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Natural killer activity of lymphocytic infiltrates in mouse mammary

lesions
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Summary Tissue infiltrating lymphocytes were isolated from BALB/c line C4 preneoplastic hyperplastic
alveolar nodules (HAN) and spontaneous tumours that arose from the HANs. NK activity of the
lymphocytic infiltrates was tested in a 4h chromium release assay using 5'Cr labelled YAC cells. In situ

lymphocytes of C4 HAN expressed 3-4 fold greater relative lytic activity (Pross et al., 1981)' than did normal
spleen cells whereas the relative lytic activity of C4 tumour infiltrates was equivalent or less than that of
normal spleen cells. Spleen cells of all lesion bearers had reduced cytolytic capacity. YAC cell lysis by spleen
cells and HAN infiltrates correlated with increasing E/T ratios. The degree of YAC lysis by C4 tumour

infiltrates, however, either decreased, stayed the same, or increased non-exponentially with increasing E/T
ratios especially at E/T > 50. Indeed, C4 tumour infiltrates from animals pretreated with anti-asialo GM 1

(ASGM) could suppress the NK activity of normal spleen cells. The lytic activity of both C4 HAN and
tumour infiltrates could be enhanced or depressed by in vivo treatment with poly IC or anti-ASGM,
respectively. These results indicate that NK cells are activated or recruited into C4 preneoplastic lesions but
their lytic activity wanes and suppressive activity arises with progression to neoplasia.

Natural killer (NK) cells have been postulated to play a role
in surveillance against incipient malignancy (Herberman &
Ortaldo, 1981). However, most of the evidence for NK
activity in vivo comes from correlations between the level of
natural or artificially altered NK activity in spleen or
peripheral blood and the growth of tumour cell lines
following intravenous injection (Moore, 1985). Although
purified murine NK cells can be effective in the elimination
of potentially metastatic tumour cells from the circulation
and from capillary beds (Barlozzari et al., 1985), their role in
the early development of cancer remains largely unknown.
To determine the function of NK cells in early neoplastic
development, it is necessary to study lesions at early stages
of tumour progression prior to the onset of overt neoplasia.
We have developed a method to isolate lymphocytic
infiltrates from preneoplastic and neoplastic mouse
mammary lesions (Wei et al., 1986). In this report, we
describe the NK activity of infiltrates in line C4
preneoplastic and neoplastic mammary tissues.

Materials and methods

Mice

BALB/c mice originally obtained from the Cancer Research
Laboratory, University of California, Berkeley, CA, were
bred by brother-sister mating in our Animal Care Facility.

Mouse tissues and cells

Preneoplastic hyperplastic alveolar nodule (HAN) line C4,
originally induced by dimethylbenzenthracene (Medina,
1976), was maintained in vivo by intra fat pad implantation
into 3 week old female BALB/c mice. HAN tissue grows to
fill the pads in 8-12 wks. The incidence of tumours arising
spontaneously from the C4 HAN implants is 80%, with a
latency period of around 6 months post HAN implantation.
Normal mammary glands were from mid to late pregnant

uniparous BALB/c female mice.
YAC-1, a T cell lymphoma line induced by Moloney

leukaemia virus in A/Sn mice, was maintained in RPMI
1640 containing 10% foetal calf serum (FCS), 2mM L-
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glutamine, penicillin (100 U ml- 1) and streptomycin
(100 ig ml 1). All tissue culture reagents were obtained from
Grand Island Biological Co. (Gibco, Long Island, NY)
unless otherwise specified.

Spleens were removed aseptically from mice and cut into
small pieces with sterile scalpel blades. Cells were released by
gently pressing the spleen fragments through a 40 mesh wire
screen with a disposable syringe plunger. After washing, the
adherent cells were removed by 45 min incubation on tissue
culture petri dishes and non-adherent cells were used in NK
assays.

Reagents and antisera

Poly IC was purchased from Sigma Chemical Company (St.
Louis, MO). Rabbit anti-asialo GM I (ASGM) purchased
from Wako Chemical (Osaka, Japan), was produced by
immunizing rabbits with asialo GM 1, purified from bovine
brain tissue, in methylated bovine serum albumin and
complete Freund's adjuvant. Hybridoma MI/70. 15.11.5,
which secretes rat monoclonal IgG2b antibody directed to
Mac-1, a macrophage differentiation antigen (Springer,
1980), was purchased from American Type Culture
Collection (Rockville, MD). Culture supernatant was used to
stain cells.

Isolation of mammary lesion infiltrating lymphocytes
The method of infiltrate isolation has been reported (Wei et
al., 1986). Briefly, mouse mammary tissue fragments were
dissociated with an enzyme cocktail containing 3 mg ml - 1
collagenase Type III (Cooper Biomedical, Malvern, PA), and
8 Mg ml-1 deoxyribonuclease Type I (Sigma, St. Louis, MO)
in Hank's balanced salt solution (HBSS) with 40% FCS, in
an orbital shaker (rotating at 250 cycles min- 1) for 60 min at
370C. After incubation the supernatant was replaced with
fresh enzyme mixtures. The procedure was repeated once.
Cells in the supernatants were combined and filtered through
45 gm Nytex (Tetko Inc., Elmsford, NY), washed free of
enzyme and resuspended in HBSS with 1% newborn calf
serum (NCS) for elutriation.

Centrifugal elutriation was performed with a Beckman J2-
21 centrifuge using a JE-6B elutriation head with a standard
chamber. The rotor speed was held constant at 2225 rpm
throughout the procedure. The cells from dissociated
mammary tissues were loaded and two 100 ml fractions were

collected at buffer flow rates of 6.5 ml min-1 and
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15 ml min- (fractions 1 and 2). Fraction 1, which contained
red blood cells and cell debris, was discarded. Fraction 2 was
saved and adherent cells were removed by 45 min incubation
on tissue culture petri dishes. Approximately 70% of the
nonadherent cells in F2 were lymphocytic. Cells left in the
chamber lack surface markers for T, B, or NK Cells. The
non-adherent F2 cells were used in this study.

Indirect immunofluorescent staining of infiltrating lymphocytes
and analysis by flow cytometry

The method has been described in detail (Wei et al., 1986).
Briefly, 3 x 106 cells were stained with 100 MI anti-Mac 1,
anti-ASGM, normal rat or normal rabbit immunoglobulin
(Ig). The second layer antibodies were fluorescein isothio-
cyanate (FITC) conjugated F(ab')2 fragments of mouse anti-
rat Ig or goat anti-rabbit Ig (Jackson Immuno Research
Lab, Avondale, PA). Flow cytometry was performed by a
dual laser FACS 440 using the 488 nm line of the 5W argon
laser for excitation. Dead cells were excluded by propidium
iodide (0.005%) staining.

NK cell assay

YAC cells were labelled with 51Cr by incubating 107 cells
with 100 MCi Na51CrO4 (New England Nuclear, Boston,
MA) in 1 ml of RPMI at 37°C with occasional shaking for
90 min. The unincorporated 51Cr was removed by extensive
washing. One x 104 to 2 x 104 51Cr labelled YAC cells were
mixed with graded numbers of effector cells in 200 I RPMI
1640 supplemented with 10% FCS, 2mM L-glutamine,
penicillin (100 U - ml- 1) and streptomycin (100 yug ml -1) in
the wells of round bottom microtiter plate (Falcon, Oxnard,
CA). After centrifugation at 200 g for min, the plate was
incubated at 37°C for 4 h in a humidified atmosphere with
5% CO2 in air. After incubation, the plate was centrifuged
at 480 g for 10 min and a 100M1 aliquot was removed from
each well for counting in a gamma counter. The percentage
specific lysis was calculated as follows:

% specific lysis = (cpm test- cpm medium) x 100
cpm max- cpm medium

The cpm max was determined by adding 1/6 N HCl to the
wells containing 51Cr labelled target cells only. Each group
contained at least 4 replicates.

Relative lytic activity (k) of each effector population was
expressed according to the modified exponential fit equation
described by Pross et al. (1981):

P=A(l -ekx)

In this equation P=percent specific lysis/100; A=maximal
target cell lysis determined by computer iteration using the
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data set with the highest specific lysis; x= effector/target
ratio.

Results

Expression ofNK surface markers on lymphocytes isolated
from preneoplastic and neoplastic mouse mammary lesions

Host infiltrates of C4 HANs and C4 tumours isolated in
elutriation fraction 2 (F2) contained 1-2 x 106 ASGM
positive cells g- 1 tissue (Wei et al., 1986). To further
characterize these infiltrates, non-adherent F2 cells were
stained with anti-ASGM or monoclonal anti-Mac 1 and
analyzed by flow cytometry. Figure 1 shows one
representative experiment with C4 HAN infiltrates. Anti-
ASGM stained 19.4% and anti-Mac 1 stained 4.3% of the
low 90 degree scatter cells which constitute 85 90% of the
population. Cells with high 90 degree scatter were not
stained with anti-ASGM (not shown). Similar results were
found with C4 tumour infiltrates (not shown). Therefore,
there is a population of ASGM positive and Mac-l negative
cells in the mammary lesion infiltrates that totals 10-20% of
the infiltrating cells.

Natural killer activity of infiltrating lymphocytes in C4
preneoplastic and neoplastic mouse mammary lesions

Since ASGM positive cells are associated with NK activity
(Kasai et al., 1980), infiltrating cells from C4 HANS and
tumours were tested for cytotoxicity against 51Cr labelled
YAC cells. Figure 2 presents two sample experiments
showing NK activity of C4 HAN infiltrates. In both
experiments C4 HAN infiltrates were more cytotoxic than
were normal spleen cells at E/T of 50:1 and 100:1
(P<0.00 1). NK activity of spleen cells from C4 HAN
bearers was either equivalent to (Exp I) or weaker (Exp 2)
than that of normal spleen cells. Figure 3 illustrates the NK
activity of C4 tumour infiltrates. Tumour infiltrates were less
cytotoxic than normal spleen cells at all three effector: target
ratios tested (P<0.001). In exp 1, target cell lysis by tumour
infiltrates was lower at E/T of 100:1 than that at E/T of
50:1, although maximal lysis was not achieved at either
ratio. In neither experiment,, was increased number of
effector cells correlated with increased killing. Spleen cells
from C4 tumour donors had lower (exp 1) or equivalent (exp
2) cytotoxicity, as compared to that of normal spleen cells.

In order to compare all the data sets from different
experiments, each set of data was converted to a single value
with the modified exponential fit equation described by
Pross et al. (1981). Relative lytic activity (RLA) was
expressed by the slope 'k'. The k x 103 value for each
experimental group is shown in paranthesis in Figure 2.
RLA of C4 HAN infiltrates was 3-4 times that of normal
spleen cells. The data set from C4 tumour infiltrates could
not be converted with the exponential fit equation since

Figure 1 Surface markers expressed on infiltrating lymphocytes in C4 HAN. Non-adherent F2 cells from C4 HAN was analyzed
on FACS 440 after they have been labelled with anti-Mac 1 (---) or anti-ASGM (---).



NK ACTIVITY OF MOUSE MAMMARY LESION INFILTRATES 591

T(14)
#010- 20

(4.6)

(3.5)

10

I I I I

25 50 75 100 0

Exp 2

1 (4.1)

(1.3)

(0.7)

- .,01r -o.0. -

I I I I_

25 50 75 100
Effector/target

Figure 2 NK activity of C4 HAN associated lymphocytes. NK cell mediated lysis was assessed in a 4 h 51Cr release assay using
YAC target cells. Effector cells included normal spleen cells (0 0), C4 HAN bearer spleen cells (0 0) and lymphocytic
infiltrates of C4 HAN isolated by centrifugal elutriation ( x x ). Number in parenthesis represents the lytic activity (k) x 103.
Lytic activity 'K' is determined by P=A(I-eX), P=percent target lysis, A = maximal lysis determined by computer iteration using
data set with highest specific lysis, x= effector/target ratio.
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Figure 3 NK activity of C4 tumour associated lymphocytes. YAC cell lysis was tested against normal spleen cells (0-0), C4
tumour bearer spleen cells (O--- 0) and lymphocytic infiltrates of C4 tumour isolated by centrifugal elutriation (x --- x ).

increased E/T ratio was not correlated with exponential
increase of target cell lysis.

Augmentation ofNK activity ofmammary lesion infiltrates by
poly IC

Since interferon can augment the reactivity of a subset of
NK cells (Djeu et al., 1979), the effect of the interferon
inducer, poly IC (Field et al., 1967; Buckler et al., 1971), on
the lytic activity of mammary lesion infiltrates was tested.
Mice were injected i.p. with poly IC 24 h before sacrifice.
Spleen cells and tissue infiltrates were harvested for cytotoxi-
city assays against YAC cells. Table I shows the results of a

sample experiment from C4 HAN bearing mice. Following
poly IC treatment, the lytic activity of all effector

populations increased. The Kx 103 values increased from 1.3
to 18.0 for normal spleen cells, from 0.7 to 3.7 for C4 HAN
bearer spleens and from 4.1 to 55.0 for C4 tumour
infiltrates. Table II shows an experiment with poly IC
activated C4 tumour infiltrates at E/T ratios of 25 and 50.
(RLA determination was possible at these ratios). The lytic
activity was also increased in all three effector populations,
including normal BALB/c spleen cells, C4 tumour bearer
spleen cells, and C4 tumour infiltrates. Figure 4 shows 3
experiments with poly IC activated C4 tumour infiltrates at
E/T ratios from 25:1 to 100:1. Lytic activity of tumour
infiltrates was lower than that of normal spleen cells in exp 1

and 2 but higher in exp 3. In all three experiments, however,
lytic activity increased exponentially with increasing number
of normal spleen cells, whereas it stayed at the same level
with increasing number of tumour infiltrating cells.
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Table I Augmentation of NK activity of C4 HAN infiltrates by
poly IC

Normal C4 HAN
Effectorl BALBIc bearer C4 HAN
target Poly ICa spleen spleen infiltrates

100 + 62.2+ 1.7 24.4+ 1.7
- 11.5+1.8 5.6+0.6

50 + 43.0+0.5 12.8+ 1.0 66.3+2.2
- 7.4+0.9 3.6+0.5 14.3+0.4

25 + 27.0+0.7 8.5+0.5 40.6+1.7
- 5.1+0.8 2.2+0.4 7.9+0.8

RLA (k) x 103 + 18.0 3.7 55.0
- 1.3 0.7 4.1

aMice were injected i.p. with lOO1 g of poly IC in 0.2 ml of saline
24h before the assay. YAC cell lysis was tested in a 4 h chromium
release assay.

Table II Augmentation of NK activity of C4 tumour infiltrates by
poly IC

Normal C4 tumour
Effectorl BALB/c bearer C4 tumour
target Poly IC spleen spleen infiltrates

50 + 26.5+1.4 17.9+1.2 32.9+3.1
- 2.1 +0.5 3.4+0.1 5.1+0.6

25 + 16.0+1.0 10.1 +0.7 22.3 +0.9
1.2+0.5 2.3+0.6 0.0-+0.1

RLA (k) x 103 + 19.0 10.6 27.0
- 0.9 1.1 11.0

Table III Effect of Anti-ASGMa on the NK activity
of C4 tumour infiltrates

Normal
Effectorl BALB/c C4 tumour
target Anti-ASGM spleen infiltrates

100 - 15.4+3.4 16.8+0.8
+ 0.8+0.6 5.5+0.8

50 - 10.0+0.8 14.9+0.4
+ 0.4+0.6 7.5+0.5

25 - 6.0+0.8 12.9+0.9
+ -0.3+0.7 6.4+0.4

aMice were injected i.v. with 0.2 ml of rabbit anti-
ASGM diluted 1:10 in saline 24 and 48 h before the
assay.

Reduction ofNK activity of infiltrates by antiserum to asialo
GMJ (ASGM)

Treatment with Anti-ASGM has been shown to eliminate
NK activity from the spleen (Kasai et al., 1980a, b). C4
tumour bearing mice were injected, i.v., (24 and 48 h before
assay) with 0.2 ml of rabbit anti-ASGM diluted 1:10 in
saline. Anti-ASGM completely eliminated the NK activity of
normal BALB/c spleen cells (Table III). The NK activity of
C4 tumour infiltrates was reduced by about half at the ratios
tested.

Suppression ofNK activity by C4 tumour infiltrates

Since NK activity of C4 tumour infiltrates usually leveled or
decreased at E/T greater than 50:1 (Figures 3 and 4), we
tested whether the infiltrate preparations contained NK
suppressor function. 51Cr-YAC cells were incubated with
poly IC activated normal spleen cells with and without C4
tumour infiltrates that were pretreated in vivo by anti-ASGM
(Table IV). In the presence of 1 x 106 poly IC activated
spleen cells (E/T = 100:1), specific lysis of 51Cr-YAC was
40.7 + 3.3. Anti-ASGM treated C4 tumour infiltrates had a
low level of cytotoxicity when added alone (Gp 5-7). When
anti-ASGM treated C4 tumour infiltrating cells were added
to wells containing 1 x 106 poly IC activated spleen cells and
1 x 104 51Cr-YAC cells, the specific lysis of YAC cells was
reduced significantly. This reduction in cytotoxicity was not

Table IV Suppression ofNK activity by C4 tumour infiltrates

Poly IC Anti-ASGM
spleen C4 tumour (%) specific
cell infiltrates Thymocytes lysisi

(1) 1 x 106 - 40.7+3.3
(2) 1x106 Ix106 11.3+1.0
(3) 1 x 106 5 x 105 - 20.8+1.4
(4) 1 x 106 2.5 x 105 31.4+1.2
(5) 1 x 106 - 5.5+0.8
(6) 5 x 105 7.5+0.5
(7) 2.5x 105 6.4+0.4
(8) 1 x 106 1 x 106 31.9+2.5
(9) 1x106 - 5x105 42.7+7.0

(10) 1 x 106 - 2.5 x 105 43.7+2.7
(11) - 1 x 106 1.6+0.7
(12) 5 x 105 1.8+0.5
(13) -2.5 x 105 1.5+0.3

aEach test well contained 1 x 10' 51Cr labelled YAC cells.
Specific lysis of YAC cells was determined after 4 h co-
incubation with various effector cells as described.
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Figure 4 NK activity of poly IC activated C4 tumour associated lymphocytes. YAC cell lysis was tested against normal spleen
cells (@-- ), C4 tumour bearer spleen cells (O--- 0) and lymphocytic infiltrates of C4 tumour isolated by centrifugal
elutriation (x --- x ).
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due simply to crowding since thymocytes had no effect on
the killing except when 1 x 106 thymocytes were added.

Since we found previously that C4 tumour infiltrate
preparations contained 30% or less tumour cell con-
tamination, it was possible that C4 tumour cells competed
with YAC cells for NK effector cell binding sites. To test
this possibility, C4 tumour cells from primary cultures were
added to NK cell assay with poly IC activated normal spleen
cells. We found no reduction in YAC lysis in the presence of
C4 tumour cells (not shown).

Discussion

We earlier reported that non-adherent C4 HAN infiltrates
and C4 tumour infiltrates contained 20-40% and 10-20%
ASGM positive cells, respectively (Wei et al., 1986). In the
present study NK activity in these infiltrates was tested by a
4h cytotoxicity assay with 51Cr labelled YAC cells. High
levels of YAC cell lysis were observed with preneoplastic
HAN infiltrates. C4 tumour infiltrates also expressed NK
activity, comparable to or less than that of normal spleen
cells at low E/T ratios. However, increasing the number of
tumour infiltrating effector cells in the assay resulted in the
same level, or even reduced, target cell lysis and anti-ASGM
treated C4 tumour infiltrates interfered with the NK activity
of normal spleen cells. Lysis of YAC cells by HAN and
tumour infiltrates was amenable to augmentation or
suppression by poly IC or anti-ASGM pretreatment in vivo.
Spleen cells from mammary lesion bearers had depressed
lytic activity but no NK supressor activity (data not shown).
From these results, we conclude that lymphocytic infiltrates
of C4 HANs and their spontaneous tumours contain active
NK activity. C4 tumour infiltrates also contain NK
suppressor activity. Our data also confirmed the finding that
tissue infiltrating NK cells are relatively resistant to anti-
ASGM treatment (Wiltrout et al., 1985). Injection of anti-
ASGM completely eliminated the NK activity of spleen cells
but only reduced the NK activity of the infiltrates by half.
The level of specific NK lysis varied from assay to assay.

This phenomenon has been described by Pross and Baines
(1980) and was due to the susceptibility of the target cells.
Pross et al. (1981) developed a method using the exponential
fit equation to reduce the data set into a single parameter
and to partially overcome the error due to target cells. The
lytic activity of C4 tumour infiltrates, however, fit poorly to
this equation because it did not exhibit the dose-response
effect. We, therefore, chose to present the entire data set.

Gerson et al. (1981) reported NK activity with infiltrating
cell suspensions from small (<2 g) mammary tumours of
strain C3H/HeN mice. Cell suspensions of larger tumours
had low or undetectable NK activity and were able to
decrease NK activity of normal mouse spleen cells. Other
effector functions have been identified with mouse mammary
tumour associated lymphocytes. Blazar et al. (1984) isolated
the lymphoid cell infiltrates from C3H/He mammary
tumours and found them to be cytotoxic to autologous
target cells in two of five experiments using a 4h chromium
release assay. It was also reported that lymphoid cells
isolated from strain BALB/cfC3H mammary tumours are
nonresponsive to mitogen stimulation (Ruppert et al., 1978;
1979) but can enhance mammary tumour growth both in
vitro and in vivo (Blazar et al., 1980; Stutman, 1976).
Similarly, Buessow et al. (1984) isolated lymphocytes from
BALB/c mammary tumour D1-DMBA-3 and found that a
population of Thyl.2+, ly2.2+ cells could suppress lympho-
blastogenesis induced by mitogen or tumour antigen.
Parthenais and Haskill (1979) reported that monocyte-
macrophages associated with a strain DBA/2 mouse
mammary tumour (line T1699) were specifically cytotoxic to
T1699 cells, probably through antibody dependent cellular
cytotoxicity. Loveless and Heppner (1983) reported direct
tumouricidal activity by infiltrating macrophages of

BALB/cfC3H mouse mammary tumours. Taken together
these reports point to the concomitant existence of multiple,
lymphocyte and macrophage mediated effector mechanisms
operating in situ within murine mammary tumours of
different origin. Whether these events take place
simultaneously or in sequence has not been clearly defined.
Our findings with C4 HAN and tumour infiltrates is

consistent with the notion that active NK cells concentrate
in preneoplastic tissue and that their relative number and
activity wane as tumours develop, suggesting that NK
activation or recruitment is an early event in transformed
mammary tissue. This early event may be followed by an
accumulation of various effector cells resembling a 'mini-
immune network', including NK suppressor cells described in
this paper and by Gerson et al. (1981), cytolytic lymphocytes
(Blazar et al., 1984), cytolytic monocyte-macrophage cells
(Parthenais & Haskill, 1979; Loveless & Heppner, 1983),
tumour enhancing lymphocytes (Blazar et al., 1980; Stutman,
1976), suppressor T cells (Buessow et al., 1984), etc. The
mechanisms responsible for triggering such a network are
not clear. One possible trigger is the immunogenicity of the
transformed cells. C4 tumours have been found to be
immunogenic, both by transplantation rejection and by
microcytotoxicity assays (Ruppert et al., 1979). C4 HAN and
tumours share an antigen detectable by a rat monoclonal
antibody (Johnson et al., 1985). Furthermore, there is an
increased number of infiltrating lymphocytes in C4 HANs
and C4 tumours, relative to normal pregnant mammary
glands (Wei et al., 1986). The distribution of T cells in C4
HANs and tumours is similar in regard to TH/TC,s.

Another possibility is that the NK cells themselves trigger
the 'immune' network. NK cells concentrated in the preneo-
plastic lesions could secrete a number of 'cytokines'
(Kasahara et al., 1983; Domzing et al., 1981; Wright &
Bonanida, 1982; Farrum & Targan, 1983; Munger et al.,
1985; Millard et al., 1984; Scala et al., 1984) including
interferon, interleukin-1, interleukin-2, cytolysin, DNase, and
colony stimulating factor. Such soluble factors may be
sufficient to initiate lymphocyte-mediated activity in situ. In
an earlier study, we found that eluates of HANs and some
normal tissues inhibited peritoneal exudate cell migration
whereas eluates of tumours enhanced their migration (Wei et
al., 1979). Although it was not determined whether the
source of these soluble factors was the transformed cells or
their infiltrates, it appears that soluble materials, capable of
exerting opposing effects on macrophage migration, exist in
HAN and tumour tissues, Whether these factors regulate
host immune responses in situ remains to be determined.

Regardless of the mechanisms involved, we are left with
the apparent paradox that progression from preneoplasia to
neoplastic tumours proceeds in the face of very active NK
activity and recruitment of a variety of effector cells in situ.
It may be that some sort of immune enhancement is involved
or that there are simply inadequate quantities of effector
cells to restrain tumour development. An alternate hypo-
thesis, however, is that the NK cells themselves are directly
involved in the generation of variant, tumourigenic
populations. Mouse mammary tumour associated
macrophages have been found to be mutagenic to both
bacteria (Fulton et al., 1984) and mammalian cells
(Yamashima et al., 1986). Although not completely
understood, active oxygen metabolites appear to be involved
in the mechanism. Since hydroxyl radicals are also produced
by Nk cells (Dune et al., 1985), the possible roles of these
free radicals in tumour progression should be examined more
closely.
Human breast cancer infiltrates generally have been

reported to contain negligible amounts of cells with NK
phenotype or activity (Pizzolo et al., 1984; Eremin et al.,
1981), although they have T/B and TH/Tc,s distributions
similar to the C4 mouse tumours used here (Wei et al.,
1986). It is certainly possible that human breast cancer
evokes different host reponses than do mouse tumours,
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however, it may also be that the clinical samples so far
tested are from cancer tissues that have progressed beyond
the stage where NK activity can be detected. Studies with
early breast lesions may be necessary for complete
understanding of NK activity in human breast cancer.

The authors wish to thank Dr Amy Fulton for her helpful
discussion, Mr Kevin Malone and Ms Beth Gualdoni for their
excellent technical assistance and Mrs Margaret Peterson for her
professional manuscript preparation. This study was supported by
NIH grant CA27437, by Concern Foundation, and by the E. Walter
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