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Abstract: Electromagnetic energy is the backbone of wireless communication systems, and its
progressive use has resulted in impacts on a wide range of biological systems. The consequences
of electromagnetic energy absorption on plants are insufficiently addressed. In the agricultural
area, electromagnetic-wave irradiation has been used to develop crop varieties, manage insect pests,
monitor fertilizer efficiency, and preserve agricultural produce. According to different frequencies
and wavelengths, electromagnetic waves are typically divided into eight spectral bands, including
audio waves, radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays.
In this review, among these electromagnetic waves, effects of millimeter waves, ultraviolet, and
gamma rays on plants are outlined, and their response mechanisms in plants through proteomic
approaches are summarized. Furthermore, remarkable advancements of irradiating plants with
electromagnetic waves, especially ultraviolet, are addressed, which shed light on future research in
the electromagnetic field.

Keywords: proteomics; crop; millimeter waves; ultraviolet; gamma ray

1. Introduction

Electromagnetic waves are nonchemical waves and move with speed equal to the
speed of light in a vacuum condition. According to different frequencies and wavelengths,
electromagnetic waves are typically divided into eight spectral bands, including audio
waves, radio waves, microwaves, infrared, visible light, ultraviolet (UV), X-rays, and
gamma rays [1]. These electromagnetic waves are classified into either a non-ionizing
irradiation or ionizing irradiation category [2]. The electromagnetic spectrum has potential
applications in plant protection; however, interactions between electromagnetic waves
and organisms largely rely on wave frequency and penetration depth of waves in the
medium [1]. Herein, the electromagnetic spectrum, wavelength, frequency, as well as the
source to emit electromagnetic-wave bands are summarized (Table 1).
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Table 1. Characteristics of electromagnetic waves.

Electromagnetic
Spectrum Wavelength (m) a Frequency (Hz) a Source to Emit Spectra b Radioactive

Categories

audio/radio waves 1 × 10−1–1 × 104 3 × 104–3 × 109 obtained with a ferro or
piezoelectric transducer

non-ionizing
irradiation

microwaves 1 × 10−3–3 × 10−1 1 × 109–3 × 1011 emitted by a magnetron or a
klystron

infrared 8 × 10−7–5 × 10−3 6 × 1010–4 × 1014 emitted by an incandescent object
visible light 4 × 10−7–7 × 10−7 4 × 1014–7 × 1014 emitted by an electric light bulb

ultraviolet 6 × 10−10–4 × 10−7 7 × 1014–5 × 1017 radiated with deuterium or
mercury vapor lamps

X-ray 1 × 10−13–1 × 10−8 1 × 1016–3 × 1021 emitted when electrons collide on
a metal plate ionizing irradiation

gamma ray 1 × 10−14–1 × 10−10 3 × 1018–3 × 1022 emitted by radioactive elements
a Wavelength and frequency of electromagnetic waves are referred from Einstein [3]; b sources emitting special electromagnetic waves are
referred from Lewandowski [1].

In the agricultural area, electromagnetic-wave irradiation has been used to develop
crop varieties, manage insect pests, monitor fertilizer efficiency, and preserve agricultural
produce [4]. Effects of electromagnetic-wave irradiation on seed germination, seedling
establishment, and crop productivity have been investigated in wheat [5], rice [6], maize [7],
soybean [8], and sugar beet [9]. In rice, UV-B irradiation suppressed seedling growth during
leaf development [6]; however, microwave irradiation of soils increased yields by 34%
compared to the control [10]. Influences of electromagnetic-wave irradiation on crops are
dose dependent, where low doses induced fewer side effects compared with high doses that
affected plant phenotype. UV RESISTANCE LOCUS 8 (UVR8) photoreceptor, which played
critical roles in phenotypic diversity under UV-B irradiation, mediated regulatory response
of flavonoids/phytohormones or activated stress response of cell cycle under low or high
dose UV-B, respectively [11]. These studies presented the two sides of electromagnetic-
wave irradiation on crops and a serial of cellular metabolisms that were activated in a
dose-dependent manner of electromagnetic-wave irradiation.

In response to long-term exposure to gamma irradiation, more fractions of protein,
lipid, amino acid, and polysaccharides were detected in black gram seeds than control,
which correlated with increasing biochemical metabolites [12]. Sucrose content sharply
declined in rice leaves exposed to short-term UV-B [6]; however, soluble sugar continu-
ously accumulated in wheat leaves irradiated with gamma rays during the first 4-week
treatment [5]. Although, UV-B irradiation resulted in generation of free radicals, which
induced conversion of amino acids such as gamma-aminobutyric acid and glutathione
into antioxidants [13]. In plants, the contents of secondary metabolites fluctuated by
electromagnetic-wave irradiation and accumulation of photosynthetic pigment, flavonoid,
polyamine, and alkaloid were augmented by UV [14–16]. It was reviewed that phytohor-
mones participated in UV-mediated responses via the UVR8-dependent or independent
signaling pathway [17,18]. These findings proved that electromagnetic-wave irradiation
affected metabolite profiles in plants, while receptors to a specific electromagnetic spectrum
need mining to construct signaling pathways in profiling metabolite shift.

Millimeter waves, UV-B, and gamma rays improved plant tolerance against salt [19,20],
drought [21,22], flooding [23,24], and biotic stresses [8,25] through activation of stress re-
sponsive pathways associated with redox signaling, carbohydrate metabolism, and ion
homeostasis. UV-B strengthened tobacco drought tolerance via increasing flavonoid in
leaves [22], and gamma rays aggravated sugarcane salt stress via accumulation of salt
ions and osmolytes [19]. Soybean seeds pretreated with millimeter waves or gamma rays
promoted seedling growth under flooding stress, and proteins involved in glycolysis,
fermentation, and the cell wall played roles to counterbalance flood stimuli [23,24,26]. In
addition, several studies showed that other sources of electromagnetic waves, such as
microwaves, exerted opposite impacts on crop physiology dependent on plant varieties
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and exposure time, especially for seed germination, which was concluded by examining
germination rate, shoot length, and plant biomass [27,28]. However, apart from these
morphological changes, physiological changes and regulatory mechanisms provoked by
audio waves and microwaves were far behind what have been obtained from millimeter
waves, ultraviolet, and gamma rays. Meanwhile, proteomics utilized alone or integrated
with other omics approaches could provide a deeper knowledge of different plant pro-
cesses [29]. Thus, in this review, effects of millimeter waves, UV, and gamma rays on plants
are outlined and electromagnetic-wave-mediated plant responses through proteomic ap-
proaches are summarized. Furthermore, remarkable advancements of irradiating plants
with electromagnetic waves, especially ultraviolet, are addressed, which shed light on
future research in the electromagnetic field.

2. Millimeter Waves
2.1. Characteristics

In the electromagnetic spectrum, millimeter waves position at the overlap between
microwaves and infrared. The radio frequency of millimeter waves extends from 30 to
300 GHz, corresponding to wavelengths from 10 to 1 mm. The photon energy of millimeter
waves could not ionize molecules, which made millimeter-wave irradiation an environ-
mentally appropriate technique and led to small adverse effects to human health [30].
Millimeter waves are virtually absent from the natural electromagnetic environment [31].
Compared to wave bands with lower frequencies, millimeter waves have a shorter wave-
length, which allows modest size antennas to have a smaller beam width and a greater
frequency reuse potential. However, the higher frequency of millimeter waves leads to
higher atmosphere attenuation, precipitation attenuation, diffraction effects, and scattered
effects, which means millimeter waves are largely absorbed by gases or humidity in the
environment and are bad at penetrating solid material and traveling long distance [32].
Nevertheless, compared to optical waves that have higher frequencies, atmosphere attenua-
tion of millimeter waves is much less, and more importantly, the propagation of millimeter
waves is less influenced by the lights and thermal effects from the environment [33].

These characteristics have seen the potential of millimeter waves being applied to
telecommunications [34], weapons-systems making [35], security screening [36], and med-
ical diagnosis [37]. One of the contemporary applications of millimeter waves is for
construction of the newest generation of cell phone networks, which are known as 5G net-
works, using frequencies which range near the bottom of the bands [38]. Since millimeter
waves are absent from the natural electromagnetic environment, living organisms might
lack the adaption to them during evolution [31]. The growing use of millimeter waves in
practical applications make it imperative to gain comprehensive knowledge about their
bioeffects for health hazard evaluation, giving rise to the interest in the biological research
that relates to millimeter waves.

2.2. Morphophysiological Effects

Owing to the characteristics, millimeter-wave irradiation is an environmentally appro-
priate technology with small threats to human health, which is important for sustainable
development and worthy for research on their effects. First of all is the induction of thermal
energy into the biological system via incident irradiation, which resulted in local heating of
water molecules in surface cell membranes [39]. Moreover, many non-thermal effects of
millimeter-wave irradiation were discovered. It was revealed that optimum millimeter-
wave irradiation stimulated cell division, enzyme synthesis, growth rate, and biomass yield
of a variety of microorganisms [40]. Such morphophysiological effects of millimeter-wave
irradiation on microorganisms encouraged the investigation of applying irradiation on
crops for increasing crop productivity in the agricultural industry [41].

Non-thermal effects of millimeter-wave irradiation targeting crop seeds have been
studied and stimulatory effects on crop morphology were summarized in Table 2, including
wheat, chickpea, soybean, and brown rice. The effects of millimeter-wave irradiation on
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wheat were mostly studied. Millimeter-wave irradiation on wheat seed at the initial
stage not only improved germination [42,43], but also for the subsequent growth of shoot
and grains [44,45]. In crop brown rice, similar effects of millimeter-wave irradiation on
germination were found and content of polyphenols increased, while gamma-aminobutyric
acid decreased [46]. Over the recent two years, the effects of millimeter-wave irradiation
on leguminous plants have been studied. Many plants in the Leguminosae family, such
as soybean and chickpea, are an important source for vegetable proteins; however, their
growth was easily affected by flooding stress [47]. Irradiating soybean seeds and chickpea
seeds with millimeter waves improved plant growth and tolerance under flooding as well,
which might be a feasible approach for development of stress-tolerant lines and have
benefits for crop yield [24,48].

Table 2. Morphophysiological effects of millimeter-wave irradiation on crops.

Plant Species Morphophysiological Effects Ref b

Soybean increased hypocotyl length/weight and main root length [24]

Wheat

increased fresh weight, shoot height, length of main ear, number of grains in an ear, grain weight in
an ear, lipid-peroxidation rate, catalase activity, malondialdehyde content, and flood tolerance;
improved germination rate and germination potential; altered water absorption during germination;
shortened phenophase

[41–45]

Brown rice stimulated germination; increased polyphenol content and DPPH a radical scavenging activity;
decreased gamma-aminobutyric acid content [46]

Chickpea increased leaf length/weight, root length/weight, and flood tolerance; decreased cell death
under flooding [48]

a DPPH, 1,1-diphenyl-2-picrylhydrazyl; b Ref, References.

Apart from plant seeds, other plant organs also responded to millimeter-wave irradi-
ation. In the pollen grains of kiwifruit treated with indirect millimeter-wave irradiation,
which used water that was irradiated with 40–78 GHz of millimeter waves for prepar-
ing the growth medium, pollen tube growth increased immediately and continuously
increased until several days after the treatment compared with untreated groups [49]. In
another study which focused on cucumber leaves, three wavelengths (4, 7.5, and 8.5 mm)
of millimeter-wave irradiation were employed. The leaf biopotential under three different
intensities of millimeter-wave exposure differentially altered [50]. In summary, irradi-
ating plants with millimeter waves at different doses and durations provoked dynamic
morphophysiological effects in plants, most of which were beneficial for the increase of
productivity. To date, the responses of only a few plants under millimeter-wave irradiation
have been investigated, leaving the majority to be investigated.

2.3. Proteomic Responses

To uncover regulatory mechanisms that led to changes of morphophysiological charac-
teristics, proteomic techniques such as two-dimensional polyacrylamide gel electrophoresis
(2-D PAGE) and gel-free/label-free analysis were used to illustrate protein changes in
individuals treated with millimeter-wave irradiation. Some of published studies focused
on animal cells such as melanoma cells [51] and macrophage cells [52], while none of
the studies focused on plants irradiated with millimeter waves until a year ago, which
analyzed the proteomic alterations on irradiated soybean that went through normal growth
and flooding stress [24]. Recently, proteomic responses of another leguminous plant, chick-
pea, under millimeter-wave irradiation were analyzed [48]. These two studies, both of
which used a gel-free/label-free proteomic approach, together built initial understanding
of proteomic responses in plants under millimeter-wave irradiation.

One of the common responses in irradiated soybean and chickpea revealed by pro-
teomic analysis was activated photosynthesis. In soybean, proteins related to photosynthe-
sis, such as photosystem I P700 chlorophyll a apoprotein A2, cytochrome f, chlorophyll
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a-b binding protein, photosystem II CP47 reaction center protein, photosystem I reaction
center subunit III, and chloroplast ATP synthase, increased in millimeter-wave-irradiated
soybeans at 2- and 4-day old without flooding and 4-day old under flooding conditions [24].
In chickpea, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) activase and
RuBisCO large subunit decreased with flooding stress, and they recovered with millimeter-
wave irradiation; however, RuBisCO small subunit did not change under flooding, and
it increased with irradiation [48]. RuBisCO composed of large and small subunits is the
rate-limiting enzyme for photosynthetic carbon fixation [53], which is regulated by Ru-
BisCO activase via ATP hydrolysis [54], and it has been proved to augment plant tolerance
against drought, salinity, and heat [55,56]. These results indicated that millimeter-wave
irradiation induced different changes on photosynthesis in plants, such as increase of
proteins in photosystems in soybean and carbon fixation in chickpea; however, these
results were not contradictory as the study on soybean focused on root-hypocotyl tis-
sues and the study on chickpea focused on leaves. These studies co-explained positive
regulation of millimeter-wave irradiation on plant photosynthesis, which might lead to
morphophysiological changes.

Despite that millimeter-wave irradiation improved plant growth and flood tolerance
in both of the two leguminous plants, several proteomic findings were distinct in different
plants. Under a control condition where plants are not flooded, protein alterations during
the plant development stage in irradiated soybeans were very different from un-irradiated
ones, and chaperonin 10 significantly increased [24]; however, in chickpea, proteins were
not largely changed between irradiated and un-irradiated plants at this stage [48]. The
discordance of proteomic changes in different plants is reasonable, since different plants
have a distinct tolerance to stress. Moreover, the cell tissues from soybeans and chickpeas
used for proteomic analysis were different, which implies that tissue-specific or organ-
specific responses of plants under millimeter-wave irradiation might exist and require
further investigation. Furthermore, oppositely altered proteins between irradiated and
un-irradiated soybeans under flooding were mainly related to sugar metabolism and the
antioxidant system, while in the case of chickpeas, they were mainly related to fermentation
and protein degradation [24,48]. The significantly altered proteins in these categories are
displayed in a simplified schematic diagram (Figure 1), which were likely to determine
flooding tolerance in irradiated plants. Among these categories, sugar metabolism, glycol-
ysis, and fermentation formed an important pathway for energy production as flooding
adaptation [57,58]. Dynamic proteomic responses in soybean and chickpea contributed
to comprehensive understanding of regulatory mechanisms in plants under millimeter-
wave irradiation. Currently, proteomic data of plants irradiated with millimeter waves are
limited, which require investigation in the future.
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ubiquitin-proteasome system; APX, ascorbate peroxidase; ADH, alcohol dehydrogenase; T-6-P, tre-
halose-6-phosphate; G-1-P, glucose-1-phosphate; G-6-P, glucose-6-phosphate; F-6-P, fructose-6-
phosphate; F-1,6-P2, fructose 1,6-bisphosphate; G-3-P, glyceraldehyde 3-phosphate; 1,3-BPG, 
glycerate 1,3-bisphosphate; 3-PG, 3-phospho-glycerate; 2-PG, 2-phospho-glycerate; PEP, phosphoe-
nolpyruvate. 
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UV lights refer to the part with shorter wavelength than human-visible lights in the 
solar spectrum. Although UV lights are invisible to the human eye, some insects can see 
them [59]. In the electromagnetic field, UV band positions are between the X-ray (200 nm) 
and visible light region (400 nm). UV lights are further subdivided into long-wave UV-A 
(320 to 400 nm), medium-wave UV-B (280 to 320 nm), and short-wave UV-C (200 to 280 
nm) [60]. Different subtypes of UV have distinct patterns when coming across the strato-
spheric ozone layer. UV-A largely penetrated through the layer and reached the earth’s 
surface; UV-B was strongly absorbed in both the stratosphere and the lower atmosphere 
[61]; meanwhile, UV-C was completely screened out and could not reach the earth’s sur-
face [62]. Because the atmosphere does little to shield UV-A, UV-A level at the earth’s 

Figure 1. Altered proteins in millimeter-wave-irradiated plants compared to un-irradiated plants un-
der flooding stress. The altered proteins according to previous studies were mapped onto a schematic
diagram. Abbreviations are as follows: AI, amylose isomerase; TP, trehalose phosphatase; T6PS, tre-
halose 6-phosphate synthase; GT, glucanotransferase; GP, glycogen phosphorylase; HK, hexokinase;
PG, phosphoglucomutase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; UPS, ubiquitin-
proteasome system; APX, ascorbate peroxidase; ADH, alcohol dehydrogenase; T-6-P, trehalose-6-
phosphate; G-1-P, glucose-1-phosphate; G-6-P, glucose-6-phosphate; F-6-P, fructose-6-phosphate;
F-1,6-P2, fructose 1,6-bisphosphate; G-3-P, glyceraldehyde 3-phosphate; 1,3-BPG, glycerate 1,3-
bisphosphate; 3-PG, 3-phospho-glycerate; 2-PG, 2-phospho-glycerate; PEP, phosphoenolpyruvate.

3. Ultraviolet
3.1. Characteristics

UV lights refer to the part with shorter wavelength than human-visible lights in the
solar spectrum. Although UV lights are invisible to the human eye, some insects can
see them [59]. In the electromagnetic field, UV band positions are between the X-ray
(200 nm) and visible light region (400 nm). UV lights are further subdivided into long-wave
UV-A (320 to 400 nm), medium-wave UV-B (280 to 320 nm), and short-wave UV-C (200
to 280 nm) [60]. Different subtypes of UV have distinct patterns when coming across
the stratospheric ozone layer. UV-A largely penetrated through the layer and reached
the earth’s surface; UV-B was strongly absorbed in both the stratosphere and the lower
atmosphere [61]; meanwhile, UV-C was completely screened out and could not reach the
earth’s surface [62]. Because the atmosphere does little to shield UV-A, UV-A level at the
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earth’s surface seems stable; however, the levels of UV-B at the earth’s surface are influenced
by factors such as time of year or latitude, depending on the ozone concentrations [63].

It was reported that emissions of the ozone-depleting substance damaged the global
ozone layer, which increased exposure of the biosphere under sunlight, especially UV-B
irradiation [64]. UV-B irradiation occupies a small fraction of total solar irradiation, yet it
contains higher energy than UV-A and visible light according to the rule of Planck relation,
and it elicits dynamic responses in various living organisms at varied exposure levels [65].
There have been numerous studies focused on biological effects and action mechanisms
of UV-A and UV-B irradiations; meanwhile, since UV-C irradiation did not present as an
environmental stress to the biosphere, less attention was paid to it [62]. Nevertheless, as
the wavelength of UV-C is the shortest among the UV light region, it contains the highest
energy, which excellently inactivates bacteria and viruses and has great potential in the
manufacturing industry [66]. To date, knowledge about the responses of microorganisms
under UV irradiation has long been elucidated [67], while UV irradiation-induced effects
on plants are still under investigation.

3.2. Morphophysiological Effects

Generally, some plants such as coffee are naturally adapted to UV and continued to
grow and produce under the increased environmental UV levels [68], owing to stocky phe-
notype and morphological traits of their leaf, such as increased stomatal density, epidermal
thickness, and sunscreen accumulation in the leaf surface [69]. For most of the other plants,
UV acted both as an environmental stress eliciting a stress-control response [70] and an
informational development signal inducing photomorphogenic responses [71]. However,
the morphophysiological effects of UV irradiation in plants varied on different subtypes
of UV, duration of exposure, dose of exposure, as well as plant species, age, and other
factors [72]. UV-A waves were mainly perceived by blue-light photoreceptors such as
cryptochromes and induced photomorphogenic effects in plants [73]. It was revealed that
UV-A had stimulatory effects on plant growth and production. In tomato, a supplement of
UV-A increased leaf area, which facilitated light capture and stimulated plant biomass pro-
duction [74]. In lettuce, a supplement of UV-A led to the increase of shoot dry weight [75].
In Laurus nobilis, a supplement of UV-A improved water-use efficiency via increased leaf
relative water content, which led to the increase of leaf thickness and total biomass [76].
However, not all plants responded to UV-A irradiation with an increase of biomass, and
inhibitory effects of UV-A irradiation in plants such as wheat [77], cucumber [78], and
soybean [79] were also discovered, such as suppressed plant growth and declined biomass.

Comparing with UV-A irradiation, UV-B irradiation cannot reach as deep target sites
in leaves as UV-A does due to the shorter wavelength; however, UV-B photons contain
higher energy and lead to more intense impacts on plants. UV-B waves were perceived
by UVR8 [80], which not only induced photomorphogenic effects but also stress-control
responses under high-dose conditions. On the one hand, similar to UV-A, UV-B irradiation
had a species-specific influence on photosynthesis and changed plant morphology [81].
On the other hand, excess absorption of UV-B by various biomolecules, especially DNA,
resulted in their destructive damage, which triggered a stress-response mechanism that
is similar to other abiotic oxidative stress [82]. These responses included over-production
of reactive oxygen species [83], impairment of cell processes [84], as well as alteration of
phytohormone metabolism and transport [85]. In addition, a recent study revealed that
UV-B irradiation altered synthesis of UV-B reflecting pigments in leaves of Zinnia, which
changed leaf color to acclimate UV-B irradiation [86].

Many studies focused on the effects of UV-A or UV-B irradiation, yet UV-C irradiation
has received increasing attention. Like UV-B, UV-C irradiation can induce oxidative
damage and evoke stress responses in plants [87]. The morphophysiological effects of
UV-C irradiation in crops such as tomato [88], pepper [89], and strawberry [90] varied
under different dosages among different species. Notwithstanding UV-C irradiation had
similar effects as other UV irradiations on plants, its performance on crop post-harvest



Int. J. Mol. Sci. 2021, 22, 12239 8 of 23

treatment was the best among UV irradiations to reduce microbial growth on plant surfaces
and was beneficial for storage [91,92].

Despite distinct responses in plants under different subtypes of UV irradiation, the
accumulation of secondary metabolites in plants was observed in all subtypes of UV irradi-
ation. For plants themselves, accumulation of secondary metabolites with UV-absorbing
properties such as flavonoids eased them from oxidative stress [93]. For humans, accumu-
lation of secondary metabolites useful for health in plants improved their nutraceutical
value, which has great prospects for industrial development [94]. The identified increas-
ing secondary metabolites from different resource plants are summarized in Table 3. Of
note, the accumulation of active compounds under UV irradiation has been discovered in
several medicinal plants [95–104], which encouraged future investigation of the regulation
mechanisms.

Table 3. Morphophysiological effects and accumulation of secondary metabolites in plants under ultraviolet irradiation.

Plant Species UV-Subtype Morphophysiological Effects Accumulated Secondary
Metabolites Ref b

Mung bean UV-B

increased activities of phenyl
alanine ammonia-lyase,
L-galactono-1, 4-lactone
dehydrogenase, and chalcone
isomerase

vitamin C; total phenolics; total
flavonoids [94]

Ginkgo biloba UV-B unknown total flavonoids; quercetin;
kaempferol [95]

Astragalus
membranaceus Bge. n.s. a

decreased chlorophyll content,
stomatal conductance, and net
photosynthesis rate; increased
activities of superoxide dismutase,
catalase, and ascorbate peroxidase

calycosin-7-O-beta-D-glucoside;
daidzein; calycosin [96,104]

Lonicera japonica Thunb. UV-A, UV-B increased antioxidant activity

chlorogenic acid;
3,4-di-O-caffeoylquinic acid;
3,5-di-O-caffeoylquinic acid;
4,5-di-O-caffeoylquinic acid;
secologanic acid; secoxyloganin;
secologanin; (E)-aldosecologanin

[97]

Artemisia annua UV-B

decreased contents of
chlorophyll/carotenoid,
photosynthetic rate, stomatal
conductance, and transpiration
rate; increased activities of
RuBisCO

essential oils [98]

Catharanthus roseus UV-B increased ATP content in leaves strictosidine; vindoline;
catharanthine; ajmalicine [99,105]

Taxus chinensis UV-A damaged structures of
chloroplasts and mitochondria

paclitaxel; 10-deacetylbaccatin III;
baccatin III [100]

Achyranthes bidentata
Blume UV-B

decreased plant height, root
length, fresh weight of aerial
parts/roots, and contents of
photosynthetic pigments;
increased activities of superoxide
dismutase and peroxidase

oleanolic acid; ecdysterone [102]

Salvia miltiorrhiza
Bunge UV-B unknown salvianolic acid B; rosmarinic acid;

danshensu [103]



Int. J. Mol. Sci. 2021, 22, 12239 9 of 23

Table 3. Cont.

Plant Species UV-Subtype Morphophysiological Effects Accumulated Secondary
Metabolites Ref b

Barley UV-B

decreased elongation rate of
primary roots and root osmotic
pressure; increased modulus of
elasticity of roots and cell wall
rigidity

saponarin [106,
107]

Birch UV-B unaffected leaf morphology quercitrin; myricetin-3-galactoside;
chlorogenic acid [108]

Broccoli UV-B increased resistance against insect
feeding

kaempferol; quercetin;
glucosinolates [109]

Centella asiatica UV-B

decreased content of chlorophyll;
increased absorbance of adaxial
epidermises at 375 nm, and
necrotic spots on the epidermises

kaempferol-3-O-beta-d-
glucuronopyranoside;
quercetin-3-O-beta-d-
glucuronopyranoside

[110]

Clematis terniflora UV-B
decreased leaf area and biomass;
increased occurrences of burned
patches and crispation in leaves

luteolin
7-O-beta-D-glucosiduronic acid;
rutin; kaempferol 3-O-rutinose

[111]

Grape berry UV-C
increased relative mass of skins;
unaffected berry weight and berry
caliber

trans-resveratrol; piceid; viniferin [112]

Polygonum cuspidatum UV-C unknown resveratrol [113]

Psychotria brachyceras UV-B unknown brachycerine [114]

Radish UV-A decreased plant height;increased
release of hydrogen anthocyanin [115]

Rice n.s. a

decreased leaf photosynthetic rate,
pollen germination, spikelet
fertility, and yield; increased
spikelet abortion

N-trans-cinnamoyltryptamine;
N-(p-coumaroyl) serotonin;
N-cinnamoyltyramine

[116,
117]

Willow UV-B increased shoot biomass

luteolin-7-glucoside;
monomethyl-monocoumaryl-
luteolin-7-glucoside; myricetin
derivative;
apigenin-7-glucuronide;
p-hydroxycinnamic acid
derivative

[118]

a n.s., Not specified; b Ref, References.

3.3. Proteomic Responses

To uncover underlying mechanisms regulating morphological and physiological
alterations mentioned above, especially the accumulation of secondary metabolites under
UV irradiation, numbers of comparative proteomic analyses in different plants were
performed via a broad range of proteomic techniques. Under UV-A irradiation, protein
responses in leaves of Taxus chinensis [100] and flower buds of Lonicera japonica Thunb. [119]
have been investigated using 2-D PAGE. Under UV-C irradiation, protein profiles in leaves
of Cynara cardunculus have been examined using 2-D PAGE and 2-D difference in-gel
electrophoresis [120,121]. In the meantime, proteomic responses in plants under UV-B
irradiation were the mostly studied, including the studies in Arabidopsis thaliana leaves
using isobaric tags for relative and absolute quantitation (iTRAQ)-based analysis [122],
Catharanthus roseus leaves using gel-free/label-free analysis [105,123], rice leaves using
2-D PAGE [124], Populus cathayana leaves using iTRAQ-based analysis [125], soybean
seedlings [126]/sprouts using 2-D PAGE/iTRAQ-based analysis [127], Euphorbia kansui
laticifers using iTRAQ-based analysis [128], and barley leaves using combinatory analysis
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of 2-D PAGE plus gel-free/label-free-based LC-MS/MS detection [106]. According to
these proteomic analyses, the abundance of proteins related to photosynthesis, energy
production/consumption, antioxidant reactions, and secondary metabolism under UV
irradiations significantly altered (Figure 2). The signaling pathways for plant sensing
UV were investigated as well [129], which were largely dominated by photoreceptor
UVR8 (Figure 2). Furthermore, some of genes encoding proteins that related to these
pathways such as cryptochrome in photosynthesis [130], phenylalanine ammonia-lyase in
secondary metabolism [131], and NADPH-dependent thioredoxin reductase in antioxidant
reaction [132], were manually modified in plants, after which the resistance/sensitivity
under UV irradiation were changed.
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Figure 2. Signaling model in response to ultraviolet irradiation and altered proteins related to photosynthesis in plants.
The altered proteins related to photosynthesis were mapped onto a pathway map from the MapMan software and
marked with red color. Blue boxes indicate metabolites involved in photosynthesis. Curves in the left square indicate
responsive transcripts. Abbreviations are as follows: LHC II, light harvesting complex II; PS II, photosystem II polypeptide;
Cyt b6/f, cytochrome b6/f; PS I, photosystem I reaction center subunit; FdxR, ferredoxin NADP+ oxidoreductase; TK,
transketolase; FBPA, fructose bisphosphate aldolase; GD, glyceraldehyde-3-P dehydrogenase; RuBisCO, ribulose-1,5-
bisphosphate carboxylase/oxygenase; LSU, large subunit; ACT, activase; UVR8, UV RESISTANCE LOCUS 8; COP1,
CONSTITUTIVELY PHOTOMORPHOGENIC 1; RUP, REPRESSOR OF UV-B PHOTOMORPHOGENESIS; DDB1, Damaged
DNA binding protein 1; CUL4, Cullin 4; HY5, ELONGATED HYPOCOTYL 5.

Significant responses related to photosynthesis have been reported in many plants,
where proteins involved in light reactions such as light harvesting complex II, photosystem
II polypeptide, cytochrome b6/f, photosystem I reaction center subunit, and ferredoxin
NADP+ oxidoreductase largely decreased [121,124,125]. Gene expression level of RuBisCO
large subunit downregulated in Lonicera japonica under UV irradiation, which together
suggested the inhibitory effects of photosynthesis by UV irradiation [119]. In energy
production/consumption pathways, proteins underwent dynamic changes. For example,
proteins and encoding genes belonging to mitochondrial electron transport chain complex
I decreased, while those in complex II increased, which increased ATP content in C. roseus
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under UV-B irradiation [123]. Similarly, other proteins related to energy metabolism such
as isocitrate dehydrogenase, V-type proton ATPase, and transitional endoplasmic reticulum
ATPase increased in L. japonica under UV irradiation as well, where gene expression level
of 6-phosphogluconate significantly upregulated [119]. However, in Populus cathayana,
several ATP carrier- and exchange-related proteins decreased instead [125]. In the plant
enzymatic antioxidant system, many proteins increased as protective responses under UV
irradiation, including thioredoxin family protein, Fe superoxide dismutase, cytochrome B5
isoform, peroxidase, cysteine synthase, and glyoxalase [105,106,120,124]. Gene expression
level of glyoxalase upregulated in rice under UV irradiation, which was consistent with
the change of protein levels [124]. In plant secondary metabolism, many proteins as well
as their gene expression levels altered in accordance with the increasing trend of secondary
metabolites, which included phenylalanine ammonia lyase, chalcone synthetase, flavonoid
synthetase, and terpenoid biosynthesis-related proteins [120,122,128]. In addition, activity
of phenylalanine ammonia lyase was found to be increased in Lonicera japonica under UV
irradiation, which was responsible for activation of the phenylpropanoid pathway [119].

Furthermore, it has been revealed that combination of UV-B irradiation with dark
treatment enlarged the accumulative effects of secondary metabolites in leaves of medical
plants such as Catharanthus roseus [99], Lonicera japonica [133], Mahonia bealei [134], and
Clematis terniflora [135]. To clarify involving mechanisms, comparative proteomic analyses
between the binary-stress treated groups and control groups of several plants using the
gel-free/label-free technique were performed, which led to the discovery of much more
altered proteins related to secondary metabolism under UV irradiation followed with dark
treatment. In Catharanthus roseus, an abundance of 10-hydroxygeraniol oxidoreductase
increased, which was related to the biosynthesis of indole alkaloid [99]. In Lonicera
japonica, the abundance of 1-deoxy-D-xylulose 5-phosphate reductoisomerase and 5-
enol-pyruvylshikimate-phosphate synthase increased, which promoted a supplement of
precursors for caffeoylquinic acids and iridoids [119]. In Mahonia bealei, the abundance of
S-adenosyl-L-methionine synthetase increased, which guaranteed high concentration of S-
adenosyl-L-methionine for enhanced biosynthesis of benzylisoquinoline alkaloids in plant
seedlings [136]. In Clematis terniflora, the abundance of proteins related to amino-acid
metabolism such as S-adenosylmethionine synthetase, cysteine synthase, dihydrolipoyl
dehydrogenase, and glutamate dehydrogenase increased, which led to antioxidant defense
and accumulation of gamma-aminobutyric acid [111].

Thus far, integrative analyses combining transcriptomics and metabolomics with pro-
teomics have been performed in some plants for comprehensive knowledge of regulatory
mechanisms in plants under UV-B irradiation or UV-B irradiation with dark treatment.
In Catharanthus roseus, gas chromatography-based and liquid-chromatography-based
metabolomic studies were performed, which indicated that metabolites that related to
the pentose phosphate pathway and amino acid metabolism altered under UV-B irra-
diation in accordance with changes of protein levels. These alterations regulated the
flux of the methylerythritol phosphate pathway to the biosynthesis of monoterpene moi-
eties and led to accumulation of various indole alkaloids [105,123]. In Mahonia bealei,
liquid-chromatography-based untargeted/targeted metabolomic technique was used for
investigation of metabolite changes under combined ultraviolet and darkness treatment,
which illustrated changes of metabolites related to respiration, phenylalanine metabolism,
and nitrogen metabolism [134]. Integration analysis of proteomics and metabolomics
proposed that the citrate cycle played an important role in modulating the flux from 2-
oxoglutarate to amino acid metabolism, which was linked to biosynthesis of down-stream
secondary metabolites [134]. In Clematis terniflora, transcriptomic and metabolomic anal-
yses under ultraviolet and darkness treatment were performed, where genes as well as
proteins in pathways related to posttranslational modification, ubiquitin proteasome, and
ribosomal protein largely changed [101,111]. In spite of these studies, changes of many
proteins responsible for catalyzation of specialized secondary metabolites in plants remain
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undetected due to their low abundance. Further in-depth research, towards changes of
proteins related to secondary metabolism in plants under UV-B irradiation, are needed.

4. Gamma Rays
4.1. Characteristics

Gamma rays belong to electromagnetic irradiations, which are released when the
nuclear energy level transitions to deexcitation. They are produced by the hottest and the
most energetic objects in the universe, such as neutron stars, pulsars, supernova explosions,
and regions around black holes [137]. On earth, gamma rays are generated by nuclear
explosions, lightning, and the less dramatic activity of radioactive decay. Gamma rays are
the electromagnetic waves with the wavelength shorter than 0.01 angstrom [138]. Gamma
rays were first discovered by French scientist P.V. Villard, belonging to the third kind of
nuclear rays discovered after alpha and beta rays [139]. Unlike optical light and X-rays,
gamma rays cannot be captured or reflected by mirrors [140]. Gamma-ray wavelengths are
so short that they can pass through the space within the atoms of a detector. Gamma rays
are the most energetic form of electromagnetic irradiation, having the energy level from
around ten to several hundred kilo electron volts, and are more penetrating than other
radiation such as alpha and beta rays [141].

Gamma rays belong to ionizing irradiation and interact with atoms or molecules to
produce free radicals in cells. These radicals can damage or modify important components
of plant cells and differentially affected the morphology, anatomy, biochemistry, and
physiology of plants depending on irradiation level [141]. These effects include changes in
plant cellular structure and metabolism, such as dilation of thylakoid membranes, alteration
in photosynthesis, modulation of antioxidative systems, and accumulation of phenolic
compounds [141,142]. Due to the above characteristics, gamma rays are usually applied
for plant breeding.

4.2. Morphophysiological Effects

Seedlings exposed to a relatively low dose gamma rays (1–5 Gy) developed normally,
while the growth of plants irradiated with a high dose gamma ray (50 Gy) was signifi-
cantly inhibited [143]. At a subcellular level, chloroplasts, mitochondria, and endoplasmic
reticulum were extremely sensitive to gamma irradiation [143]. Gamma irradiation mainly
affected plant morphophysiology through regulating synthesis and scavenging of reactive
oxygen species [143]. Morphophysiological effects of gamma irradiation on plants are
summarized in Table 4.

Table 4. Morphophysiological effects of gamma irradiation on plants.

Plant Species Treatment of Gamma Irradiation Effects Ref b

Soybean Seeds were irradiated with 200 Gy of gamma
rays for 20 h.

Root growth was not suppressed even after
being exposed to flooding stress for 4 days. [26]

Onion
Seedlings were irradiated at doses ranging
from 0.1 to 10 Gy of a 137Cs gamma source
for 6 and 10 days. a

The growth of root and shoot was inhibited after
6 days exposure at all doses, including the low
dose (0.1 Gy). At a later point in time (day 10),
root and shoot inhibition was observed after
irradiation at high doses (above 5 Gy).

[144]

Cymbidium hybrid

Cymbidium hybrid RB001 protocorm-like
bodies were irradiated in a time course and
dose-dependent manner (1 h, 16.1 Gy; 4 h,
23.6 Gy; 8 h, 37.9 Gy; 16 h, 37.9 Gy; and 24 h,
40.0 Gy) of gamma rays.

Based on survival rate of the plant, the estimated
optimal doses were duration-dependent at
irradiation durations shorter than 8 h.

[145]
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Table 4. Cont.

Plant Species Treatment of Gamma Irradiation Effects Ref b

Cowpea

Seeds were irradiated by 60Co source with
dose of 11 kGy and the actual dose delivered
was an average of 11.2 kGy at a dose rate of
1.7 kGy h−1.

Irradiation led to decrease in wall thickness,
increase of cell size, and intercellular spaces in
cotyledon.

[146]

Common vetch Seeds were irradiated with 100 Gy of gamma
irradiation.

Irradiation pretreatment (100 Gy), alone or in
combination with salt stress and drought stress,
led to significant increases in dry matter
accumulation, catalase/superoxide
dismutase/ascorbate peroxidase activities, and
proline contents. However, gamma-irradiation
pretreatment alone increased chlorophyll
contents while decreasing malondialdehyde
contents.

[147]

Poplar

Plantlets were concomitantly irradiated at
doses of 10, 20, 50, 100, 200, and 300 Gy,
respectively (dose rates ranged from 0.5 to
15 Gy h−1), for 20 h in 60Co.

Acute irradiation with a dose of 100 Gy greatly
reduced height, stem diameter, and biomass of
poplar plantlets. After receiving doses of 200 and
300 Gy, all plantlets stopped growing, and most
of them withered after 4–10 weeks of irradiation.

[148]

Wheat Seeds were irradiated at doses of 0, 10, 20,
and 30 Gy.

The 20 Gy dose improved seed germination
capacity compared with non-irradiated ones. [149]

Maize Seeds were irradiated at doses ranging from
0.1 to 1 kGy of gamma rays.

Germination potential and physiological
parameters of maize seedlings decreased by
increasing irradiation dose. Plants derived from
seeds exposed at higher doses (0.5 kGy) did not
survive more than 10 days.

[150]

Lathyrus
chrysanthus

Seeds were irradiated with different doses (0,
50, 100, 150, 200, and 250 Gy) of 60Co at
0.8 kGy h−1.

Low dose irradiation stimulated germination
and shoot growth initiation; however, high level
irradiation inhibited seed germination and
seedling growth.

[151]

Quinoa Seeds were irradiated at 50, 100, and 200 Gy
emitted by 60Co.

Plant height and biomass increased in quinoa
treated with a low dose (50 Gy) compared to the
control.

[152]

a Gy, Grays; b Ref, References.

In Allium cepa, when seedlings were treated with a gamma source at doses ranging
from 0.1 to 10 Gy for 6 and 10 days, the growth of root and shoot was inhibited after
6 days exposure at all doses, including the low dose 0.1 Gy. However, at 10 days, growth
inhibition of root and shoot was only observed after irradiation above 5 Gy [144]. When
popular plantlets were concomitantly exposed to gamma rays at doses of 10, 20, 50, 100,
200, and 300 Gy, respectively, plant height, stem diameter, and biomass of seedlings were
suppressed [148]. After receiving 200 and 300 Gy of gamma irradiation, all plantlets
stopped growing, and most of them withered after 4–10 weeks of gamma irradiation [148].

Wheat seeds treated with a 20 Gy dose of gamma irradiation improved germination
capacity compared to non-irradiated ones [149]. In maize, germination potential and
root/shoot length of seedlings decreased with increasing irradiation doses. Plants derived
from seeds irradiated with 500 Gy of gamma rays did not survive more than 10 days [150].
A low dose (50 Gy) of gamma rays stimulated germination and shoot growth initiation in
Lathyrus chrysanthus; however, high doses of gamma irradiation inhibited seed germination
and seedling growth [151]. When quinoa seeds were irradiated with a low dose of gamma
irradiation, plant height and biomass significantly increased compared to the un-irradiated
group [152]. In soybean, when seeds were irradiated with 200 Gy of gamma rays for 20 h,
root growth was not suppressed even under flooding stress [26]. In short, morphophysio-
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logical effects of gamma irradiation on plants are dose dependent and low-dose irradiation
has the potential to promote seed germination, plant growth, and stress tolerance.

4.3. Proteomic Responses

To understand underlying mechanisms inducing morphophysiological effects by
gamma irradiation on plants, the proteomic approach was applied. In rice, a gel-based
proteomic approach was used to investigate the effects of gamma irradiation on leaf
metabolism. As a result, 59 gamma-irradiation-responsive proteins were identified and
those related to cell metabolism were the most positively affected, while the photosynthesis
process was negatively affected by low doses of gamma irradiation [153]. In Chlamydomonas
reinhardtii, gel-based proteomic analysis indicated that gamma irradiation induced accumu-
lation of proteins related to photosynthesis, carbon metabolism functions, and antioxidant
functions, which enhanced lipid production [154].

Thus far, the flooding tolerance of gamma-irradiated soybean was systematically
investigated using proteomic technique (Figure 3). A flooding-tolerant soybean mutant
line was developed through gamma irradiation and alcohol dehydrogenase significantly
increased in the mutant under flooding, indicating that the activation of the fermentation
system was essential for gamma irradiation-induced flooding tolerance in soybean [26]. It
was indicated that proteins related to protein synthesis and RNA regulation significantly
changed in mutant soybean at initial flooding stress, and notably nascent polypeptide-
associated complex (NAC), chaperonin 20, glycine-rich RNA-binding protein, as well
as eukaryotic aspartyl protease increased at protein abundance and mRNA expression
levels [23]. NAC contributes to assembly and transport of newly synthesized proteins and
protects nascent polypeptides from proteolysis [155]. Chaperones play an important role
in sustaining protein homeostasis such as protein folding, disaggregation, and degrada-
tion [156]. It has been reported that chaperone genes significantly contribute to S. furcifera
tolerance to temperature and UV-A stress [157]. These findings indicate that refolding and
assembly of newly synthesized proteins might be involved in gamma irradiation-mediated
flooding tolerance in soybean.
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Transcriptomic analysis indicated that RNA regulation and protein metabolism re-
lated genes were significantly changed in mutant soybean at initial flooding stress [158].
Among them, flooding tolerance negatively contributed to genes including ATPase fam-
ily AAA domain-containing protein 1, glucose-6-phosphate isomerase, matrix metalloproteinase,
and cytochrome P450 77 A1 that were up-regulated in wild type soybean; however, they
were returned to normal levels in the flooding-tolerant mutant line under flooding stress.
Metabolomic analysis of the flooding-tolerant mutant and abscisic acid-treated soybeans
suggested that accumulated fructose might play a role in initial flooding tolerance through
regulation of hexokinase and phosphofructokinase [159]. An integration of proteomics and
computational genetic modification effectiveness analysis indicated that energy-related pro-
teins such as glyceraldehyde-3-phosphate dehydrogenase, aconitase 1, and 2-oxoglutarate
dehydrogenase were higher in flooding-tolerant soybean [160]. Additionally, calreticulin
specifically accumulated in flooding-tolerant soybean and regulation of cell death through
the fermentation system/glycoprotein folding was an important factor for the acquisition
of flooding tolerance [161]. In summary, gamma irradiation-induced flooding tolerance is
a complex process, and cell wall metabolism, energy metabolism, protein synthesis, as well
as transcriptional regulation-related proteins contributed to gamma irradiation-induced
flooding tolerance in soybean.

5. The Effects on Abiotic Stress Tolerance of the Different Irradiation Sources

Several studies showed that plant seed pretreatments with microwave irradiation
or visible light were an effective approach to ameliorate the hazards to seedling growth
caused by abiotic stresses (Table 5). Weak microwave irradiation to wheat seeds within
20 s improved plant growth with longer root length and greater seedling weight compared
to the control condition, and 10 s treatment further benefited plant growth under salt
stress through stimulation of the antioxidant defense system [162]. Similar results were
found when wheat seeds were treated with 10 s microwave irradiation followed by osmotic
stress [163]. Furthermore, cadmium stress reduced antioxidant enzymes and antioxidative
compounds in wheat seedlings compared with unstressed plants; however, seeds with
microwave pretreatment for 5 or 10 s provided protection for wheat from cadmium-caused
oxidative damage [164]. These reports uncovered that reactive oxygen species suppression
involved in plant tolerance to abiotic stresses were provoked by microwave irradiation.
Souza et al. [165] found although silver nanoparticles were internalized in plant cells
during onion seed germination under dark and light conditions, the bigger aggregates and
lower toxicity were presented in an 8 h light condition, implying that visible light reduced
genotoxicity and cytotoxicity in plants. In summary, seed priming with suitable doses
of microwave irradiation or visible light exposure could confer abiotic stress tolerance
on plants; however, relative mechanisms underlying plant tolerance far beyond reactive
oxygen species catabolism should be revealed, especially for biotic stress.

Table 5. The effects on abiotic stress tolerance of the different irradiation sources.

Plant/
Organs Treatment Stress Finding Ref b

Wheat/
Seeds

microwave irradiation at
2.45 Ghz for 10 s Salt

Low energy microwave irradiation pretreatment of
seeds for 10 s protected seedlings from salt stress by
enhanced enzyme activities of nitric oxide synthase,
catalase, peroxidase, superoxidase dismutase, and
glutathione reductase.

[162]
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Table 5. Cont.

Plant/
Organs Treatment Stress Finding Ref b

Wheat/
Seeds

microwave irradiation at
2.45 Ghz for 10 s Osmotic

Microwave irradiation of seeds for 10 s conferred
plant tolerance to osmotic stress by enhancing nitric
oxide signaling and antioxidant defense system.

[163]

Wheat/
Seeds

microwave irradiation at
2.45 Ghz for 5, 10, and 15 s Cd

Seeds pretreated with microwave irradiation for 5 or
10 s ameliorated plant growth under Cd stress by
decreasing lipid peroxidation and hydrogen peroxide
accumulation.

[164]

Onion/
Seeds

fluorescent lamp exposure
with 32 w for 8 h AgNPs a Light exposure reduced genotoxicity and cytotoxicity

of AgNPs by reducing uptake of NPs by plant cells. [165]

a NPs, Nanoparticles; b Ref, References.

6. Conclusions and Future Perspectives

Over the past decades, knowledge of electromagnetic-wave irradiation on plants has
been vastly improved. Herein, basic properties of electromagnetic spectral bands and plant
responses to electromagnetic-wave irradiation have been simplified, including fluctuated
metabolites, activated cellular metabolisms, and potential effects on crops (Figure 4). As
discussed above, microwave and millimeter wave irradiation were mainly conducted as
a seed priming approach, and ultraviolet irradiation was performed for seedling leaves.
Meanwhile, more attention has been paid to leaf response to electromagnetic-wave irra-
diation compared with other organs, which was uncovered by omics analyses, showing
that nuclei, mitochondria, and chloroplasts were targeted at the subcellular level and
were involved in UV-provoked photosynthesis in young seedlings. Since the root is an
underground organ, studies in which roots were directly irradiated with electromagnetic
waves were limited. However, seed pretreatment with weak microwaves or millimeter
wave irradiation made changes in root physiology with increased root length and weight,
but ultraviolet irradiation posed opposite effects.
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Figure 4. Summarizing overview of electromagnetic-wave irradiation on plants. Physical proper-
ties of spectral bands of electromagnetic waves are indicated. Electromagnetic-wave irradiation
induced metabolite shifts and cellular metabolisms that were associated with plant growth and
environment adaptation are summarized based on published studies on plants irradiated with
electromagnetic waves.

Current knowledge on plant responses to electromagnetic-wave irradiation were
largely acquired from UV-B. UV-B induced signaling pathways and interactions between
UV and lights in plants were drafted based on detection of UVR8, the specific photoreceptor
for UV-B. Furthermore, interplay between UV-B and lights was proved with coordinated
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carbohydrates shifting dependent on diurnal variations, while documents addressing other
electromagnetic waves coordinating with the circadian clock are rare. With continuous
advancements, proteomics combined with metabolomics profiled responsive proteins and
metabolites in plants exposed to electromagnetic-wave irradiation, which were largely
related to carbohydrate provision, secondary metabolism, and redox homeostasis. Among
these activated cellular metabolisms, much emphasis was placed on redox homeostasis;
however, core components evoking signaling pathways need to be explored in more
detail. Additionally, moderate doses of electromagnetic-wave irradiation enhanced plant
resistance far beyond the decline of insects, and studies focusing on specific interactions
within plants and microorganisms should be paid more attention with the aid of the
microbiome. In future, proteomic approaches coupled with transcriptomics, metabolomics,
metagenomics, and bioinformatics will largely facilitate studies of electromagnetic-wave
irradiation on plants and the plant–microorganism context.
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