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Inference of Upcoming Human Grasp

Using EMG During Reach-to-Grasp

Movement.

Front. Neurosci. 16:849991.

doi: 10.3389/fnins.2022.849991

Inference of Upcoming Human Grasp
Using EMG During Reach-to-Grasp
Movement
Mo Han*, Mehrshad Zandigohar, Sezen Yağmur Günay, Gunar Schirner and
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Electromyography (EMG) data has been extensively adopted as an intuitive interface

for instructing human-robot collaboration. A major challenge to the real-time detection

of human grasp intent is the identification of dynamic EMG from hand movements.

Previous studies predominantly implemented the steady-state EMG classification with a

small number of grasp patterns in dynamic situations, which are insufficient to generate

differentiated control regarding the variation of muscular activity in practice. In order to

better detect dynamic movements, more EMG variability could be integrated into the

model. However, only limited research was conducted on such detection of dynamic

grasp motions, and most existing assessments on non-static EMG classification either

require supervised ground-truth timestamps of the movement status or only contain

limited kinematic variations. In this study, we propose a framework for classifying dynamic

EMG signals into gestures and examine the impact of different movement phases, using

an unsupervised method to segment and label the action transitions. We collected

and utilized data from large gesture vocabularies with multiple dynamic actions to

encode the transitions from one grasp intent to another based on natural sequences of

human grasp movements. The classifier for identifying the gesture label was constructed

afterward based on the dynamic EMG signal, with no supervised annotation of kinematic

movements required. Finally, we evaluated the performances of several training strategies

using EMG data from different movement phases and explored the information revealed

from each phase. All experiments were evaluated in a real-time style with the performance

transitions presented over time.

Keywords: electromyography (EMG) signals, dynamic EMG, gesture classification, human intent inference,

machine learning

1. INTRODUCTION

With the rapid development of human–robot interaction (HRI) technology, collaborative robotics
have been widely utilized in the assistive environment and smart prosthetic hands. The
activity detection of the human hand and arm (Sheikholeslami et al., 2017; Zandigohar et al.,
2019; Han et al., 2021) is an intuitive interface for instructing the cognitive collaboration
between humans and robots without requiring users to have professional control skills.
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To extract the motion instructions, electromyography (EMG)
signal collected from arm and hand has been extensively adopted
since it can accurately detect the motion intention and does not
require invasive data collection (Ju and Liu, 2013; Han et al., 2019,
2020; Zangigohar et al., 2021).

Online human–robot interaction through hand and arm
motion is hard to achieve due to the high degrees of
freedom (DOFs) of human body structure. More specifically,
the human hand alone consists of 21 DOFs controlled by 29
muscles (Jones and Lederman, 2006). Most previous studies
focused on investigating the discrete classifications of hand
and arm movements, by exploiting the mapping between EMG
signals and hand postures (Sebelius et al., 2005; Dalley et al., 2011;
Ju and Liu, 2013; Ouyang et al., 2013; Han et al., 2019, 2020).
However, this is insufficient to generate differentiated control
regarding the variety of practical dynamic EMG signals. In real-
world applications, the muscular activity varies between a static
and a dynamic arm position, and the hand configuration also
changes simultaneously with the arm motion (Jiang et al., 2013).
Moreover, those studies have only considered a small number
of grasp patterns, which cannot ensure the model robustness as
required by the grasping of a larger variety of objects. To improve
the control effectiveness and user comfort, the human intention
should be detected in a more dynamic, natural, and smooth
manner.

In order to increase the system’s applicability to a wider range
of movements, one could integrate more EMG variability into
the model training and validation using transient EMG signals
from different dynamic phases (Yang et al., 2012; Castellini et al.,
2014). Furthermore, the hand motions are commonly carried
out in concert with the dynamic movements of the arm. For
example, when the hand is approaching a target object to be
grasped, the configuration of the fingers and wrist also changes
simultaneously during the reach-to-grasp motion according to
the shape and distance of the object (Jeannerod, 1984). Therefore,
the identification of varying muscular contractions and dynamic
arm postures could provide more response time for pre-shaping
the robot, which could improve the system usability and result in
more natural grasp transitions.

However, only limited research was focused on detecting
dynamic grasp motions (Lorrain et al., 2011; Siu et al., 2016;
Batzianoulis et al., 2017; Sburlea and Müller-Putz, 2018). Among
those studies, in (Sburlea and Müller-Putz, 2018), a multimodal
dataset was acquired, which consists of electroencephalographic
(EEG), kinematic, and EMG recordings performing multiple
grasp types in three dynamic stages of the grasping movement.
However, the EMG data were recorded by the Myo armband,
which only contains eight EMG channels surrounding the lower
arm and, thus, cannot provide adequate higher-arm movement
indication. This results in a less adaptive amputation level and a
limited identification of the reaching movement of the arm. In
addition, the classification of EMG data acquired from dynamic
movements was not fully discussed in this study. Researchers
in (Batzianoulis et al., 2017) proposed an EMG-based learning
approach to decode dynamic reach-to-grasp movements by
measuring the ground-truth finger configurations with a wired
glove. The authors of (Siu et al., 2016) also explored a classifier

to identify transient anticipatory EMG signals incorporating
dynamic grasp actions, assisted by a kinematic device detecting
the ground-truth timestamps of action transitions. In (Lorrain
et al., 2011), the grasp classification was evaluated on data
involving both static and dynamic contractions, but the data
collection experiments were conducted in a discrete manner,
where the subjects were required to maintain the grasping and
resting positions alternately for specified time lengths, so the
practical movement continuity was still missing. In other words,
most existing assessments on non-static EMG classification
either require the supervised ground-truth timestamps of the
movement status or only contain limited information and
dynamic variations of the EMG signal.

Therefore, we propose a framework for classifying dynamic
EMG signals into gestures and examine the impact of different
phases of reach-to-grasp movements on final performance. We
exploit the continuity of hand formation change to increase
data variability and decode the subject’s grasping intention
in a real-time manner. We utilized EMG data from large
vocabularies of gestures with multiple dynamic motion phases,
which enabled us to encode the transitions from one intent to
another based on natural sequences of human reach-to-grasp
movements. During the data collection, continuous variations
on multi-scale muscular contractions were introduced by the
designed experiment protocol simulating the actual situation.
We segmented the continuous EMG data unsupervised into
different dynamic motion sequences, and further labeled those
EMG sequences according to the specific motion. The classifier
for identifying gesture labels was constructed afterward based
on the dynamic EMG signals, with no supervised annotation
of kinematic movements required. Finally, we examined the
performances of several training strategies using EMG data from
different dynamic phases and explored the information revealed
from each phase. All experiments were evaluated in a real-time
style with the performance variation presented over time. The
proposed method was shown to be efficient due to the greater
amount of information introduced by dynamic motions.

2. MATERIALS AND METHODS

2.1. Experimental Protocol and Data
Processing
The utilized data were collected from 5 healthy subjects (4 men,
1 women; mean age: 26.7 ± 3.5 years). All subjects were right-
handed and only the dominant hand was used for data collection.
None of the subjects had any known motor or psychological
disorders. The experimental procedure and tasks were explained
to all subjects, and we obtained their consent to participate before
the experiments.

2.1.1. EMG Sensor Configurations
We collected surface EMG (Motion Lab Systems, Baton Rouge,
LA, USA) in bipolar derivations, with a sampling rate of
f = 1562.5 Hz. The visualization of the C = 12
targeted muscles of our experiment is shown in Figure 1,
including muscles ranging from hand to upper arm in order
to capture more dynamic movement information. The 12
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FIGURE 1 | Visualization of muscles targeted during the experiment.

muscles are: First Dorsal Interosseous (FDI), Abductor Pollicis
Brevis (APB), Flexor Digiti Minimi (FDM), Extensor Indicis
(EI), Extensor Digitorum Communis (EDC), Flexor Digitorum
Superficialis (FDS), Brachioradialis (BRD), Extensor Carpi
Radialis (ECR), Extensor Carpi Ulnaris (ECU), Flexor Carpi
Ulnaris (FCU), Biceps Brachii Long Head (BIC), and Triceps
Brachii Lateral/Short Head (TRI).

2.1.2. Experimental Protocol
The experimental protocol focused on 14 gestures and 4 dynamic
motion phases involving commonly used gestures and wrist
motions (Feix et al., 2016). As shown in Figure 2, the 14 classes
were: large diameter, small diameter, medium wrap, parallel
extension, distal, tip pinch, precision disk, precision sphere, fixed
hook, palmar, lateral, lateral tripod, writing tripod, and open
palm/rest. We defined the 14 grasp labels as l ∈ {0, 1, ..., 13},
where l = 0 indicated the open-palm/rest gesture without any

movement, and l ∈ {1, ..., 13} were accordingly identified as the
other 13 gestures listed in Figure 2.

Each subject participated in two collection sessions in total,
involving the task of lifting and moving different objects from
one position to another, where in the first session the object was
moved in a clockwise trajectory while the second session was in
a counterclockwise trajectory. The subjects were asked to rest for
15 min between the two sessions.

During the sessions, each gesture of l ∈ {1, ..., 13} (not
including the open-palm/rest gesture) was performed four times
using four different objects, totaling 52 objects in each session.
The subject performed 6 trials for each of the 52 objects per
session, where each trial was executed along its corresponding
predefined path, as shown in Figure 3. During the first trial t1,
the object was moved from the initial position P0 to the position
P1, followed by another five trials to move the object clockwise
until it was returned to the initial position P0. In each trial to
move the target object from one position to another (e.g., from
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FIGURE 2 | Selected 14 gestures for the classification problem.

P0 to P1), the hand first reached the current position of the
object, then grasped the object and moved it to the subsequent
position, and next to the hand moved back to the rest position.
The counterclockwise session was performed in a similar manner
as Figure 3 but in a different direction with respect to the
initial position P0. Therefore, the grasping movement could be
conducted from different angles, directions, and distances toward
the target object, which increases the variety of the collected
dynamic EMG data.

At the beginning of the experiment, the subject was seated
facing a table and electrodes were connected to the right arm
while the arm was at the rest position with an open palm, as
illustrated in Figure 3. Object center configuration was defined
with 6 marks on the table. A screen was placed on the right
side of the subject for showing example pictures of the gestures
to be executed. First, the subject was given 5 s to read the
gesture shown on the screen, followed by an audio cue illustrating
the beginning of the first trial. Each trial lasted for 4 s, and
the object was grasped and moved along its predefined path
using the designated gesture for 6 trials without interruption,
with audio cues given between different trials. Within each 4-
s trial, the subject was required to complete 4 actions that
could be naturally performed by a human during reach-to-grasp
movements, including: (1). reaching (reaching the object), (2).
grasping (grasping to move the object), (3). returning (returning
to the rest position), and (4). resting (resting at the rest position
with an open palm). The complete timeline for grasping each

object is presented in Figure 4. Note that for each trial, in order to
preserve sufficient information on the dynamic motion, the four
grasp phases (reaching, grasping, returning, and resting) were
performed freely and naturally by the subject without limitation
on the speed of each phase as long as all the 4 phases were
completed within 4 s.

2.1.3. Data Pre-processing
Since the experimental procedure requires subjects to execute
real movements, the data is prone to noises and motion artifacts.
Thus, we applied a fourth-order band-pass (40 Hz to 500 Hz).
Butterworth filter to remove the unwanted data contamination
and clear any other frequency noise outside of the normal EMG
range. No default filtering was applied to the data from the
acquisition device.

Due to the nature of the human muscle system, upper arm
muscles generate stronger signals than hand muscles and thus a
fair source contribution would be only possible by normalizing
each muscle with respect to its maximum power. Therefore, the
maximum voluntary contraction (MVC) test was conducted for
each muscle where the subjects were asked to perform isometric
constructions of muscles lasting for 3 s. The envelope of both the
experiment and the MVC data were generated, and each channel
of the experimental data was then normalized with respect to the
maximum value of MVC envelopes.

In order to implement the EMG identification in real-time,
we further divided the processed experimental data of EMG
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FIGURE 3 | Vertical view of the experimental setup.

FIGURE 4 | Experiment timeline and the EMG segmentation and annotation.
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envelopes into sliding time windows of T = 320 ms, with a step
size of 40 ms between two consecutive windows. The following
EMG feature extraction and classification were all conducted
based on each time window.

2.2. Methodologies
2.2.1. Feature Extraction
The selection of EMG features involves considering both
processing time and data representability, at the same time
avoiding redundancy to maximize the classification performance
(Phinyomark et al., 2012). The time-domain features require
lower computational complexity compared to frequency-domain
features and thus can be implemented in real-time with
higher speed (Phinyomark et al., 2012). In this study, three
time domain features were extracted, including root mean
square (RMS), mean absolute value (MAV), and variance of
EMG (VAR). As illustrated in Hogan and Mann (1980),
the maximum likelihood estimation of EMG amplitude can
be evaluated by the RMS feature, since under constant-force,
constant-angle, and non-fatiguing construction, EMG signals
can be modeled as Gaussian distributions. Additionally, MAV
is a common feature for indicating EMG amplitude due to
its low computational requirements and potential for higher
class distinction (Phinyomark et al., 2010, 2011). Finally,
previous experimental studies also revealed that the VAR
feature could improve the EMG classification performance,
which is another frequently used feature in EMG classification
studies (Phinyomark et al., 2010, 2012).

The feature extraction was then applied to the pre-processed
EMG time windows, and RMS, MAV, and VAR features were
calculated over the window input of X ∈ R

C×T , where C = 12
is the channel number of EMG from all muscles and T = 320
ms is the window length with a sampling rate of f = 1562.5
Hz. Then the output feature vector of Z ∈ R

3C×1 was yielded
corresponding to each input window X ∈ R

C×T .

2.2.2. Unsupervised Segmentation of Dynamic

Motion
In each trial, the grasp movements were performed naturally
by the subject without limitation on the timing of each motion
phase. Since the distance between hand and object varied across
different trials, the duration of EMG sequences from different
motion phases was also not constant. For example, as shown
in Figure 3, since the object was closer to the hand during
t1, the reaching distance of trial t1 was shorter than that
of t3. Therefore, to approach the gesture classification in a
continuous manner, we first segmented each EMG trial into
different movement sequences unsupervised, and then labeled
those sequences separately according to the specific motion, as
shown in Figure 4.

To segment each EMG trial into multiple sequences
unsupervised based on the dynamic grasp movements, the
method of Greedy Gaussian Segmentation (GGS) by Hallac
et al. (2019) was adopted. The GGS algorithm works under the
assumption that during a particular static state, the EMG signal
can be well explained as a Gaussian random process with zero
mean (Clancy and Hogan, 1999). This GGS method aims to

break down multivariate time series into several segments, where
the observed data in different segments can be well modeled
as separate Gaussian distributions which are independent of
the other segments. Therefore, the mean and covariance of the
Gaussian distribution in each segment are also assumed to be
unrelated to the other segments. This time-series segmentation
task can then be transformed into a maximum likelihood
problem, where the optimal solution is a set of breakpoints
maximizing the overall likelihood when sampling from all of the
independent Gaussian segments. To decrease the computation
time, GGS utilizes a greedy and scalable implementation of
dynamic programming where optimal breakpoints are calculated
iteratively and re-adjusted in each iteration.

In this research, we segmented all EMG trials using GGS by
assigning 3 breakpoints to each trial, which gave us 4 sequences
corresponding to reaching, grasping, returning, and resting. By
doing so, the order of different movement phases was taken
into account by imposing a higher probability of movement
transitions that were expected to follow one another, e.g.,
graspingmovement following reachingmovement, later followed
by returning action. Given the specified number of breakpoints,
the GGS algorithm was utilized to unsupervised segment the
EMG trial and provide the optimal segment boundaries.

In Figure 5, such utilization of the GGS method is depicted,
where each segment of the 12-channel EMG series is modeled as
an independent multivariate Gaussian distribution with distinct
mean and covariance parameters. During the data collection,
an eye-tracker was also worn by the subject, where experiment
videos synchronized to the EMG data were recorded by the
forward-facing world camera of the eye-tracker. In order to
validate the effectiveness of the unsupervised segmentation, for
each trial, we extracted and reviewed three key video frames
corresponding to the three segment boundaries. This makes sure
the hand movements shown in the frames are consistent with the
motion phase transitions. An example of such experiment key
frames is displayed in Figure 5, where the hand just reaches the
object without lifting it at the first break point, the hand releases
the object and starts returning at the second break point, and
finally, the hand returns to the rest position at the last break point.

2.2.3. Dynamic Hand Gesture Annotation
Throughout the reach-to-grasp movement, the limb
configurations of fingers and wrist together change continuously
with respect to the shape and distance of the targeted
object (Jeannerod, 1984). A closer look would reveal the
fact that humans tend to pre-shape our hands prior to touching
the targeted object. In order to recognize these hand gestures
based on the upcoming dynamic data, we annotated the collected
EMG with a set of gesture labels l ∈ {0, 1, ..., 13}, where l = 0
was defined as the open-palm/rest gesture and l ∈ {1, ..., 13}
were accordingly identified as the other 13 gestures listed in
Figure 2. Based on this definition, following the segmented EMG
trials as shown in Figure 4, we labeled the three motional EMG
sequences of reaching, grasping, and returning to be the gesture
l ∈ {1, ..., 13} executed during the movement, and tagged the
stationary phase of resting with the open-palm label l = 0.
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FIGURE 5 | An example of unsupervised segmentation of dynamic EMG.

2.2.4. Classification of the Dynamic Hand Gesture
We constructed a classifier to recognize dynamic hand gestures
using the collected EMG signals. The EMG signals were first
broken down into time windows of Xi ∈ R

C×T with size T = 320
ms (f = 1562.5 Hz sampling rate), where Xi represents the ith
EMG window and C = 12 is the number of channels. Then,
based on the gesture label l ∈ {0, 1, ..., 13} of the corresponding
EMG window Xi, pairs of data and label {(Xi, l)}

n
i=1 were formed,

where n is the total number of windows. Later, the selected three
time-domain features of RMS, MAV, and VAR were extracted

as Zi ∈ R
3C×1 for each EMG window Xi ∈ R

C×T , leading to
feature-label pairs of {(Zi, l)}

n
i=1.

In this research, we utilized the extra-trees method (Geurts
et al., 2006) for identifying hand gestures based on the extracted
EMG features. This method incorporates averaging an ensemble
of random decision trees trained on different sub-samples of the
dataset, which reduces overfitting and improves performance.
We observed that the utilization of the extra-trees algorithm with
a combination of 50 trees provided desirable performance, hence
used in this study.
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FIGURE 6 | Time alignment for EMG windows of validation trials.

2.2.5. Training and Validation
We performed intra-subject training and validation of the
14-class gesture classification, i.e., the training and validation
were performed for different subjects separately. For every
subject, we implemented a 3-fold validation protocol. For
each validation fold, we randomly split the 6 trials collected
from each object into 4 training trials and 2 validation trials,
totaling 224 trials (66.7%) for training and 112 trials (33.3%)
for validation in total. Thereafter, the classifier was trained
on the aforementioned training set and evaluated on the left-
out validation set which was unseen to the classifier. Since
our main objective was to detect the upcoming grasping
intention at an earlier stage and pre-shape the robot before
the final grasp was accomplished, the data from the returning
phase were excluded from training, during which the grasp
was already completed and the object was already released
from the hand. However, to provide a full scope of the
effectiveness of the classification approach, the classifier was then
evaluated on the entire EMG trial of four movement phases
irrespectively.

As the subjects were not required to perform the four
movement phases of reach-grasp-return-rest at a fixed timing
or speed during the data collection, the duration of each phase
for different trials varies based on the subject’s natural pace.
Therefore, during the evaluation, we aligned all validation EMG
trials based on the breakpoint occurring at the beginning of
the grasping phase, as shown at 0 ms in Figure 6. In this
way, the evaluation could focus more on the assessment of
the transition from reaching to grasping, which is the key
transition in grasp intent inference. Thus, the performances
across all the validation trials can be integrated more clearly
by averaging them based on their aligned timelines. In the last
step, the resting-phase data of 700 ms from the end of the
previous trial was appended at the beginning of its following
trial in order to show the dynamic transition between resting and
reaching phases.

2.2.6. Classification Approach
As mentioned earlier, we trained the classifier with reaching,
grasping, and resting phases only, whereas validated the model
with all motion phases (reaching, grasping, returning, and
resting). In order to specifically inspect the performance of
the dynamic-EMG classifier and explore the informative levels
of EMG data from different motion phases, the constructed
gesture classifier was trained with three different strategies
independently:

1. Trained with EMG of reaching and resting phases;
2. Trained with EMG of grasping and resting phases;
3. Trained with EMG of reaching, grasping, and resting phases.

3. RESULTS

The performances of classifiers trained by the three different
strategies introduced in Section 2.2.6 are shown in Figures 7–
9, respectively. We present the validation results as functions
of time, in order to inspect the performance variation during
different dynamic phases during a trial. In those figures, we
show the predicted probabilities and the classification accuracy
on the validation set, where each time point represents an
EMG time window. The performances of each time point in
a trial were averaged over all 3-fold validation trials of all
subjects, given their aligned timeline. We define the beginning
of the grasping phase as 0 ms, and the averaged breakpoints
between different motion phases are illustrated by vertical dashed
lines.

In Figures 7–9, the grasp gesture is identified as the ground-
truth gesture l ∈ {1, ..., 13} executed during the non-resting
phases, the rest gesture represents the open-palm/rest gesture
l = 0 during the resting phase, and the top competitor is
defined as the gesture with the highest predicted probability
among all other 12 gestures which were not performed during
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FIGURE 7 | Dynamic-EMG gesture classifier trained by the first strategy (reaching and resting phases): predicted probabilities and accuracy on validation set,

presented as functions of time. (A) Average predicted probabilities. (B) Average accuracy.

the entire trial. For example, a large diameter was executed in
order to grasp a bottle during a trial, so in this case, the grasp
gesture is the large diameter with l = 1 and the rest gesture
denotes open-palm/rest gesture l = 0. Since the classification
was applied to each EMG time window independently, every
time point t in Figures 7–9 corresponds to a 14-dimensional
predicted probability output (pt,l=0, pt,l=1, ..., pt,l=14), where the
rest gesture probability is pl=0, the grasp gesture probability
is pl=1 (given the large diameter as grasp gesture), and the
top competitor probability is maxj 6=0,1 {pt,l=j}. Note that for
different time points tm and tn, the top competitor gesture
maxj 6=0,1 {ptm ,l=j} and maxj 6=0,1 {ptn ,l=j} can be distinct so the
top competitor does not represent a particular grasp type and
varies over time windows. The probability distance between the
grasp gesture and the top competitor indicates the classifier’s
capability of distinguishing ground-truth gestures from other
distracting grasps. The predicted probabilities and classification
accuracies in Figures 7–9 were averaged over all subjects
and validation trials, i.e., the classification performance was
evaluated and averaged on all possible grasp gestures l ∈

{1, ..., 13}, not referring to the performance on a specific
gesture.

In Figures 7, 8, 9A, the time point at which the probabilities
of grasp gesture and rest gesture intersect with each other is
defined as ti (the intersection is marked by a solid red dot), and
the distance from the probability peak of grasp gesture to the
simultaneous probability of top competitor is defined as dp. In
Figures 7, 8, 9B, the accuracies of successfully detecting the grasp
gesture and rest gesture are independently given.

In this section, the performances of the three training
strategies are further compared and analyzed, and the
information revealed by dynamic EMG of different motion
phases is also discussed.

3.1. Training With Reaching and Resting
Phases
The performance of the classifier trained by the first strategy
(trained with reaching and resting phases) is shown in Figure 7.
As illustrated in Figure 7A, since the classifier was trained only
by the reaching phase, not including the grasping phase, the
peak of the predicted grasp gesture probability was achieved
during the reaching phase at around 0.51. During the grasping
phase and the first half of the returning phase, the grasp gesture
probability was stable at around 0.3, and then gradually decreased
as the movement converted to the resting phase. Notably, the
estimated probability of grasp gesture was constantly higher than
the top competitor throughout the entire trial. The time point
when the probability curves of grasp gesture and rest gesture
intersect was ti = −729 ms and the distance from the probability
peak of grasp gesture to the top competitor probability was
dp = 0.36. Simultaneously, the predicted probability of the rest
gesture reduced dramatically to below 0.2 as the grasp movement
happened until the hand returned to the rest position when the
open-palm probability gradually went up again.

In Figure 7B, the average accuracy for detecting grasp gesture
during the reaching phase presented an outstanding performance
with a peak over 0.8 and remained higher than 0.6 within most
of the reaching phase. This accuracy decreased in grasping and
returning phases, fluctuating around 0.5. The performance of
detecting rest gesturewas highly accurate, with the accuracy value
over 0.8 throughout most of the two resting phases.

We are especially interested in the intersection point ti
between the grasp gesture and rest gesture probabilities. Since
after this point, the grasp gesture starts to outperform the rest
gesture, the system could start to prepare for pre-shaping the
robot from this point on according to the type of detected grasp
gesture. Ideally, this intersection is expected to appear right at
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FIGURE 8 | Dynamic-EMG gesture classifier trained by the second strategy (grasping and resting phases): predicted probabilities and accuracy on validation set,

presented as functions of time. (A) Average predicted probabilities. (B) Average accuracy.

the junction where the resting phase ends and the reaching
phase starts in order to indicate the beginning of the hand
motion. However, in practice, the hand movement could only
be predicted based on the past motion, so the intersection is
expected to appear after the start of the reaching phase but the
closer to it the better. In Figure 7A, the intersection of the two
curves appeared ti = −729 ms earlier than the start of the
grasping phase, which was after but very close to the beginning
of the reaching phase and allowed enough time to pre-shape the
robotic hand before the actual grasp. Therefore, the dynamic
EMG of the reaching phase is proved to be informative for
forecasting the gesture in advance during the reach-to-grasp
movement. Furthermore, even though the model was trained
by reaching and resting phases only, the probability of grasp
gesture was still steadily higher than top competitor during all the
four dynamic phases, representing the significant hand-shaping
information revealed by the movement during the reaching
phase.

3.2. Training With Grasping and Resting
Phases
The performance of the classifier trained by the second strategy
(trained with grasping and resting phases) is shown in Figure 8.
As shown in Figure 8A, the predicted grasp gesture probability
first gradually increased, until the grasping phase where the
probability peak of grasp gesture was reached at around 0.56.
When the hand movement entered returning and resting phases,
the grasp gesture probability declined to lower than 0.2. The
probability curve of rest gesture shows an opposite trend—the
estimated rest gesture probability started from a peak at the first
resting phase, then decreased to below 0.2 as the grasp movement
happened, and then finally reached another peak when the hand
went back to rest again. The intersection point between grasp
gesture and rest gesture probabilities appeared at ti = −334 ms,

and the probability peak of grasp gesture was dp = 0.41 higher
than the top competitor probability at the same time point.

In Figure 8B, the average accuracy of detecting grasp gesture
during the grasping phase performed outstandingly better than
other phases, showing a similar pattern with its probability curve
in Figure 8A. This grasp gesture accuracy was also higher than
0.6 during the end of the reaching phase and the entire grasping
phase. The rest gesture accuracy was similar to the model trained
by the first strategy as indicated in Figure 7B.

Compared to the classifier trained by reaching phase (the first
strategy, shown in Figure 7) with ti = −729 ms, the probability
intersection of this second-strategy model appeared 395 ms later
in time, at ti = −334ms. This illustrates that the EMG data of the
grasping phase contained less information for detecting gestures
in the earlier stage compared to the reaching-phase data, and thus
the model trained by the second strategy provided less response
time for the system. However, the grasp gesture probability peak
of this second model outperformed the top competitor by dp =

0.41, which was 0.05 higher than dp = 0.36 of the first model.
This demonstrates that the dynamic EMG from the grasping
phase is more accurate and confident for decision-making during
the grasp movement, outperforming other interference options
to a larger degree.

3.3. Training With Reaching, Grasping, and
Resting Phases
The performance of the classifier trained by the third strategy
(trained with reaching, grasping, and resting phases) is shown in
Figure 9. In Figure 9A, the predicted probability of grasp gesture
increased steadily during the reach-to-grasp movement when the
grasp was carried out from the resting status, then stayed at its
peak during the reaching and grasping phases, and gradually
decreased when the subject finished grasping and returned to
resting status again. Simultaneously, the predicted probability
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FIGURE 9 | Dynamic-EMG gesture classifier trained by the third strategy (reaching, grasping, and resting phases): predicted probabilities and accuracy on the

validation set presented as functions of time. (A) Average predicted probabilities. (B) Average accuracy.

FIGURE 10 | The summary of model performances trained by the first, second, and third training strategy.

of rest gesture first reduced dramatically below 0.2 during the
grasp movement, until the hand returned to the rest position
when the rest gesture probability progressively increased again.
The predicted probability of the top competitor remained stably
below 0.2, which was constantly outperformed by grasp gesture
significantly throughout the entire trial. The intersection of grasp
gesture and rest gesture probabilities happened at ti = −743 ms,
and the probability peak of grasp gesture was dp = 0.49 higher
than the simultaneous top competitor.

For the dynamic gesture classification, as shown in Figure 9B,
the average accuracy of detecting grasp gesture was stably higher
than 0.8 within most of the reaching and grasping phases, which
are the most critical phases for making a robotic-grasp decision.
It is worth noting that, the validation accuracy was still higher
than 0.75 at the beginning of the returning phase even though the
model was not trained on any data from that phase. The average-
accuracy curve of the rest gesture presented a similar trend as
shown in Figures 7B, 8B.

Compared to the first and second training strategies, the third
strategy combined the advantages from both the reaching and
grasping phases, leading to a boosted performance in detecting
dynamic EMG compared to every single phase of reaching and
grasping. The intersection point ti = −743 ms moved toward
the beginning of the reaching phase even further compared to
the first training strategy, and simultaneously the model was
able to distinguish between grasp gesture and top competitor
with a higher degree of confidence (dp = 0.49) throughout the
entire trial compared to the second training strategy. Therefore,
the model could provide even more response time before the
grasp happens with more precise performance. Even during
the returning phase which was unseen in the training, the
model could still perform decently, illustrating the gain of using
dynamic EMG for training. This higher degree of freedom in
EMG data could enable more information and stability of the
model to a wider range of postures during the dynamic grasp
activity. In addition, the accuracy for detecting the resting phase
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FIGURE 11 | Confusion matrix of the third strategy, during the pre-shaping period from t = −743 ms to t = 0 ms.

was also highly accurate and sensitive to perform as a detector of
muscle activation for triggering the robotic grasp.

4. DISCUSSION

The summary of model performances under different
classification scenarios is shown in Figure 10. In short, the
dynamic data from the reaching phase could provide more
response time for the robot to pre-shape before the grasp

happens, the dynamic data from the grasping phase could
improve the decision confidence and robustness compared to
other competing gestures, and the higher data variability from
combining the reaching and grasping phases could leverage the
advantages from both phases and further boost the performance
of dynamic-EMG classification.

In order to investigate the model performance regarding
different gestures, in Figure 11 we plot the confusion
matrix of the model trained by the third strategy, which
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was evaluated on the left-out validation set. Here, we
only present the evaluation result during the pre-shaping
time period from t = −743 ms to t = 0 ms, in order
to inspect the model’s capability of detecting upcoming
gestures during the reaching phase before the actual
grasp happens.

As shown in Figure 11, the model was able to detect the
upcoming gestures efficiently during the pre-shaping period, with
an average accuracy of 85%. In addition, the model could also
clearly distinguish between different gestures, even though it was
trained with large gesture vocabularies with multiple dynamic
motion positions.

But there are gestures that are very similar to each other
and, thus, less distinguishable as illustrated in Figure 11, where
groups of gestures are more likely to be misidentified from
each other. For example, in Figure 11, the precision disk and
precision sphere could be more confusing to the classifier and
they were more likely to be misidentified from each other. That
could be the result of similar hand configurations of those two
gestures, only with few differences in the hand opening width
during the reach-to-grasp movement, and the precision sphere
could be identified as an intermediate state of the precision
disk when the hand opens. Similar circumstances have also
been observed and discussed in Sburlea and Müller-Putz (2018),
where pattern similarities of the hand activities of different grasp
types were extracted from three different data modalities (EEG,
EMG, and joint angles) respectively. It is indicated in Sburlea
and Müller-Putz (2018) that similarities of different gestures
may appear in three aspects: 1. object shape (depicting the
relation between grasps based on the shape and size of the
grasped object), 2. grasp categorization (describing the relation
between grasps based on categorization in three types, including
power, precision, and intermediate), and 3. thumb position
(showing the relation between grasps based on the position
of the thumb including abducted or adducted). Our research
conforms with this finding that gesture pairs could be less
distinguishable if they are similar in any of the three aspects,
as shown in Figure 11. We found that the grasps that involved
objects with a thinner or elongated shape were confusing for the
classifier to distinguish, e.g., lateral, lateral tripod, and writing
tripod. It was also observed that gestures of the same grasp
categorization could be less distinguishable from each other, e.g.,
precision disk and precision sphere. In addition, we noticed
that gestures based on the same thumb position were more
likely to be misidentified from each other, e.g., fixed hook
and palmar.

In our future experiment, in order to better distinguish the
subtle differences between similar gestures, the time period of the

pre-shaping stage could be divided into finer-grained sub-phases
for capturing precise changes in finger configurations.

5. CONCLUSION

In this article, we proposed a non-static EMG recognition
method for identifying real-time hand/arm movements
regarding the dynamic muscular activity variation in practice.
The presented framework was trained and validated by EMG
signals collected from continuous grasping tasks with variations
on dynamic hand postures so that the transitions from one intent
to another could be encoded into the model based on natural
sequences of human grasp movements. The obtained EMG data
was segmented unsupervised into different dynamic motion
sequences and further labeled based on the specific motion. A
classifier was then constructed for recognizing the gesture label
based on the dynamic EMG signal, and the impact of different
movement phases was examined via comparative experiments.
The proposed method was assessed in a real-time manner
and the corresponding performance variation over time was
presented. Results illustrated the effectiveness of the framework
built with the EMG data of a high degree of freedom.
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