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ABSTRACT Cystic fibrosis (CF) lung microbiota composition has recently been rede-
fined by the application of next-generation sequencing (NGS) tools, identifying,
among others, previously undescribed anaerobic and uncultivable bacteria. In the
present study, we monitored the fluctuations of this ecosystem in 15 CF patients
during a 1-year follow-up period, describing for the first time, as far as we know, the
presence of predator bacteria in the CF lung microbiome. In addition, a new compu-
tational model was developed to ascertain the hypothetical ecological repercussions
of a prey-predator interaction in CF lung microbial communities. Fifteen adult CF pa-
tients, stratified according to their pulmonary function into mild (n � 5), moderate
(n � 9), and severe (n � 1) disease, were recruited at the CF unit of the Ramón y
Cajal University Hospital (Madrid, Spain). Each patient contributed three or four in-
duced sputum samples during a 1-year follow-up period. Lung microbiota composi-
tion was determined by both cultivation and NGS techniques and was compared
with the patients’ clinical variables. Results revealed a particular microbiota composi-
tion for each patient that was maintained during the study period, although some
fluctuations were detected without any clinical correlation. For the first time, Bdell-
ovibrio and Vampirovibrio predator bacteria were shown in CF lung microbiota and
reduced-genome bacterial parasites of the phylum Parcubacteria were also consis-
tently detected. The newly designed computational model allows us to hypothesize
that inoculation of predators into the pulmonary microbiome might contribute to
the control of chronic colonization by CF pathogens in early colonization stages.

IMPORTANCE The application of NGS to sequential samples of CF patients demon-
strated the complexity of the organisms present in the lung (156 species) and the
constancy of basic individual colonization patterns, although some differences be-
tween samples from the same patient were observed, probably related to sampling
bias. Bdellovibrio and Vampirovibrio predator bacteria were found for the first time
by NGS as part of the CF lung microbiota, although their ecological significance
needs to be clarified. The newly designed computational model allows us to hypoth-
esize that inoculation of predators into the lung microbiome can eradicate CF
pathogens in early stages of the process. Our data strongly suggest that lower respi-
ratory microbiome fluctuations are not necessarily related to the patient’s clinical
status.
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The natural evolution of cystic fibrosis (CF) disease is a progressive decline in lung
function caused by a vicious circle of inflammation and tissue destruction that is

triggered and maintained by chronic bacterial colonization of the lower respiratory
tract (1). The main pathogen detected in the CF airway by conventional culture
techniques is Pseudomonas aeruginosa, which has a major influence on patients’
survival and quality of life (1, 2). Other clinically cultivable and relevant recognized
pathogens include methicillin-resistant Staphylococcus aureus (MRSA), Burkholderia ce-
pacia complex species, and Mycobacterium abscessus. The clinical impact of anaerobes,
Stenotrophomonas maltophilia, Achromobacter species, Ralstonia, Pandoraea, Acineto-
bacter, and others remains unclear (2–4).

The introduction of culture-independent tools, particularly those based on next-
generation sequencing (NGS), has allowed the identification of a more diverse and
abundant lung microbiota that includes not only classical CF pathogens but also a wide
community of bacterial taxa, most of which are uncultivable by routine methods (5–8).
The precise role of this microbiota in the clinical course of the disease has not yet been
elucidated, although its implication in the onset of clinical exacerbations and in the
modulation of virulence factors of pathogens such as P. aeruginosa has been suggested
(3, 9, 10). As in other mucosal compartments of the human body, the bacterial
composition of the lung microbiota is patient specific. In CF, complexity and diversity
reductions in the lung microbiota are often associated with progression of the disease.
In addition, microbiota disturbances are mostly related to the cumulative effect of
multiple courses of antibiotic treatment, although other factors, such as the host’s
immune system, human metabolites, bacterial quorum-sensing molecules, the spread
of bacteriophages among bacteria, and other ecological forces, are also implicated in
these fluctuations (11). Bacteriophages are important negative bacterial density regu-
lators and might also contribute to the survival of particular species through the
horizontal transfer of genes, especially those related to antibiotic resistance (12).

In this study, we applied NGS to the study of the lung microbiota in successive
sputum samples from 15 CF patients during a 1-year period, revealing a basic constancy
in the pattern of species found in each patient. Unexpectedly, prokaryotic predators in
the CF lung microbiota were found that might influence and/or regulate the compo-
sition of the microbiota and the population size of particular organisms. Bdellovibrio
species are aerobic deltaproteobacteria, motile, very small (0.6 �m in diameter), Gram-
negative rods, and obligate predators of both Gram-negative and Gram-positive bac-
teria (13, 14). After initial contact, the predator adheres to the bacterial envelope and
enters the periplasmic space, where it forms its replicative structures, called bdello-
plasts, by using the prey’s cytoplasm as an energy source (15). Once the cytoplasm is
exhausted, the lysis of the remnant cell allows the exit into the medium of multiple
Bdellovibrio cells that then search for other cells on which to prey (16). The most-studied
predator species is Bdellovibrio bacteriovorus, which is widely distributed in environ-
mental ecosystems and particularly linked to saltwater settings, in which an ecological
role in the bacterial communities’ regulation has been suggested (15). The presence of
B. bacteriovorus in the gut microbiota of healthy individuals and CF patients has been
recently reported, as well as its ability to prey on classical CF pathogens such as
P. aeruginosa, S. aureus, and S. maltophilia, even in their biofilm format (14, 16). For
these reasons, the use of these predator bacteria as an ecological strategy to control
pathogenic CF lung bacteria and also as a probiotic to control gut microbiota dysbiosis
in inflammatory bowel disease has been suggested (17, 18). Interestingly, S. maltophilia,
a frequent CF lung colonizer, has also been identified as a predator of the green sulfur
bacterium Chlorobium limicola in aquatic environments (19). Moreover, Vampirovibrio
chlorellavorus is an epibiotic bacterial predator whose known target is the microalga
Chlorella vulgaris (20, 21). An unexpected finding of the application of NGS in the
present study encouraged us to report for the first time, as far as we know, the presence
of predator bacteria in the CF lung microbiome, monitoring their possible association
with the population fluctuation in 15 CF patients during a 1-year follow-up period. In
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addition, a new computational model was developed to illustrate the possible ecolog-
ical repercussions of prey-predator interactions in CF lung microbial communities.

RESULTS

All 15 of the CF patients in this study completed the 1-year follow-up, contributing
the four scheduled sputum samples, with the exception of four patients (no. 1, 10, 12,
and 15), who contributed only three samples because of circumstances not related to
this study. The patients were classified as having mild (n � 5), moderate (n � 9), or
severe (n � 1) lung function impairment (Table 1).

A wide range of bacterial species in the CF lung microbiota. Microbiological
cultures of the samples demonstrated chronic lung colonization by CF pathogens,
including P. aeruginosa (11 patients), S. aureus (11 patients), Burkholderia species (1
patient), and Pandoraea species (1 patient). P. aeruginosa and S. aureus cocolonization
was observed in the eight patients with the poorest lung function (Table 1). MRSA
isolates were not detected.

Oral-cavity-related microorganisms are usually considered contaminants after spu-
tum passage through the upper respiratory tract and the mouth; thus, we decided to
delete oral-cavity-related genera (Actinomyces, Fusobacterium, Gemella, Granulicatella,
Neisseria, Porphyromonas, Prevotella, Rothia, Streptococcus, and Veillonella) from the final
analysis to better monitor the lung microbiota (Fig. 1 to 3). The median number of
operational taxonomic units (OTUs) in all of the samples was 16,780 � 14,670 (range,
711 to 82,507); as expected, the lower number of reads corresponded to the patients
with the poorest lung function (Fig. 1). Taxonomic genus assignment was incomplete
in 10% of the total reads, and only the family taxon was ascribed to these sequences.

Fluctuations in phylum distribution are shown in Fig. 2, overall the most represented
by Proteobacteria (62.1% � 29%), Firmicutes (28.3% � 21%), Bacteroidetes (5.7% � 5%),

TABLE 1 Clinical characteristics of the patients included in this study with the chronic and acute antibiotic treatments received during
the study

Lung function
impairment
and patient no.

FEV1

(%) Sexa

Age
(yr)

Chronic treatment
(route)b

Exacerbation treatment(s) (no. of incidents)
Cultured
pathogenscInhaled Oral Intravenous

Mild
1 90 F 40 TOB (inh), ATM (inh) CIP (2), AZM (2) Hp, Pa, Sm
2 87 M 39 MIN (2), MOX (2) VAN, CFX Sm, Hi, Sa, Hp
3 80 F 38 COL (inh) CIP (6), FOS (3), SXT, AZM Pa, Sw
4 80 M 19 COL (inh) CFX (4), CIP Sa, Hp, Hpitt, Pa
5 75 F 40 COL (inh) CIP Sa, Bv, Bc, Hp, Pa

Moderate
6 73 M 36 COL (inh) AMP AMC (6), MOX (2) Hp, Sm, Cp, Sl
7 62 F 32 COL (inh) SXT (3), AMC CIP, AMK Sa, Ps, Hp, Hp, Mm
8 61 F 34 AZM (p.o.), ATM (inh) AZM, FOS, LEV TOB (2), PTZ, CFT Hp, Pa, Sw, Sm
9 61 F 29 AZM (p.o.) AMP AMC (4) MER, AMC Sa, Hp, Hpitt, A
10 60 F 49 TOB MOX (3), AMC, SXT (7),

CLO (7), CIP
Sa, Sm, Ca, Pa, Af

11 56 M 39 AZM (p.o.), COL (inh) SXT (2) Sa, Pa, Hp
12 52 F 21 TOB (inh) CIP (3), AMC (2), AZM Sa, Pa
13 52 F 19 COL (inh) AZM Pa, Sa
14 46 F 22 TOB (inh), AZM (p.o.) AMC (2), SXT, LNZ (2) TOB, PTZ Pa, Sa, Cg

Severe
15 28 F 28 COL (inh) Col, ATM CIP (3), LEV, SXT, ATM MER (3), TOB (4),

FOS, PTZ (3)
Hp, Sa, Pa

aF, female; M, male.
bTOB, tobramycin; AZM, azithromycin; COL, colistin; CIP, ciprofloxacin; MIN, minocycline; MOX, moxifloxacin; LEV, levofloxacin; FOS, fosfomycin; SXT,
trimethoprim-sulfamethoxazole; AMC, amoxicillin-clavulanate; ATM, aztreonam; CLO, cloxacillin; MER, meropenem; PTZ, piperacillin-tazobactam; CFX, cefuroxime; CTX,
cefotaxime; LNZ, linezolid; VAN, vancomycin; inh, inhaled; p.o., per os.

cSa, Staphylococcus aureus; Sw, Staphylococcus warneri; Sl, Staphylococcus lugdunensis; Pa, Pseudomonas aeruginosa; Hp, Haemophilus parainfluenzae; Hi, Haemophilus
influenzae; Hpitt, Haemophilus pittmaniae; Sm, Serratia marcescens; Bv, Burkholderia vietnamiensis; Bc, Burkholderia cepacia; Ps, Pandoraea sputorum; Ca, Candida
albicans; Cp, Candida parapsilosis; Cg, Candida guilliermondii; Mm, Morganella morganii; A, Achromobacter; Af, Aspergillus fumigatus.
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Actinobacteria (1.9% � 3%), and members of the ubiquitous phylum Candidatus
Saccharibacteria (1.6% � 12%). Other minority phyla (�0.9%) were Parcubacteria,
organisms of the new big bacterium phylum, present in all 15 patients, despite being
able to grow only in anoxic environments; Verrucomicrobia and Cyanobacteria/chloro-
plasts in 13 patients; Nitrospirae in 10 patients; Chlamydiae in 9 patients; and Armati-
monadetes in 8 patients. Although the phylum pattern was maintained in each patient
over time, significant fluctuations were also observed, particularly in Proteobacteria in
patients 1, 8, and 14, without any clinical association.

Considering all 56 samples, a total of 156 bacterial genera were detected, although
~90% of the CF lung microbiome consisted of Pseudomonas (18%), Haemophilus
(17.3%), Staphylococcus (16.5%), Pandoraea (6.2%), Sphingomonas (5.8%), Ca. Saccha-
ribacteria genera incertae sedis (5.5%), Stenotrophomonas (4.0%), Leptotrichia (3.2%),
Capnocytophaga (3.0%), Burkholderia (2.4%), Oribacterium (2.1%), Aquabacterium (1.8%),
Lachnoanaerobaculum (1.4%), Campylobacter (1.3%), and Mycoplasma (1.2%) (Fig. 3).
Cultivable Burkholderia bacteria were observed only in the 4 sputum samples of patient
5, although compatible reads were detected by NGS in all 56 samples studied, with a
median number of 436 � 531 (range, 39 to 1,866) reads (Fig. 3). Unexpectedly, patient
5 displayed a low number of Burkholderia reads in the four samples (median of 368 �

120 reads). Because the possible contamination of samples or reagents with ambient
Burkholderia was prevented by using adequate negative controls, independent gyrB
and recA PCRs were developed with the total DNA from the sputum, with negative
results for all of the samples except those from patient 5.

FIG 2 Phylum distribution in the samples from the 15 CF patients in this study. The last column (*) represents the median value of all 56 samples.

FIG 1 Biodiversity of the sputum samples used in this study. The median, minimum, and maximum
numbers of OTUs in the samples are represented.
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Predators in the CF lung microbiota. Interestingly, NGS allowed the detection of
some recognized bacterial predators as minority genera, i.e., Vampirovibrio (17 samples,
12 patients, 0.003% of the total microbiota) and Bdellovibrio (6 samples, 3 patients,
0.002% of the total microbiota). The detection of these predator organisms as obligate
parasites implies the multiplication in the CF lung microbiota of prey; however, we were
unable to find known prey organisms in the sputum samples that might explain the
presence of Vampirovibrio. An association between the presence of predators and the
main CF pathogen densities was not detected (Fig. 4). The coexistence of both
predators in the same sputum sample was observed only in patient 14, with the most
frequent situation the predator’s detection in a single sample from each patient.

Modeling of predator-prey interactions in the CF lung microbiota. A new
computational model was designed to better understand the ecological interrelation-
ships of predators and the CF lung microbiota. For this purpose, and considering the
real proportions observed in our sputum samples, the bacteria selected as prey were
Pseudomonas and Staphylococcus, whereas Bdellovibrio was the predator. Because of
uncertainty about the role of Vampirovibrio, we decided to introduce a second putative
predator (SPP). The spatial distribution of all of the agents in the three different stages
of the temporal evolution is shown in Fig. 5, and the overall results obtained with this
model at the arbitrary time points reproduce the classical oscillatory solution of the
Lotka-Volterra equations and were consistent with the extinction of all populations
except one predator and one prey, which ultimately coexist in equilibrium.

Various combinations of the initial conditions were applied specially for the prey
proportions (Fig. 6A and B), showing the ecological advantage of Pseudomonas with
respect to Staphylococcus. To understand the influence of the initial populations of

FIG 3 Genus percentages in the sequential sputum samples. Green, Pseudomonas; purple, Haemophilus;
blue, Staphylococcus; yellow, Burkholderia; orange, Pandoraeae; and pink, Stenotrophomonas.

FIG 4 Numbers of OTUs of the main CF pathogens and predator species detected in the sputum samples.

Predator-Prey Equilibrium ®

September/October 2017 Volume 8 Issue 5 e00959-17 mbio.asm.org 5

http://mbio.asm.org


predators, we performed 50 repetitions of each simulation by studying whether
populations survive or die by using the survival rate. Figure 7 shows that populations
with an initial percentage of predators of �1% of the total bacteria in the simulations
always survive, whereas populations with an initial predator percentage of �20%
always die. A threshold appears in the simulations, and it becomes relevant if the
objective is changing the final state of equilibrium, as is the case here.

DISCUSSION

Chronic colonization of CF lungs by pathogenic bacteria has been extensively
studied by using conventional microbiological cultures (1, 22), reporting the coexis-
tence of several bacterial species at initial stages, as well as P. areruginosa dominance
during the adult period (23, 24). Moreover, the lower bacterial diversity in the final
stages of CF lung disease has been shown by both cultivation and molecular tech-
niques (5, 25).

It is generally acknowledged that once bacterial colonization is established in the

FIG 5 Spatial distribution of the bacteria in the computational model and evolution in time. (A) Random initial distribution of 5,000 bacteria of five different
species (3,500 Pseudomonas [blue], 1,000 Staphylococcus [green], 350 Haemophilus [light blue], 100 Bdellovibrio [red], and 50 SPP [yellow] bacteria). (B) Spatial
distribution at 2,500 arbitrary time units. (C) Spatial distribution at 5,000 arbitrary time units. Coexistence of Pseudomonas and Bdellovibrio was observed in
evolved panels B and C after the other bacterial species disappeared.

FIG 6 Temporal evolution by using arbitrary units of bacterial population size. (A) Initial distribution: 2,000 Pseudomonas, 2,000 Staphylococcus, 250
Haemophilus, 500 Bdellovibrio, and 250 SPP bacteria. (B) Initial distribution: 3,500 Pseudomonas, 1,000 Staphylococcus, 350 Haemophilus, 100 Bdellovibrio, and
50 SPP bacteria.
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lung, its eradication is almost impossible, despite consistent antibiotic treatment. Never-
theless, the fluctuations observed in the bacterial populations from the early childhood
period (dominated by Haemophilus influenzae and S. aureus) to the late childhood and adult
periods (dominated by P. aeruginosa) must be explained by an ecological readjustment
and their resilience properties (26–28). The association between lung colonization and
the clinical status of the patient, particularly during exacerbations, has been explored
without significant conclusions (6, 10, 29, 30).

Massive NGS strategies considerably increase the number of bacterial species that
can be identified in respiratory samples (26, 28, 31), thus detecting the maintenance of
a particular intraindividual pattern (32, 33). Although sputum is not the ideal sample, its
easy and noninvasive sampling makes it the most universal sample for analysis of the
lung microbiota. Sputum is always contaminated with upper respiratory microbiota (34,
35); however, continuous bronchial inoculation with oropharyngeal organisms also
occurs, particularly in cases of wet cough. In addition, the lung is a highly compart-
mentalized space; therefore, the sputum microbiota is not necessarily homogeneous in
composition.

An important factor, which is usually underestimated, is the use of a single respi-
ratory sample per patient to decipher the lung microbiota. Because of the spatial
heterogeneity of bacterial populations (32, 36), the representativeness of a single
sample is controversial. We attempted to mitigate this by using four sputum samples
per patient collected over a 1-year follow-up period, and although all of the patients
appeared to maintain their own patterns, important variations in bacterial populations
were observed without any apparent association with the clinical status of the patient
or the antibiotic treatment.

A relevant finding is the detection of a Burkholderia-compatible OTU in all 15
patients, whereas cultivable isolates were detected in only 1. A possible explanation for
this phenomenon is that the nucleotide sequence of the complete 16S rRNA gene can
be insufficient to reach an adequate Burkholderia species identification and must be
complemented with the multilocus sequence typing (MLST) recA and gyrB alleles (37),
as performed in our study. These confusing results are also linked to the NGS platform,
as demonstrated by Hahn et al., in whose study Burkholderia was detected only by
PacBio RSII (full 16S rRNA gene) and not by MiSeq (V4 region) (38). Others have also
reported Burkholderia-compatible reads in NGS of sputum samples (31, 39). Demon-
stration of lung colonization by this genus has a relevant clinical value that leads to
instauration of isolation measures and antibiotic therapy. At present, only conventional
culture methods guarantee the presence of a significant number of cells; intragenic

FIG 7 Survival rate versus initial percentage of predators to 50 repetitions. Initial populations that are
�8% of the total bacteria in the simulations always survive, whereas initial populations that are �20%
of the total bacteria always die.
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regions of the 16S rRNA gene have poor specificity for Burkholderia species identifica-
tion (38).

The presence of members of the phylum Parcubacteria in CF lungs has not yet been
highlighted. These reduced-genome bacterial organisms comprise more than 15% of
the entire Bacteria domain (40, 41) and might be maintained as “small-genome” parasites
of other bacteria. Interestingly, they share with predator bacteria such as Bdellovibrio the
type IV pilus operon involved in cell-to-cell contact and predation (42, 43).

The most unexpected result of the present study was the consistent detection of the
classic predator bacteria Bdellovibrio and Vampirovibrio as part of the CF lung micro-
biota. The natural lifestyle of these predators is related to aquatic environments,
because they prey on Gram-negative bacteria and Chlorella, respectively. We hypoth-
esize that lung colonization by both prey and predator bacteria might occur in a single
event from their natural reservoir. B. bacteriovorus has also been described as a frequent
component of the gut microbiome of healthy individuals and CF patients (16). These
findings suggest that B. bacteriovorus could ultimately be involved in the biotic
regulation of the human gut microbiota, and its possible usefulness as a probiotic has
been suggested (18, 44). The presence of other predators, such as Micavibrio aerugi-
nosavorus (45), in other CF patients cannot be ruled out.

To our knowledge, this is the first time that Bdellovibrio and Vampirovibrio are being
reported as part of the CF lung microbiota. The reason is possibly the fact that the
predator population is much less abundant than that of potential prey, making its detection
difficult by NGS techniques that fail to discover low-density taxa. The presence of
Bdellovibrio in CF lungs could be explained by acquisition from the environment,
although other possibilities cannot be ruled out, including aspiration of gastrointestinal
content. These bacteria appear to be particularly abundant in the duodenum, as shown
in the above-mentioned gut microbiome study (16); also, there is a gut-lung axis, which
justifies the continuous connection between the two ecosystems (46, 47). CF lungs
should, in theory, be a good habitat for B. bacteriovorus, which needs a minimal prey
density of 105 to 106 CFU/ml (48). In addition, this predator has been shown to be able
to survive the anoxic conditions found in the CF lung and during the bdelloplast phase
is protected against the phage’s attack and possibly the effects of antibiotics. Its ability
to feed on typical CF pathogens such as P. aeruginosa and S. aureus has been reported
(14), including when the pathogens are growing in biofilms (49).

Scientific data on the second predator found, Vampirovibrio, which also is a Cyano-
bacteria, remain scarce; V. chlorellavorus is the only reported species (20, 50). This is an
anaerobic, nonphotosynthetic cyanobacterium that needs the presence of microalgae
to grow, particularly the eukaryotic species Chlorella vulgaris. On the basis of our
current knowledge, the presence of Vampirovibrio in the CF lung implies the presence
of Chlorella. Because Chlorella is frequent in the air, particularly in freshwater environ-
ments (51, 52), it can easily be introduced into the CF lung by the extremely frequent
aerosol inhalation therapies (53) or assisted ventilation used by these patients. The
existence of algae in the CF lung has not yet been explored; however, we can speculate
on the possibility that the dense microbiota of the lung in CF patients might produce
mutually beneficial interactions with Chlorella, as has been described for other bacterial
species (54). Chlorella-bacterial biocenosis has been reported (55, 56), particularly with
Pseudomonas, and curiously, the alga-bacterium mutual growth promotion appears to
occur on immobilized alginate surfaces (57). These interactions might eventually result
in the replication of Chlorella in the CF lung and permanent colonization, explaining the
presence of Chlorella predators such as Vampirovibrio; however, we were unexpectedly
unable to detect Chlorella in our samples. At the moment, we cannot exclude the
presence of unknown Vampirovibrio prey in the lung microbiota. In addition, the
unexpected detection of Cyanobacteria by NGS techniques in an intensive care unit
environment has been reported (58), suggesting that algae can be part of the habitual
human microbiome. In fact, 13 of our 15 CF patients carried Cyanobacteria in their lung
microbiome.

Using the computational model, the persistence and coexistence of a prey-predator
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couple was observed over time with ecological alternation of both prey species,
probably reproducing the real ecological CF lung battle. The most promising results
obtained with the computational model are related to a high initial proportion of the
predator, simulating an artificial addition as could happen if predators were used as a
biological weapon. All of the bacterial species were eliminated with this condition; first,
prey are destroyed by predators and then predators become extinct because of the
absence of nutritional sources, suggesting that Bdellovibrio might eventually be used as
a “biological antibiosis strategy” to control pathogenic bacterial populations (59), at
least in the early stages of the colonization process, when the prey density is still low.
The safety of these microorganisms has been demonstrated in animals (60), in human
cells lines (61, 62), and in rat lungs (63), in which reversible weak inflammation is the
only adverse effect observed. On the other hand, as occurs with bacteriophages, prey
could develop a natural resistance to the predator. This resistance has been described
during in vitro experiments, although it appears to be transient, with the bacterium
recovering its original susceptibility in a short period of time without exposure to
predators (64).

In summary, we show the complexity of the organisms present in the CF lung (156
species) and the constancy of basic individual colonization patterns. Bdellovibrio and
Vampirovibrio predator bacteria were found for the first time by NGS as part of the CF
lung microbiota, although their ecological significance needs to be clarified. The newly
designed computational model allows us to hypothesize that the inoculation of pred-
ators into the lung microbiome can eradicate CF pathogens in the early stages of the
process. Our data strongly suggest that lower respiratory microbiome fluctuations are
not necessarily related to the patient’s clinical status.

MATERIALS AND METHODS
Patients. Fifteen adult CF patients regularly attending our CF unit were recruited, and each

contributed three or four induced sputum samples during a 1-year follow-up period. Immediately after
collection, the samples were separated into two aliquots, one for conventional culture processing and
the other for 16S rRNA gene NGS, and frozen at �80°C. Clinically relevant data on the patients included
in this study are shown in Table 1. Patient selection included no restrictive criteria, except a solid
commitment to the study. The patients were stratified according to their pulmonary function, measured
by the percentage of predicted forced expiratory volume in 1 s (FEV1) as follows: advanced disease,
�40%; moderate disease, 40 to 70%; mild disease, 70 to 90%; normal lung function, �90%. Our hospital’s
ethics committee approved this study, and all of the participants provided written informed consent.

Microbiological culture. Sputum samples were routinely aerobically cultured in accordance with the
recommendations of the Spanish CF guidelines (65). Briefly, after homogenization with N-acetyl-L-
cysteine and/or sterile saline solution, the samples were qualitatively and quantitatively used to seed
(10�2 and 10�4 dilutions) general media (Columbia agar with sheep blood and with chocolate horse
blood) and selective/differential media (MacConkey agar, B. cepacia selective agar, mannitol-salt agar,
bacitracin chocolate agar, and Sabouraud chloramphenicol agar). Incubation times were prolonged from
48 h at 37°C to 5 days at room temperature for bacteria and 30 days at 30°C for fungi. The chocolate agar
was incubated in a 5% CO2 atmosphere. All colonies were identified by matrix-assisted laser desorption
ionization time of flight mass spectrometry (Bruker Daltonik, Germany), except those of the B. cepacia
complex, whose identification to the species level was based on a recA and gyrB MLST profile (37). The
identification of nonfermenting Gram-negative rod species, including Ralstonia species, Cupriavidus
species, Elizabethkingia species, Rahnella species, and Pandoraea species, was confirmed by Sanger 16S
rRNA gene sequencing. Filamentous fungi were identified microscopically by lactophenol cotton blue
staining.

16S rRNA gene NGS. The sputum samples were slowly defrosted at 4°C for 24 h to prevent DNA
degradation and further thawed at room temperature. After complete vortex mixing of the sample, total
DNA was obtained from an aliquot of ~0.5 ml of the supernatant with the QIAamp DNA minikit (Qiagen,
Germany). DNA samples were sent to FISABIO (Valencia, Spain) for massive 16S rRNA gene V3-V4
amplicon sequencing on the Illumina MiSeq platform and for bioinformatic analysis. The Shannon index
was used for estimation of bacterial diversity. Taxonomic affiliations were assigned by using the
Ribosomal Database Project (RDP) classifier, and reads with an RDP score of �0.8 were assigned to the
upper taxonomic rank, leaving the last rank unidentified. The statistical analysis was performed with R
statistical software and several open-source libraries. The quantitative data of the reads were homoge-
nized by using their relative percentages of the total reads of each sample to facilitate the comparison
between samples.

Computational predator-prey model. A new multiple computational model based on the tradi-
tional Lotka-Volterra equations (66, 67) was designed to predict the ecological significance of prey-predator
interactions over time with the free software available at https://github.com/galeanojav/LV_5species. The
features considered in the model included that the bacteria be discretely defined and spatially distrib-
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uted and could duplicate and die during the simulation. Enough arbitrary time points were defined
(5,000), and it is important to note that at each time point we had to update each of the agents, at least
on average. On the basis of the real bacterial proportions observed in the sputum samples from our CF
patients, we introduced into our simulations a total of 5,000 “bacterial cells” with two defined roles, prey
(Pseudomonas and Staphylococcus), ranging from 80 to 99% of the population, and predators (Bdellovibrio
and an SPP), ranging from 1 to 20%. All of the agents were randomly dispersed spatially, and their
reproduction rates were fixed. The main rules to define the agents’ behavior and their interactions were
as follows. (i) If a prey cell met a predator cell, the prey cell died. (ii) On the other hand, if the predator
could not find any prey spatially close, the predator died with some probability. (iii) If the predator could
feed on prey, it resulted in the predator’s reproduction at a certain growth rate. (iv) Both types of agents
could diffuse randomly in the space.
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