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AbstractWithin histone H3, lysine 27 (H3K27) is one of the residues that functions as a mo-
lecular switch, by virtue of being subject to mutually exclusive post-translational modifica-
tions that have reciprocal effects on gene expression. Whereas acetylation of H3K27 is
associated with transcriptional activation, methylation at this residue causes transcriptional
silencing; these twomodifications aremutually exclusive. Establishment of these epigenetic
marks is important in defining cellular identity and for maintaining normal cell function, as
evidenced by rare genetic disorders of epigenetic writers involved in H3K27 post-trans-
lational modification. Polycomb repressive complex (PRC2)-related overgrowth and
Rubinstein–Taybi syndrome (RSTS) are respectively associated with impaired H3K27 meth-
ylation and acetylation. Whereas these syndromes share commonalities like intellectual dis-
ability and susceptibility to cancers, they are generally divergent in their skeletal growth
phenotypes, potentially through dysregulation of their opposing H3K27 writer functions.
In this review, we discuss the requirement of H3K27 modifications for successful embryo-
genesis, highlighting data from relevant mouse knockout studies. Although such gene ab-
lation studies are integral for defining fundamental biological roles of methyl- and
acetyltransferase function in vivo, studies of partial loss-of-functionmodels are likely to yield
moremeaningful translational insight into progression of PRC2-related overgrowth or RSTS.
Thus, modeling of rare human PRC2-related overgrowth and RSTS variants in mice is need-
ed to fully understand the causative role of aberrant H3K27 modification in the pathophys-
iology of these syndromes.

INTRODUCTION

Although the body’s somatic cells typically share the same genome, a plurality of cell types is
required to support diverse biological functions. Such diversity demands specialization in
the ways the genome is put to use. Successful histogenesis requires the coordinated activa-
tion and suppression of lineage-specific genes. To achieve this, cells modify their chromatin
structure to allow or restrict these critical loci from transcriptional access. This process in-
volves histones, DNAmethylation, and noncoding RNA species (to name a few participants).
In particular, core histone proteins undergo post-translational modifications (PTMs) at sever-
al key lysine residues; the relative importance of specific PTMs at specific sites is an area of
active investigation.

Histone octamers are composed of two copies each of H2A, H2B, H3, and H4. When
bound to DNA, they form nucleosomes, the fundamental unit of chromatin. A number
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of histone PTMs alter chromatin state, including phosphorylation, ubiquitination,
SUMOylation, ADP ribosylation, deamination, proline isomerization, methylation, and acet-
ylation (Goyal et al. 2019). The combinatorial profile of these histone PTMs is the theoretical
basis of the histone code (Strahl and Allis 2000), whereby their presence is linked to distinct
biological events (Munshi et al. 2009). Lysine 27 of H3 appears to be a key molecular switch,
because either an acetyl group or one or moremethyl groups may be attached to it (Bedford
et al. 2010; Deevy and Bracken 2019; Sneppen and Ringrose 2019). Acetyl and methyl
groups are mutually exclusive at this residue, yet are also associated with opposite transcrip-
tional outcomes. Specifically, addition of an acetyl group to H3K27 (H3K27ac) neutralizes
positively charged amino-terminal lysine residues (Kalkhoven 2004), allowing chromatin to
relax. Such loosening of DNA–histone and histone–histone contacts results in a more
open conformation that permits transcription factor binding and transcriptional activation
(Roth et al. 2001). Conversely, H3K27 can be mono-, di-, and trimethylated (H3K27me1–
3), which enables tighter chromatin packing and transcriptional silencing (Schuettengruber
et al. 2017). Deposition and maintenance of H3K27ac and H3K27me1–3 is controlled by
key epigenetic writers and erasers that lay down or remove these moieties in a cell- and con-
text-specific manner. Not surprisingly, functional variants in the enzymes responsible for reg-
ulating the H3K27ac mark, or H3K27me1–3 marks, have significant consequences for cells,
tissues, and the whole organism, as evidenced by rare diseases associated with mutations of
H3K27 writers and erasers. In this review, we focus on the role(s) of the main regulators of
H3K27 acetylation and methylation during development, and how mutations that affect
these epigenetic writers result in somewhat reciprocal disease phenotypes.

REGULATORS OF THE H3K27 TRANSCRIPTIONAL SWITCH

The two major groups of proteins that have opposing writer functions at H3K27 are
Polycomb group (PcG) and CBP/EP300. Readers are referred to the excellent review by
Schuettengruber et al. (2017) for a detailed discussion of all PcG components. Although
an appropriate balance of H3K27 methylation and acetylation also requires demethylases
and deacetylases that erase these histone marks, our focus here is on the writers at
H3K27, specifically the Polycomb repressive complex (PRC2) and p300/CBP.

PRC2 Components and General Function
Multicellular organisms have PRC1 and PRC2, both of which control gene silencing despite
having different histone substrates: PRC1 monoubiquitinates H2AK119, whereas PRC2
mono-, di-, and trimethylates H3K27 (Yu et al. 2019). Ultimately, their activity causes chroma-
tin compaction, restricting the physical access of transcriptional machinery to target genes
and preventing their expression. PRC2 reader and writer functions enable the inheritance
of H3K27me1–3 during cell division; stable transmission of histone marks is required during
lineage specification and maintenance, X-chromosome inactivation, genomic imprinting,
and segmental patterning during embryogenesis (Wang et al. 2001; Cao et al. 2002; Plath
et al. 2003; Silva et al. 2003; Lewis et al. 2004; Ringrose and Paro 2004). The PRC2 core com-
plex is composed of enhancer of zeste (EZH2), embryonic ectoderm development (EED),
suppressor of zeste (SUZ12), and retinoblastoma binding protein (RBBP4/7). Furthermore,
PRC2 interacts with a combination of accessory proteins, including AE binding protein 2
(AEBP2), jumonji and AT-rich interaction domain containing 2 (JARID2), elongin BC and
PRC2-associated protein (EPOP), and Polycomb-like proteins (PCLs) (Schuettengruber
et al. 2017; Deevy and Bracken 2019), forming PRC2 subcomplexes (i.e., PRC2.1 and
PRC2.2).
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Chromatin binding and enzyme activity of PRC2 is conferred by the unique roles of its
core components. EZH2 contains both a SANT domain, allowing it to bind histones, and a
catalytic SET domain, containing its H3K27 methyltransferase activity (Laible et al. 1997).
SUZ12 is a zinc finger protein responsible for both DNA and RNA binding, whereas EED per-
forms PRC2’s reader function by recognizing methylated H3K27 residues (Schuettengruber
et al. 2017). Although EZH2 is PRC2’s catalytic subunit, both EED and SUZ12 are important
for maintaining PRC2 integrity and enzyme function (Pasini et al. 2004; Montgomery et al.
2007).

Each PRC2 core component is required for mammalian embryogenesis, as global loss of
any one of them in mice results in embryonic lethality (Faust et al. 1995; O’Carroll et al. 2001;
Pasini et al. 2004). Consistent with impaired cellular proliferation, homozygous-null embryos
are smaller in size than wild-type embryos and do not survive past midgestation (Faust et al.
1995; O’Carroll et al. 2001; Cao and Zhang 2004; Pasini et al. 2004). Classically, PcG com-
ponents were described in Drosophila as suppressors of the homeotic HOX gene cluster,
which control body segmentation and morphology during embryogenesis (Lewis 1978;
Pirrotta 1998). PRC2 has retained conserved functions across phyla, binding to genes in-
volved in development, morphogenesis, organogenesis, and neurogenesis in both human
and murine embryonic stem cells (Boyer et al. 2006; Bracken et al. 2006; Lee et al. 2006).
Many of the pathways suppressed by PRC2 are conserved between fruit flies, mice, and hu-
mans, including genes important for Wnt, transforming growth factor-β, fibroblast growth
factor, Notch, and Hedgehog signaling (Bracken et al. 2006). Given the number of develop-
mental pathways regulated by PRC2, the mechanisms of dysfunctional embryogenesis in
PRC2 mutant models described above are diverse and multifaceted. Although global
knockout of core PRC2 components is lethal in mice, global “knockdown” causes a range
of phenotypes in humans, as evidenced by the range of severities attributable to partial
loss-of-function (LoF) mutations ascertained in human patients.

Disorders of H3K27 Methylation: PRC2-Related Overgrowth Syndromes
PRC2-related overgrowth syndromes (Table 1) consist of Weaver syndrome (OMIM
#277590), Cohen–Gibson syndrome (OMIM #617561), and SUZ12-related overgrowth, the
latter of which is the least well-characterized of the three. All are autosomal dominant disor-
ders, although most cases are observed sporadically, without prior family history. Weaver

Table 1. Rare disorders of H3K27 post-translational modifications summary

Parameter PRC2-related overgrowth Rubinstein–Taybi syndrome

Rare disease subtypes (gene) Weaver syndrome (EZH2), Cohen–Gibson
syndrome (EED), SUZ12-related
overgrowth (SUZ12)

RSTS1 (CREBBP), RSTS2 (EP300)

Canonical histone modification affecting
transcription

H3K27me1–3 H3K27ac

Putative mechanism Partial loss of function Haploinsufficiency

General skeletal phenotype Tall stature/macrocephaly, advanced bone
age

Short stature, broad thumbs/halluces

Intellectual disability Mild to severe Mild to severe

Cancer predisposition Acute myeloid leukemia, acute
lymphoblastic leukemia, neuroblastoma

Diffuse large B-cell lymphoma,
neuroblastoma, rhabdomyosarcoma,
medulloblastoma, meningiomas,
pilomatrixomas

Rare diseases of H3K27 writers

C O L D S P R I N G H A R B O R

Molecular Case Studies

Gamu and Gibson 2020 Cold Spring Harb Mol Case Stud 6: a005058 3 of 11



syndrome is caused by pathogenic variants in EZH2 (Tatton-Brown et al. 2011; Gibson et al.
2012), resulting in partial LoF of PRC2methyltransferase activity (Cohen et al. 2016; Lui et al.
2018). All EZH2 mutations currently described to cause Weaver syndrome are either mis-
sense variants or truncating variants of the last exon (Tatton-Brown et al. 2018). Rare de
novo mutations in EED were recently reported to cause Cohen–Gibson syndrome (Cohen
et al. 2015; Cohen and Gibson 2016), whereas SUZ12-related overgrowth (also referred to
as Weaver-like syndrome) is caused by rare variants in its namesake gene (Imagawa et al.
2017; Imagawa et al. 2018; Cyrus et al. 2019). Similar to Weaver syndrome, reported muta-
tions in EED and SUZ12 impair H3K27me3 formation (Imagawa et al. 2017), in line with the
role these core components play in stabilizing PRC2 enzyme function.

PRC2-related overgrowth syndromes present with accelerated pre- and postnatal growth
(i.e., tall stature, macrocephaly), advanced bone age, distinctive facial features, and mild-to-
severe intellectual disability. Whereas many of these features are common to all three, phe-
notypic differences do exist between Weaver syndrome, Cohen–Gibson syndrome, and
SUZ12-related overgrowth; these differences are succinctly reviewed elsewhere for interest-
ed readers (Cyrus et al. 2019). It is challenging to reconcile pathophysiological insight from
studies globally knocking out core PRC2 components in mice with their respective human
overgrowth syndromes, because PRC2 knockout animals are typically not viable and invari-
ably small, not large. Furthermore, conditional knockout of PRC2 function has brought forth
some controversy regarding the cellular mechanism causing overgrowth. For example, loss
of either Ezh2 or Eed from murine chondrocytes severely retards skeletal growth by impair-
ing cellular proliferation and hypertrophy (Lui et al. 2016; Mirzamohammadi et al. 2016).
Although these studies have led some to suggest Weaver syndrome mutations cause skel-
etal overgrowth by a gain-of-function mechanism (Lui et al. 2016), this does not appear to
be the case, because Weaver mutations display impaired methyltransferase activity in vitro
and in vivo (Cohen et al. 2016; Lui et al. 2018).

Recently, Lui et al. (2018) made a Weaver syndrome mouse harboring a patient-derived
c.1876G>A (p.V626M) missense mutation. Consistent with other variants, p.V626M was
shown to be a partial LoF mutant, with heterozygous and homozygous embryos showing
a dose-dependent reduction of H3K27me2-3 (Lui et al. 2018). Although homozygous
Weaver syndrome mice were not viable, heterozygous mice survived and were moderately
heavier than controls as they aged (Lui et al. 2018). Surprisingly, the overgrowth of the
Weaver mice appears to be the result of organomegaly and not the skeletal overgrowth typ-
ical of Weaver syndrome patients (Lui et al. 2018). However, organomegaly was not initially
reported in their patient, so it is currently unclear why p.V626M results in pathophysiological
differences between mice and human. To our knowledge, mice harboring human mutations
in Eed and Suz12 have yet to be reported.

So why then does impaired PRC2 function cause a pronounced overgrowth phenotype
only in humans? Ultimately, the answermay relate to the degree towhich H3K27methylation
is disrupted and to the specific loci missing this histone mark. Mice missing just one copy of
core PRC2 components may experience catastrophic growth failure because H3K27 meth-
ylation is missing at genes integral for maintaining cell identity, viability, and survival.
Alternatively, a variety of genes that promote cellular differentiation may fail to be sup-
pressed in the absence of sufficient H3K27 methylation. These mechanisms may account
for the predisposition to hematological malignancies that is observed in Weaver syndrome
(Table 1). The extent to which constitutional mutations in EED and SUZ12might predispose
to hematological or other malignancies remains to be clarified.

The degree to which loss of function occurs in vivo for PRC2-related overgrowth syn-
dromes (other than p.V626M) is unclear. Although a 50% reduction in PRC2 function might
be lethal to most mice, partial loss of function from a missense allele might cause a redistri-
bution of PRC2 across the genome, allowing maintenance of cell-specific identity at the
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expense of depressing pathways controlling cell expansion and size. We imagine that
complete LoF mutations in human PRC2 components are not compatible with life, because
stop-gain mutations near the amino terminus have not been reported to date, although
some patients with deletions that include one copy of EZH2 have been reported. Given
that there is a reciprocal nature between H3K27 methylation and acetylation (Deevy and
Bracken 2019), future studies modeling PRC2 variants should consider which genes missing
H3K27me3 at their promoters subsequently acquire the acetylation mark.

p300 and CBP Are H3K27 Acetyltransferases
Acetylation of H3K27 is associated with transcriptional activation because it loosens DNA
contacts from core histones, thereby enabling basal transcriptional machinery to interact
with gene promoters. Although a number of histone acetyltransferases (HATs) exist with dif-
fering histone and protein substrate specificities, the ubiquitously expressed transcriptional
coactivators CREB-binding protein (CBP) and p300 are responsible for writing H3K27ac (Jin
et al. 2011; Lasko et al. 2017). CBP and p300 belong to the KAT3 family of HATs and are be-
lieved to be functionally homologous because they share ∼57% structural similarity at the
protein level, with 88% sequence homology between their HAT domains (Bedford et al.
2010; Lipinski et al. 2019).

CBP and p300 integrate signals from numerous biological pathways. They can physically
interact with more than 400 different proteins, many of which are transcription factors
(Bedford et al. 2010). Although CBP and p300 play a major role in chromatin remodeling
by writing H3K27ac, recently H2B has also been shown to be a major target of their HAT ac-
tivity, as have thousands of different sites on nonhistone proteins (Weinert et al. 2018), sug-
gesting they are a control node for enzymes and transcription factors. Thus, CBP and p300
protein scaffolding and acetyltransferase functions coordinate biological programs with a
stunning level of complexity, operating within a diversity of cell types (Bedford et al. 2010;
Dyson and Wright 2016).

Mutations in EP300 and CREBBP Cause Rubinstein–Taybi Syndrome
Both p300 and CBP are integral for proper growth and development, as evident by the
rare autosomal dominant disorder Rubinstein–Taybi syndrome (RSTS) (Table 1). RSTS af-
fects 1:100,000 to 1:125,000 live births (Stevens 1993) and is classified as either RSTS1
(OMIM #180849) or RSTS2 (OMIM #613684) resulting from heterozygous pathogenic var-
iants in either the CREBBP or EP300 genes, respectively. RSTS is characterized by distinc-
tive facial features, broad thumbs and halluces, and mild-to-severe intellectual disability,
but unlike PRC2-related overgrowth syndromes, RSTS patients are typically short in stature
(Stevens 1993). At some level, p300/CBP can be considered to act as tumor suppressors,
because instances of both benign and malignant tumors have been reported in RSTS pa-
tients (Boot et al. 2018). Based on the increased incidence of tumors in RSTS patients, we
can infer that not only are sufficient quantities of acetyl marks on H3K27, H2B, and other
nonhistone proteins required during fetal development, but maintenance of these PTMs is
required throughout postnatal life for cells to retain a fully differentiated and functional
adult state.

As was found with deletion of PRC2 members, global deletion of p300 or CBP individu-
ally inmice causes lethality midgestation (Yao et al. 1998; Tanaka et al. 2000). These embryos
are severely growth-retarded and show signs of defective neural tube closure, exencephaly,
cardiac anomalies, and brain hemorrhaging. Importantly, these findings indicate that p300
andCBP function are not completely redundant, and that eachHAT governs distinctive path-
ways critical for embryogenesis. One reason for this is that p300 and CBP have overlapping
but distinct expression profiles throughout stages of mouse embryogenesis (Yao et al. 1998;
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Bhattacherjee et al. 2009). Thus, CBP and p300 control a unique set of genes and nonhistone
PTMs that are both spatially and temporally restricted. Furthermore, mice heterozygous for
both Crebbp and Ep300 display a similar embryologic phenotype to global single knockout
embryos (Yao et al. 1998), suggesting that a full genomic complement of these HATs are es-
sential for normal development.

Despite the early lethality caused by p300 or CBP deletion in mice, haploinsufficient
mouse models are viable; however, they do havemarked growth andmorphological pheno-
types (Tanaka et al. 1997, 2000; Oike et al. 1999). Initially, mice with a single copy of Crebbp
were reported as smaller and recapitulated several features reported in patients with RSTS
(albeit with variable penetrance), including enlarged anterior fontanels and abnormal skele-
tal patterning, but without hallmark RSTS features like broad first phalanges (Tanaka et al.
1997). Similarly, mice carrying one copy of a truncated form of CBP showed pre- and post-
natal growth retardation, distinctive facial features (e.g., broad nasal bridge, short nose), and
frequent cardiac anomalies (Oike et al. 1999).

To our knowledge, targeted deletion studies of p300 or CBP from mouse chondrocytes
or osteoblasts in vivo (similar to those described above for PRC2 core members) have not
been done. However, a number of in vitro and cell-based studies have shown p300/CBP
are important for enhancing the transcriptional activity and/or gene expression of regulators
of chondrocyte and osteoblast differentiation, such as Sox9 (Tsuda et al. 2003; Furumatsu
et al. 2005; Imamura et al. 2005), mammalian Runt domain protein 2/core binding factor
a1 (Sierra et al. 2003), and cartilage homeoprotein-1 (Iioka et al. 2003).

Determining the unique p300 and CBP-dependent genes and nonhistone PTMs respon-
sible for hallmark features of RSTS will prove to be difficult. In addition to being associated
with active gene promoters, H3K27ac in particular is a feature of active enhancers, enabling
the occupancy of transcription factors at unique noncoding regions to control target genes
via long-range chromatin interactions. Using p300 chromatin immunoprecipitation followed
by sequencing (ChIP-seq) to predict tissue-specific enhancers, thousands of p300-binding
sites have been identified in murine limb buds and neural tissues at midgestation alone
(Visel et al. 2009). Determining the functional relevance of these regions in vivo with respect
to normal growth and development will require targeted deletion followed by deep pheno-
typing. Although two enhancers (i.e., M280 and M1442) previously identified by Visel et al.
(2009) were predicted to affect limb development, neither of them were obligatory for prop-
er limb formation and morphology, although loss of M280 resulted in smaller mice (Nolte
et al. 2014); this finding is in line with the generalized growth retardation of RSTS. It remains
to be seen which genes M280 regulates, which tissues it is important for forming/maintain-
ing, and whether this enhancer is truly dependent on p300’s HAT function. Thus, although
CBP and p300 ChIP-seq will yield valuable information regarding the unique subsets of gene
promoters that depend on their HAT function, we must also consider the role of CBP and
p300 in forming active enhancers. Furthermore, future studies examining RSTS pathophys-
iology should also consider the role of H2B hypoacetylation and p300/CBP’s various other
nonhistone substrates.

Although the function of p300/CBP as coactivators of numerous signaling proteins
makes it difficult to deconvolute the various role of H3K27ac in the molecular etiology of
RSTS, some studies have attempted to overcome this by developing mice carrying site-spe-
cific mutations, such as those removing CBP HAT function while preserving its protein-bind-
ing domains (Korzus et al. 2004). Selective loss of HAT activity from forebrain neurons impairs
the ability of these mice to form long-term memory (Korzus et al. 2004), a finding consistent
with studies of both haploinsufficient RSTS mouse models (Oike et al. 1999; Alarcon et al.
2004) and total loss of CBP coactivator function from forebrain principal neurons (Valor
et al. 2011). Together, these studies may directly implicate impaired chromatin remodeling
in causing aspects of intellectual disability seen in RSTS.
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Epigenetic Therapies Affecting H3K27 Modifications
Knowledge of the molecular mechanisms behind rare human genetic disorders is often pre-
sented as a necessary step toward targeted therapies to improve outcomes. However, the
geographic dispersal of the patients makes case accrual and standardized medical assess-
ment difficult. Similarly, the length of time required to observe a measurable difference in
growth velocity and/or neurodevelopment makes proper placebo-controlled trials (even
crossover trials) challenging, to say the least. It is likely, then, that the first personalized ther-
apies for PRC2-related overgrowth and Rubinstein–Taybi syndrome will appear in the con-
text of personalized oncogenomics. Such a scenario is likely to arise when treating
physicians wish to make use of the prior knowledge of the underlying syndrome (e.g.,
Weaver syndrome or RSTS) to make educated additions to standardized treatment regimens
for whatever neoplasms might arise in these patients.

Although EZH2 inhibitors are in development for a variety of indications, it seems unlikely
that these drugs would confer obvious benefit to a patient with Weaver syndrome, because
the preexisting partial loss of H3K27 methyltransferase activity would be exacerbated by an
EZH2 inhibitor, rather than mitigated by it.

With respect to tumors or leukemias arising in RSTS patients, some clinical traction may
be gained in considering the use of histone deacetylase (HDAC) inhibitors such as valproic
acid (Phiel et al. 2001). The rationale for this indirect approach would involve the inhibition of
histone deacetylases, in an attempt to preserve H3K27ac marks (and acetylation of other his-
tone/nonhistone residues) that were already diminished by the preexisting reduction in HAT
activity. Although speculative, the reciprocal nature of H3K27 methyl and acetyl marks may
warrant consideration of HAT inhibition for Weaver syndrome in an attempt to dampen
genes derepressed by impaired methyltransferase activity. Conversely, PRC2 inhibition
may “lift the break” on loci indirectly suppressed in the absence of sufficient p300/CBP ac-
tivity. Recently, the compound A-485 has been described as a highly selective p300/CBP
HAT inhibitor capable of impairing H3K27/18ac formation along with proliferation of various
solid state and hematological cancer-cell lines (Lasko et al. 2017; Michaelides et al. 2018).
Whereas A-485 may hold therapeutic relevance in treating some malignancies, it will likely
also prove useful in cell-based assays aimed at defining the specific genes regulated by
p300/CBP HAT function that are causative of RSTS phenotypes. It may also be valuable
for proof-of-concept studies designed to prevent excessive H3K27ac in the context of
PRC2 LoF. Given that preclinical mouse models are expensive to generate, patient-derived
induced pluripotent stem cells (iPSCs) will serve as an important model system to assess mu-
tation-specific changes in cellular function and also as a test of themechanisms that might be
engaged by HDAC therapies. To date, only a few studies have generated iPCS-derived neu-
rons from RSTS1 and RSTS2 patients (Alari et al. 2018a,b), so this represents a fruitful area to
study the pathophysiology of aberrant H3K27ac deposition.

CONCLUSION

Proper embryogenesis and postnatal growth is dependent on reciprocal modifications to
H3K27, which are catalyzed by PRC2 and p300/CBP. The importance of H3K27 as a molec-
ular switch is evidenced by PRC2-related overgrowth disorders and Rubinstein–Taybi syn-
drome. These rare diseases have opposing skeletal growth phenotypes, which may be
associated with impairments in their underlying epigenetic writers to properly silence or ac-
tivate gene transcription, respectively. Although mouse knockout studies have revealed the
requirement of PRC2 core components and p300/CBP for development, few havemanaged
to accurately model their respective human syndromes. Although species-specific differenc-
es in PRC2 or HAT requirements may explain this, it is likely that even a 50% reduction in
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their enzyme function is catastrophic for cellular viability in mice, preventing detailed studies
throughout their lifespan. Instead, partial LoF variants may allow a redistribution of
these epigenetic writers across the genome and proteome to maintain control of pathways
governing cell survival at the expense of those regulating proliferation and size. Given
their well-established role in gene expression, it will be of interest going forward to deter-
mine which gene sets depleted of H3K27ac or H3K27me1–3 become reciprocally repressed
or activated in order to determine the direct and indirect effects PRC2 or p300/CBP
mutations.
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