;
Vhat(lower:upper) = y - stats.yr;
R2(i) = 1 - stats.SSresid/stats.SStotal;
x = ones(upper-lower+1,1);
for j = 1:5
if inmodel(j)==1;
x = [x,X(:,j)];
end
end
[pDW(i),DW(i)]=dwtest(stats.yr,x);
VN(i) = mean(y);
end
StepwiseResults = [VN,B,R2,DW,pDW];
disp(‘ V k1 k2 k3 k4 k5 R2 DW p_DW’)
disp(StepwiseResults)% Display the results for each stage;
StepwiseResults = [VN,B,SE,R2,DW,pDW];
end

Appendix C Abbreviation List

BSA Bovine serum albumin
DOM Dissolved organic matter
DW Durbin–Watson
EEM Excitation–emission matrix
FI Fluorescence intensity
HA Humic acid
J Filtration flux
k Model coefficient (Equations (1)–(4))
MF Microfiltration
N Characteristic exponent
n Number of segments of the filtration process
P Trans-membrane pressure
pDW p value of DW test
PVDF Polyvinylidene fluoride
R Filtration resistance
R.U. Raman unit
SA Sodium alginate
TOC Total organic carbon
t Filtration time
UF Ultrafiltration
UV Ultraviolet absorbance
V Specific permeate volume
ε Error term
µ Dynamic viscosity of the permeate
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