
cells

Article

Proline Concentration and Its Metabolism Are Regulated in a
Leaf Age Dependent Manner But Not by Abscisic Acid in Pea
Plants Exposed to Cadmium Stress

Edyta Zdunek-Zastocka *, Agnieszka Grabowska, Beata Michniewska and Sławomir Orzechowski

����������
�������

Citation: Zdunek-Zastocka, E.;

Grabowska, A.; Michniewska, B.;

Orzechowski, S. Proline

Concentration and Its Metabolism

Are Regulated in a Leaf Age

Dependent Manner But Not by

Abscisic Acid in Pea Plants Exposed

to Cadmium Stress. Cells 2021, 10, 946.

https://doi.org/10.3390/

cells10040946

Academic Editor:

Suleyman Allakhverdiev

Received: 28 February 2021

Accepted: 16 April 2021

Published: 20 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Biochemistry and Microbiology, Warsaw University of Life Sciences—SGGW,
Nowoursynowska 159, 02-776 Warsaw, Poland; agnieszka_grabowska@sggw.edu.pl (A.G.);
beata_michniewska@sggw.edu.pl (B.M.); slawomir_orzechowski@sggw.edu.pl (S.O.)
* Correspondence: edyta_zdunek_zastocka@sggw.edu.pl; Tel.: +48-22-593-2577

Abstract: The accumulation of proline is one of the defense mechanisms of plants against the harmful
effects of adverse environmental conditions; however, when pea plants were treated for 12 h with
CdCl2, the proline concentration decreased in the youngest A (not expanded) and B1 (expanded)
leaves, and did not change significantly in the B2 (mature, expanded) or C (the oldest) leaves. After
24 h of cadmium (Cd) stress, the proline concentration remained low in A and B1 leaves, while in B2
and C leaves, it increased, and after 48 h, an increase in the proline concentration in the leaves at each
stage of development was observed. The role of proline in the different phases of plant response to
the Cd treatment is discussed. Changes in proline accumulation corresponded closely with changes
in the transcript levels of PsP5CS2, a gene encoding D1-pyrroline-5-carboxylate synthetase involved
in proline synthesis, and PsPDH1, a gene encoding proline dehydrogenase engaged in proline
degradation. CdCl2 application induced the expression of PsProT1 and PsProT2, genes encoding
proline transporters, especially during the first 12 h of treatment in A and B1 leaves. When the time
courses of abscisic acid (ABA) and proline accumulation were compared, it was concluded that an
increase in the proline concentration in the leaves of Cd-treated pea plants was more related to a
decrease in chlorophyll concentration (leaves B2 and C) and an increase in the malondialdehyde level
(A and B1 leaves) than with an increase in ABA concentration alone. Exogenous application of ABA
(0.5, 5, 50 µM) significantly increased the proline concentration in the A leaves of pea plants only,
and was accompanied by an elevated and repressed expression of PsP5CS2 and PsPDH1 in these
leaves, respectively. The presented results suggest that under Cd stress, the accumulation of proline
in leaves of pea plants may take place independently of the ABA signaling.

Keywords: abscisic acid; cadmium; heavy metals; malondialdehyde; Pisum sativum L.; pyrroline-5-
carboxylate synthetase; proline dehydrogenase; proline transporters

1. Introduction

Over the past few decades, increased anthropogenic activity, rapid industrialization,
and the use of metal-based pesticides have led to an increased contamination of soil
and water with heavy metals, which in turn causes toxicity to living organisms [1,2].
Among them, cadmium (Cd) is one of the most common heavy metals in a contaminated
environment, which negatively affects plant growth and development, even when available
in low concentrations. From the soil, Cd can be easily taken up by plants, leading to
severe disturbances in plant physiological and biochemical processes [3,4]. Cd inhibits
photosynthesis and transpiration in leaves [4], limits water uptake, and disrupts the uptake
and movement of mineral nutrients [5]. At the cellular level, Cd toxicity can be explained
by its ability to react with the sulfhydryl groups of proteins, replacement of some essential
elements at the active sites of enzymes, and replacement of magnesium in both chlorophyll
a and b [4,6]. Although Cd is not a redox-active metal, it can induce oxidative stress,

Cells 2021, 10, 946. https://doi.org/10.3390/cells10040946 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-3370-6910
https://doi.org/10.3390/cells10040946
https://doi.org/10.3390/cells10040946
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10040946
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10040946?type=check_update&version=1


Cells 2021, 10, 946 2 of 16

possibly by interfering with an antioxidant defense, by increasing nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase activity, or by disrupting the electron transport
chain [7,8].

To counteract the deleterious effects of adverse environmental conditions, plants have
evolved multiple defense mechanisms. Among these, a crucial role is played by the synthesis
of protective compounds, including specific amino acids such as proline, peptides such as
glutathione and phytochelatins, and polyamines such as putrescine [9,10]. Stress-induced
proline accumulation has been confirmed in many plant species and has been associated
with adaptation, particularly to osmotic stress caused by drought or salinity or simulated by
polyethylene glycol (PEG) [9,11]. Apart from being one of the most widespread compatible
osmolytes, proline may contribute to scavenging reactive oxygen species (ROS), stabilizing
proteins and subcellular structures, and regulating intracellular redox potential, and it may
function as a signaling molecule or heavy metal chelator [9,11–14].

Under stress conditions, proline is synthesized mainly from glutamate, which is
reduced to glutamate semialdehyde by the rate-limiting D1-pyrroline-5-carboxylate syn-
thetase (P5CS), and then spontaneously converted to pyrroline-5-carboxylate (P5C) and
reduced to proline by P5C reductase [12,15]. In plants, P5CS is typically encoded by
two genes that exhibit distinctive expression patterns, suggesting different metabolic
functions. In Arabidopsis thaliana, transcription of AtP5CS1 is induced under drought,
salinity and phosphate deficiency, whereas AtP5CS2 is upregulated during incompatible
plant–pathogen interactions [16–21]. Moreover, p5cs1 mutants have shown a reduction in
stress-induced proline accumulation and hypersensitivity to salt stress, while p5cs2 muta-
tion caused embryo abortion upon seed development [22]. In Medicago truncatula, transcript
abundance of MtP5CS1 was unaffected by osmotic stresses, in contrast to MtP5CS2, which
expression was strongly induced in shoots of salt-stressed plants [23].

Proline catabolism occurs through the action of proline dehydrogenase (PDH), which
oxidizes proline to P5C, and by P5C dehydrogenase (P5CDH) converting P5C to glutamate.
In Arabidopsis and Medicago sativa, PDH is encoded by two genes, while P5CDH exists as
a single copy gene [24,25]. During salt stress, expression of both MsPDHs strongly de-
creased and was closely correlated with proline accumulation, whereas transcript levels of
MsP5CDH remained unchanged [25]. In Arabidopsis, both ProDHs were induced by exoge-
nous proline; however, NaCl was found to repress ProDH1 and induce ProDH2 [21,24,26,27].
Interestingly, the Arabidopsis pdh1 mutant displayed hypersensitivity to proline despite the
presence of AtPDH2, emphasizing the role of AtPDH1 in proline catabolism [28].

Based on current knowledge, the reactions catalyzed by P5CS and PDH are the
rate-limiting steps in proline biosynthesis and degradation, respectively, under stressful
conditions [12]. However, the intracellular proline concentration is the cumulative result of
not only the rates of biosynthesis and degradation, but also transport between cells and
organs [29,30]. The three Arabidopsis proline transporters (ProTs) are localized at the plasma
membrane and mediate the transport not only of proline, but also of glycine betaine and
γ-aminobutyric acid [31]. Transcripts of AtProT1 have been found in the phloem or phloem
parenchyma cells, indicating a role in the long-distance transport of solutes [31], whereas
expression of AtPro2 as well as GmProT1 and GmProT2 in alfalfa has been found to be
strongly induced in response to salt and drought, implying an important role in nitrogen
distribution under stress conditions [31,32].

Although accumulation of proline under osmotic stress is a well-known phenomenon,
the results describing the changes in proline concentration due to cadmium toxicity are
often contradictory, especially in the leaves. Cadmium has been found to significantly
increase proline accumulation in the leaves of sunflower [33], cucumber [34], and bean
seedlings [35], while reduced proline concentration was observed in the leaves of oilseed
rape [36], wheat [37], and hybrid poplar [38]. The influence of cadmium on proline concen-
tration was investigated after several days or weeks of treatment; hence, differences may
have resulted from the differing roles of this multifunctional amino acid [11] at individual
stages of adaptation to unfavorable conditions. There is a shortfall of information on the
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dynamics of changes in proline concentration in the first 48 h of cadmium exposure, and
even less is known about the metabolism and transport of proline under these conditions.
Moreover, the analysis of leaves at different stages of development would provide new
information enabling an understanding of the role of proline in the early response of a
plant to Cd ions.

Some results have demonstrated that accumulation of proline under osmotic stress
can be mediated by abscisic acid (ABA) [39,40]. Under drought stress, transgenic Ara-
bidopsis and petunia plants overexpressing NCED (9-cis-epoxycarotenoid dioxygenase),
a rate-limiting gene in ABA biosynthesis in response to stress, accumulated significantly
more proline than did wild-type (WT) plants [41,42]. Moreover, treatment with norflurazon,
an ABA synthesis inhibitor, inhibited proline synthesis and aggravated hypoxia-induced
oxidative damage in rice roots [43]. However, the use of ABA-insensitive mutants (abi1-1,
abi2-1, abi3, abi4, abi5) shows that proline accumulation under low water potential was
dependent not only on the ABA concentration, but also on the plant sensitivity to this
hormone [44]. Furthermore, in ABA-deficient aba1-1 mutants, the expression of the genes
involved in proline biosynthesis was independent of the endogenous level of ABA in
Arabidopsis under cold and osmotic stresses [45]. It was also reported that ABA alone was
not able to duplicate drought-induced proline accumulation [46], and the application of
exogenous ABA did not increase the proline concentration in barley or spinach [47]. There-
fore, at least under drought, cold, or PEG-induced osmotic stresses, proline accumulation
is mediated both by ABA-dependent and ABA-independent signaling pathways. Under
conditions of Cd toxicity, however, it is not known whether there are any interactions
between ABA and proline accumulation or whether the metabolism of proline and its
transport are ABA-independent.

Therefore, the present study investigates the possible mediating role of ABA in the
regulation of proline accumulation and its metabolism in the early stages of Cd toxicity
in pea leaves at various stages of development. First, the dynamics of changes in ABA
concentration with changes in proline accumulation and the expression of genes related
to its metabolism and transport during the first 48 h of Cd treatment were investigated,
and relationships between these variables were explored. Subsequently, the effects of
exogenous ABA application on proline concentration and expression of genes related to its
metabolism and transport were examined.

2. Materials and Methods
2.1. Plant Material and Experimental Conditions

Seeds of Pisum sativum L. (cv. Iłówiecki) were germinated in moist vermiculite, and
the 12-day-old seedlings were transferred to containers filled with aerated 1/2 Hoagland
medium [48]. After two days, the medium was supplemented with CdCl2 (50 µM) or
ABA (0.5, 5, or 50 µM). Plants grown in a medium without CdCl2 or ABA served as
controls. After 12, 24, and 48 h of the treatments, plants (twelve plants per treatment)
were harvested and separated into roots and leaves (leaflets plus stipule). The leaves were
grouped according to the stage of development. The oldest true leaves were collected from
the first node from the bottom and were termed C leaves. Leaves taken from the second
and third nodes were termed B2 leaves. The youngest fully expanded leaves were collected
from the fourth node and were termed B1 leaves, while the youngest unexpanded leaves
were taken from the fifth node and were termed A leaves. The root and leaf samples were
frozen in liquid N2 immediately after harvest and stored at –80 ◦C until use.

The experiments were conducted in a plant growth chamber (the MLR-352H Climate
Chamber, PHC Biomedical—formerly Panasonic Biomedical) at a humidity of approxi-
mately 60% and light intensity of 300 µmol s−1 m−2. The air temperature was 22 ◦C (16 h)
during the day and 19 ◦C (8 h) at night. The experiment (all treatments) was repeated
independently at least three times, giving at least three independent biological replicates.
A minimum of two technical replicates were performed for each biological replicate.
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2.2. Total RNA Extraction and cDNA Synthesis

Total RNA was isolated according to Chomczynski and Sacchi [49], except that RNA
was precipitated for 2 h on ice by the addition of 0.3 volume of 10 M LiCl. The isolated
RNA was treated with DNase I (Thermo Scientific) and a total of 2 µg of RNA was reverse
transcribed in a final volume of 10 µL using the Transcriptor First Strand cDNA Synthesis
Kit (Roche) according to the manufacturer’s protocol.

2.3. Identification of Nucleotide Sequences of Genes Involved in Proline Metabolism and Transport

Internal fragments of the analyzed Pisum sativum genes (PsP5CS1, PsP5CS2, PsPDH1,
PsProT1, PsProT2) were amplified using Q5 High-Fidelity DNA Polymerase (New England
BioLabs) and primers designed from known sequences of Medicago truncatula P5CS1
(AJ278818), P5CS2 (JN809240), PDH1 (XM_013595747), ProT1 (XM_003600790), and ProT2
(XM_013602264). Primers are listed in Supplementary Table S1. PCR conditions were as
follows: 30 s at 98 ◦C; 40 cycles of 10 s at 98 ◦C, 30 s at 56 ◦C (PsPDH1) or 58 ◦C (PsP5CS1,
PsP5CS2, PsProT1, PsProT2), and 1 min at 72 ◦C; followed by a final extension for 10 min at
72 ◦C. PCR products were cloned into the pJET1.2/blunt cloning vector (Thermo Scientific),
amplified in E. coli JM109, and then sequenced at the DNA Sequencing and Oligonucleotide
Synthesis Laboratory at The Institute of Biochemistry and Biophysics, Polish Academy of
Sciences. At least six clones of each PCR product were sequenced and analyzed.

2.4. Gene Expression Analysis

Real-time PCR was performed on a LightCycler® 96 instrument (Roche Diagnostics).
The reaction mixture contained 5 µL of SYBR Green I Master (Roche Diagnostics), 3 µL of
cDNA template (equivalent to 10 ng of total RNA), and 0.5 µM of each primer in a total
volume of 10 µL. Thermal cycling conditions were as follows: 10 min at 95 ◦C, 40 cycles
of 15 s at 95 ◦C, 15 s at 63 ◦C, and 20 s at 72 ◦C. Melting curves (95 ◦C for 10 s, 65 ◦C for
1 min, and 97 ◦C for 1 s in continuous acquisition mode) were generated for each reaction
to ensure amplification specificity. All reactions were performed in triplicate. The relative
expression levels of target genes were calculated using the 2−∆∆Ct method [50]. The genes
encoding β-tubulin and actin were used as internal controls [51]. The absence of genomic
DNA in RNA samples was verified using primers designed to different exons of gene
encoding GAPDH (glyceraldehyde-3-phosphate dehydrogenase) [51]. All primers used for
real-time PCR are listed in Supplementary Table S2. All reactions were performed at least
in triplicate for each of the three biological repetitions.

2.5. Determination of ABA and Proline Concentrations

Abscisic acid was extracted from pea tissues as described by Zdunek-Zastocka and
Grabowska [52]. Briefly, 200 mg of frozen leaves were ground to a fine powder with liquid
nitrogen and mixed with 1.4 mL of a solution consisting of 80% methanol, 2% glacial acetic
acid, and butylated hydroxytoluene (20 mg L−1). The extracts were shaken at 4 ◦C in the
dark for 24 h and then centrifuged at 12,000× g and 4 ◦C for 20 min. Supernatants were
diluted 25 times in Tris-buffered saline, TBS (150 mM NaCl, 25 mM Tris-HCl, pH 7.5), and
100 µL of the diluted extracts were used for the quantification of ABA using the Phytodetek
ABA enzyme immunoassay test kit (Agida) according to manufacturer’s instructions.

Extraction and measurement of free proline in pea tissues were performed according
to the acid ninhydrin method described by Bates et al. [53]. Briefly, samples of 100 mg
frozen leaves were homogenized with 2 mL of 3% sulphosalicylic acid in a pre-chilled
mortar and pestle. The extracts were shaken for 30 min at 750 rpm. The residues were
removed by centrifugation at 12,000× g for 20 min. Supernatants (0.8 mL) were mixed with
an equal volume of an acid-ninhydrin reagent (1.25 g ninhydrin, 30 mL of glacial acetic
acid, and 20 mL of 2 M orthophosphoric acid) and incubated for 60 min in boiling water.
After cooling, the reaction mixture was extracted with 2 mL of toluene, mixed vigorously
and left at room temperature for 20 min until separation of the two phases occurred. The
absorbance of toluene phase was measured at 520 nm using pure toluene as a blank.
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2.6. Determination of Chlorophyll and MDA Concentrations

Total chlorophyll was extracted using the dimethyl sulfoxide (DMSO) method de-
scribed by Hiscox and Israelstam [54]. Frozen pea leaves (50 mg) were mixed with 2 mL of
dimethyl sulfoxide (DMSO) and incubated for 60 min at 65 ◦C. The residues were removed
by centrifugation at 12,000× g for 10 min, and the absorbance of the chlorophyll extracts
was measured at 649 and 665 nm against DMSO as a blank.

The amount of malondialdehyde (MDA) was measured according to the thiobarbituric
acid test [55]. Samples of 150 mg frozen leaves were homogenized with 1.5 mL 0.1 M
potassium phosphate buffer, pH 6.8 in a pre-cooled mortar and pestle. The homogenates
were centrifuged at 10,000× g for 15 min. Supernatants were mixed in 1:1 proportions
with TBA (0.5% thiobarbituric acid in 15% trichloroacetic acid) and incubated for 20 min
at 100 ◦C. After cooling, the solution was centrifuged at 10,000× g for 10 min and the
absorbance of the supernatant was measured at 532 nm and 600 nm.

2.7. Statistical Analysis

The statistical analysis was performed using the Statistica 9.1 program. The conformity
of data with normal distribution was verified using the Shapiro-Wilk test, and the equality
of variances between the two data sets was verified using Levene’s test. Thereafter, the
parametric Tukey’s test (almost all analyses) or the non-parametric Kruskal–Wallis test
(analyses of the PsP5CS1 expression under Cd treatment) was used, accordingly.

3. Results
3.1. Identification of Nucleotide Sequences of Genes Involved in the Metabolism and Transport
of Proline

A nucleotide sequence fragment (711 bp), sharing a high percentage identity with
the sequences of P5CS1 genes from Medicago truncatula (MtP5CS1, AJ278818, 92%) [23,56],
Medicago sativa (MsP5CS1, X98421, 92%) [57], Brassica napus (BnP5CS1, AF314811, 75%),
and Arabidopsis thaliana (AtP5CS1, NM_129539, 73%) [16,22], was identified in pea plants
and designated Pisum sativum P5CS1 (PsP5CS1, MW030636) (Supplementary Figure S1).

A 945-bp nucleotide sequence fragment, sharing a high percentage identity with the
sequences of P5CS2 genes from Medicago truncatula (MtP5CS2, JN809240, 83%) [23,56],
Arabidopsis thaliana (AtP5CS2; NM_115419, 72%) [16,22], and Brassica napus (BsP5CS2,
AF314812, 67%), was identified in pea plants and designated Pisum sativum P5CS2 (PsP5CS2,
MW423825) (Supplementary Figure S2).

A nucleotide sequence fragment (471 bp) that shared a high percentage identity with
the sequences of stress-downregulated PDH genes from Medicago truncatula (MtPDH1,
XM_013595747, 87%) [56], Medicago sativa (MsPDH1, AY556386, 80%; MsPDH2, AY615900,
77%) [25], Nicotiana tabacum (NtPDH2, AY639146, 69%) [58], and Arabidposis thaliana (At-
PDH1, NM_001339059, 66%) [59] was identified in pea plants and designated Pisum sativum
PDH1 (PsPDH1, MW183670) (Supplementary Figure S3).

A 617-bp nucleotide sequence fragment that shared 84% identity with the MtProT1
(XM_003600790) and GmProT1 (XM_003552545) genes from Medicago truncatula and Glycine
max, respectively, and 70% identity with the AtProT genes from Arabidopsis thaliana (AtProT1,
X95737; AtProT2, X95738; AtProT3, NM_129215) was identified in pea plants and designated
Pisum sativum ProT1 (PsProT1, MW030634) (Supplementary Figure S4). The sequence
shared less than 60% identity with the sequences of MtProT2 (XM_013602264) and GmProT2
(XM_014775460). Additionally, a 460-bp nucleotide sequence fragment that shared 88%
identity with the sequence of MtProT2 and 81% identity with the sequence of GmProT2
was identified in pea plants and designated Pisum sativum ProT2 (PsProT2, MW030635)
(Supplementary Figure S5). The sequence shared less than 60% identity with the sequences
of MtProT1, GmProT1, and all three AtProTs.
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3.2. MDA and Chlorophyll Concentration as Affected by Cadmium Stress

Levels of chlorophyll and malondialdehyde (MDA), an end product of lipid peroxi-
dation [55], can reflect the degree of stress/membrane damage induced by Cd. Therefore,
changes in the chlorophyll (a + b) and MDA concentrations over time were analyzed in the
leaves of pea plants after 12, 24, and 48 h of growth on media containing 50 µM CdCl2. The
analyses were performed on leaves at different stages of development: the youngest unex-
panded leaves (A), the youngest fully expanded leaves (B1), the fully expanded mature
leaves (B2), and the oldest true leaves (C).

Chlorophyll concentration did not change significantly in the leaves of Cd-treated
plants after 12 h (Figure 1A); however, after 24 h, it decreased by 15% in A and B1 leaves,
and by 22% in B2 and C leaves. After 48 h of Cd treatment, the concentration of chlorophyll
in A and B1 leaves decreased as before, by approximately 15%, while in leaves B2 and C, it
declined by 27% and 36%, respectively.
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Under control conditions, the MDA concentration was approximately 55% higher
in B2 and C leaves than in A and B1 leaves. The MDA concentration did not change
significantly in the leaves of pea plants after 12 h of Cd stress (Figure 1B); however, after
24 h of growth on CdCl2, it increased by about 25% in A leaves and by 15% in B and C
leaves. After 48 h of Cd treatment, the MDA concentration increased in A and B1 leaves by
approximately 55%, and in B2 and C leaves, as before, by approximately 15%.

3.3. Proline Concentration and its Metabolism as Affected by Cadmium Stress

Proline concentration and the expression of genes involved in its metabolism (PsP5CS1,
PsP5CS2, PsPDH1) and transport (PsProT2, PsProT2) were studied in the leaves of pea
plants after 12, 24, and 48 h of growth on media containing 50 µM CdCl2. The analyses
were performed on leaves at various stages of development.

Under control conditions, the highest concentration of proline was found in the
youngest undeveloped A leaves, while B1, B2, and C leaves contained approximately 15%,
35%, and 45% less proline, respectively (Figure 2A). The highest level of proline in A leaves
coincided with the highest transcript level of both PsP5CSs (Figure 2B,C). In contrast to the
PsP5CS expression, the mRNA level of PsPDH1 in A leaves was the lowest among leaves
at different developmental stages (Figure 2D). A leaf age-specific expression profile similar
to that of PsPDH1 was observed for the PsProT1 and PsProT2 genes. Thus, transport of
proline from B and C leaves could contribute to the highest proline concentration in the
youngest A leaves under control conditions (Figure 3A,B).
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After 12 h of Cd stress, the proline concentration decreased by approximately 30% and
25% in A and B1 leaves, respectively, while in B2 and C leaves, the proline concentration
did not change significantly (Figure 2A). Changes in the proline concentration observed
in A and B1 leaves coincided with a 35–30% decrease in the transcript level of PsP5CS2 in
these organs (Figure 2C). In A leaves, additionally, a 25% decrease of PsP5CS1 transcript
level was observed (Figure 2B). The decline in proline concentration observed in A and
B1 leaves of Cd-treated plants may also be due to the higher activity of PsPDH1, whose
transcript level increased under Cd treatment by 70% and 35%, respectively (Figure 2D).
Cadmium treatment also caused changes in the expression of both PsProTs, especially
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in the young A and B1 leaves, which would contribute to the enhanced translocation of
proline from or to these organs (Figure 3A,B). The PsProT1 transcript level increased by
approximately 300% in A leaves, by 150% in B1 leaves, and by 75% in B2 and C leaves,
while the PsProT2 mRNA level rose by 100% and 30% in A and B1 leaves, respectively, and
did not change significantly in B2 and C leaves (Figure 3A,B).

After 24 h of growth on the CdCl2 medium, the decrease in proline concentration
was observed again in A and B1 leaves; however, the decline was smaller than after 12 h
(Figure 2A). On the other hand, the proline concentration in B2 and C leaves was approxi-
mately 35% higher in Cd-treated plants than in plants grown under control conditions, and
was accompanied by 30–40% higher PsP5CS2 transcript levels in these organs (Figure 2C).
The expression of PsP5CS1 was not influenced by Cd ions in B1, B2, or C leaves, while in A
leaves, it decreased as after 12 h of Cd treatment by 25% (Figure 2B). The increase in proline
concentration observed in B2 and C leaves after 24 h of Cd treatment coincided with a 20%
lower level of PsPDH1 mRNA in these organs (Figure 2D). The proline concentration in B2
and C leaves of Cd-treated plants could also be enhanced by the transport of proline from A
and B1 leaves, where the expression of PsProT1 and PsProT2 remained higher by 150% in the
case of ProT1, and by 50–120% in the case of ProT2. In turn, the level of PsProT1 mRNA in B2
and C leaves was significantly less affected than after 12 h of Cd treatment, and the level of
PsProT2 mRNA, similarly to 12 h of Cd stress, did not change significantly (Figure 3A,B).

After 48 h of Cd stress, an increase in proline concentration was observed in leaves
at each stage of development (Figure 2A). In A and C leaves, proline concentration in Cd-
treated plants was higher than in controls by approximately 100%, and in B1 and B2 leaves,
it was higher than in controls by approximately 65%. Higher proline concentration was
accompanied by a higher expression of PsP5CS2 and a lower transcript level of PsPDH1
(Figure 2C,D). The mRNA level of PsP5CS2 increased by more than 200% in A and C
leaves, and by approximately 160% in B2 and C leaves, while the transcript level of PsPDH1
decreased by 60–80% in leaves of each developmental stage. After 48 h of Cd stress, the
expression of genes encoding proline transporters did not change significantly in B2 or C
leaves, while in A and B1 leaves, it was still significantly higher (by 100% in the case of
PsProT1 and by 40% in the case of PsProT2) than under control conditions (Figure 3A,B).

3.4. ABA Concentration as Affected by Cadmium Stress

Under control conditions, the ABA concentration was highest in the youngest A leaves,
lower in B1 and B2 leaves, while the oldest C leaves contained only 40% of the ABA found
in A leaves (Figure 4). Under Cd stress, the ABA concentration in pea leaves increased
significantly after only 12 h of treatment, and a similar trend of changes persisted after
48 h (Figure 4 and Figure S6). The greatest increase in ABA concentration (2.6-fold) was
observed in the oldest C leaves, although an approximately 2-fold increase was also found
in B1 and B2 leaves. In A leaves, the ABA concentration only increased by approximately
20% as a result of Cd treatment.

3.5. Proline Concentration and Its Metabolism as Affected by Exogenous ABA

Since the changes in ABA accumulation observed in pea leaves under Cd stress did
not correspond clearly with the observed changes in proline concentration, we investigated
the effect of exogenously applied ABA on proline concentration and the expression of
genes involved in its metabolism and transport.

During growth on 50 µM ABA, a significant increase in proline concentration was
observed after only 24 h; however, this occurred exclusively in A leaves (2-fold) and also
persisted after 48 h (Figure 5A) and 72 h (Supplementary Figure S7). When pea plants were
grown on media containing lower concentrations of ABA (0.5, 5 µM), an increase in proline
concentration was observed again only in A leaves, and it was less significant than during
growth on the 50 µM ABA (Supplementary Figure S8). Thus, the 50 µM concentration of
ABA was selected for the gene expression analyses. After 24 h of 50 µM ABA treatment, the
concentration of this hormone increased 2–3 times in A and B leaves, and over 7 times in C
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leaves (Supplementary Figure S9); however, the transcript level of PsP5CS1 did not change
significantly in any of these organs (Figure 5B). In turn, the expression of PsP5CS2 increased
not only in A leaves (4-fold), where ABA-induced proline accumulation occurred, but also
in B (2-fold) and C (4-fold) leaves (Figure 5C). The 50 µM ABA treatment decreased the
expression of PsPDH1 (except for C leaves) and of PsProT1 in leaves of each developmental
stage (Figures 5D and 6A), and increased the transcript level of PsProT2 in A and B1 leaves
(Figure 6B). The above analyses show that ABA induces proline accumulation only in the
youngest A leaves; however, its synthesis involving PsP5CS2 can occur in leaves of each
developmental stage. At the same time, ABA treatment reduces both proline degradation
(except for C leaves) and proline translocation mediated by PsProT1; however, the transport
of proline from or to A and B1 leaves by PsProT2 was increased.

Cells 2021, 10, x FOR PEER REVIEW 9 of 16 
 

 

was observed in the oldest C leaves, although an approximately 2-fold increase was also 
found in B1 and B2 leaves. In A leaves, the ABA concentration only increased by approx-
imately 20% as a result of Cd treatment. 

 
Figure 4. Changes in the abscisic acid concentration after 12 h of Cd treatment. Cadmium was ap-
plied as 50 µM CdCl2. A, the youngest unexpanded leaves; B1, the youngest fully expanded leaves; 
B2, fully expanded mature leaves; and C, the oldest true leaves. The results are the means (±SD) of 
three biological replicates. Different letters above the columns indicate significant differences be-
tween the means (p < 0.05). 

3.5. Proline Concentration and Its Metabolism as Affected by Exogenous ABA 
Since the changes in ABA accumulation observed in pea leaves under Cd stress did 

not correspond clearly with the observed changes in proline concentration, we investi-
gated the effect of exogenously applied ABA on proline concentration and the expression 
of genes involved in its metabolism and transport. 

During growth on 50 µM ABA, a significant increase in proline concentration was 
observed after only 24 h; however, this occurred exclusively in A leaves (2-fold) and also 
persisted after 48 h (Figure 5A) and 72 h (Supplementary Figure S7). When pea plants 
were grown on media containing lower concentrations of ABA (0.5, 5 µM), an increase in 
proline concentration was observed again only in A leaves, and it was less significant than 
during growth on the 50 µM ABA (Supplementary Figure S8). Thus, the 50 µM concen-
tration of ABA was selected for the gene expression analyses. After 24 h of 50 µM ABA 
treatment, the concentration of this hormone increased 2–3 times in A and B leaves, and 
over 7 times in C leaves (Supplementary Figure S9); however, the transcript level of 
PsP5CS1 did not change significantly in any of these organs (Figure 5B). In turn, the ex-
pression of PsP5CS2 increased not only in A leaves (4-fold), where ABA-induced proline 
accumulation occurred, but also in B (2-fold) and C (4-fold) leaves (Figure 5C). The 50 µM 
ABA treatment decreased the expression of PsPDH1 (except for C leaves) and of PsProT1 
in leaves of each developmental stage (Figures 5D and 6A), and increased the transcript 
level of PsProT2 in A and B1 leaves (Figure 6B). The above analyses show that ABA in-
duces proline accumulation only in the youngest A leaves; however, its synthesis involv-
ing PsP5CS2 can occur in leaves of each developmental stage. At the same time, ABA 
treatment reduces both proline degradation (except for C leaves) and proline translocation 
mediated by PsProT1; however, the transport of proline from or to A and B1 leaves by 
PsProT2 was increased. 

Figure 4. Changes in the abscisic acid concentration after 12 h of Cd treatment. Cadmium was
applied as 50 µM CdCl2. A, the youngest unexpanded leaves; B1, the youngest fully expanded leaves;
B2, fully expanded mature leaves; and C, the oldest true leaves. The results are the means (±SD)
of three biological replicates. Different letters above the columns indicate significant differences
between the means (p < 0.05).
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4. Discussion

The accumulation of free proline varies considerably in different plant organs, depend-
ing both on the developmental stage of the plant and on the environmental stimuli [12,13].
Proline concentration is usually higher in reproductive organs than in vegetative tissues,
and increases significantly in actively dividing cells [12,29,60]. When leaves of control pea
plants were analyzed according to their stage of development, the highest concentration
of proline was found in the youngest undeveloped A leaves, and it gradually decreased
through B leaves towards old C leaves (Figure 2A). Similar results were obtained for
Brassica napus, where four leaf ranks with gradually increasing source status and gradually
decreasing proline concentration were identified from the top to the bottom of the plant
axis [61]. In accordance with the observed decrease in proline concentration, the expression
of four BnaP5CS1 genes was significantly lower in senescent leaves, which have a strong
source leaf status, compared with young growing leaves. In turn, the expression of all
BnaP5CS2s did not differ significantly between the individual leaf ranks. In pea plants,
the expression of both PsP5CS1 and PsP5CS2 was the highest in the youngest A leaves
and decreases towards old C leaves (Figure 2B,C), suggesting the possible contribution of
both genes in the high proline concentration of A leaves. The low proline concentration
found in the C leaves of control plants may also be a result of the transport of proline from
these leaves, as well as a higher PsPDH1 expression (Figures 2D and 3). However, when
15N-labeling experiments were performed using [15N]proline and the leaves of Brassica
napus, the maximal proline degradation capacity was not different between leaves with
very low and very strong source status [61].

Increased proline accumulation is one of the defense mechanisms that plants have de-
veloped to counteract the harmful effects of adverse environmental condition stresses such
as drought, salinity, and hypoxia [9,11,62,63]. Under Cd stress, however, the changes in
proline concentration are often contradictory, especially in the leaves [33–37,64]. Therefore,
we examined the changes over time of proline concentration in individual leaves, differing
in developmental stage and age, during the first 48 h after the application of Cd ions.

After 12 h of Cd treatment, when the symptoms of damage to cellular structures
were not yet observed (Figure 1), a significant decrease in the proline concentration in
young A and B1 leaves was noticed (Figure 2A). The decrease in proline concentration
was accompanied by a decrease in the transcript level of PsP5CS2, a gene involved in its
synthesis, as well as an increased expression of PsPDH1 and PsProTs, genes engaged in
its degradation and transport, respectively (Figures 2 and 3). The expression of PsP5CS1
was not influenced by Cd ions in B and C leaves, while in A leaves, it was slightly de-
creased throughout the entire experimental period (Figure 2B), excluding its key role in the
regulation of proline content in response to Cd. In Arabidopsis and Medicago sativa, PDH
is encoded by two genes [24,25]; however, despite many attempts, we were not able to
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identify the second sequence of the PsPDH gene in pea plants. Therefore, it cannot be ruled
out that, in addition to PsPDH1, another PDH gene may be involved in the regulation of
proline in response to stress factors. Cd is known to disrupt the uptake and movement
of mineral nutrients within plants; it predominantly reduces nitrate uptake and mineral
transport from root to shoot, as well as inhibits the activity of the enzymes involved in N
assimilation [5,65]. A decrease in NO3

− uptake and nitrate reductase activity was observed
in pea plants as early as 24 h after Cd supply and was more severe at 50 µM than at 10 µM
CdSO4 [66]. Therefore, in an early plant response to 50 µM Cd, a decrease in free proline
concentration, which was observed in A and B1 leaves of pea plants (Figure 2A), may
result from low nitrogen availability [67]. It can also be triggered by a greater demand for
glutamic acid, the product of proline degradation serving as a N source not only for the
synthesis of other amino acids, which are especially needed in young developing leaves,
but also for the synthesis of glutathione, certain cofactors, and nucleosides [68]. Moreover,
an intensified proline catabolism starting with its oxidation by mitochondrial PDH may
provide the energy, in the form of FADH2 and NAD(P)H [69,70], necessary to cope with
the negative effects of Cd toxicity.

After 24 h of Cd stress, chlorophyll concentration began to decrease in leaves of all
developmental stages, with the greatest declines in B2 and C leaves, while MDA levels
began to increase, with the largest rise being observed in A leaves (Figure 1). At that time,
the proline concentration was still lower in the A and B1 leaves of Cd-treated plants than
in controls; however, in B2 and C leaves, it started to increase (Figure 2A). The changes in
proline concentration in B2 and C leaves coincided with an elevated expression of PsP5CS2
and a decrease in the PsPDH1 transcript level (Figure 2C,D). After 24 h of Cd stress, proline
translocation still seems to be important; however, mainly to or from young A and B1
leaves, as a significant increase in the expression of genes related to proline transport
was noticeable only in these leaves (Figure 3). It seems that in young A and B1 leaves
of Cd-treated plants, proline is still used as a source of nitrogen and energy, while in B2
and C leaves, where the greatest decrease in chlorophyll concentration is noticeable, this
amino acid may be necessary to cope with the harmful effects of oxidative stress, which
gradually increase after Cd exposure. Proline has been shown to play a protective role in
metal-induced lipid peroxidation and to prevent membrane damage [14].

After 48 h of Cd stress, when the rate of lipid peroxidation was very high in A and B1
leaves, the proline concentration in these leaves was also higher in Cd-treated plants than
in controls (Figures 1 and 2A), which was accompanied by a large increase in the P5CS2
transcript level and a reduction in PsPDH1 expression (Figure 2B,C). Hence, the emerging
physiological symptoms of oxidative stress induced by Cd in A and B1 leaves could lead to
an equilibrium shift in proline metabolism from the catabolic to the anabolic pathway.

Under drought, salinity, cold, and PEG-induced osmotic stresses, proline accumulation
is mediated by both ABA-dependent and ABA-independent signaling pathways [44–47].
Elevated endogenous ABA concentration after Cd treatment has been detected in Solanum
tuberosum [71], Brassica napus [72], Malus hupehensis [73], Typha latifolia, and Phragmites
australis [74] plants; however, the relationship between ABA and proline accumulation
under Cd stress is not well understood. Therefore, to investigate a possible mediating
role of ABA in the regulation of proline concentration under Cd stress, the time courses
of ABA and proline accumulation were first compiled. After 12 h of Cd treatment, the
ABA concentration increased by 20% in A leaves and more than doubled in B and C leaves
(Figure 4); however, an increase in proline accumulation was not observed in any of these
leaves (Figure 2A). In individual leaves, a similar trend of Cd-induced changes of ABA
concentration persisted up to 48 h (Supplementary Figure S6). The proline concentration,
however, varied depending on the stage of leaf development, and its increase was first
observed after 24 h in B2 and C leaves, and only after 48 h in A and B1 leaves. Therefore,
an increase in proline concentration in the leaves of Cd-treated pea plants was more highly
associated with a decrease in chlorophyll concentration (B2 and C leaves) and an increase
in MDA concentration (A and B1 leaves) than with the elevated level of ABA alone, at
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least in the first 48 h of Cd treatment. Thus, a direct mediating role of ABA in Cd-induced
proline accumulation in leaves of pea plants during the early response to Cd treatment
could be largely excluded. A positive correlation between ABA concentration and proline
accumulation was also not observed in leaves of Cd-treated rice plants. After treatment
with Cd, the ABA concentration increased in the leaves of the Cd-tolerant rice cultivar,
which did not lead to proline accumulation; on the contrary, in the leaves of the Cd-sensitive
cultivar, the proline level increased, but not that of ABA [75].

As discussed above, a positive relationship was not always observed between the ABA
concentration and the proline accumulation during the early response to Cd stress in leaves
of pea plants; therefore, the effects of exogenously applied ABA on the proline concentra-
tion and expression of genes involved in its metabolism and transport were investigated.
After 12, 24, 48 and 72 h of phytohormone application (0.5, 5, 50 µM), the proline concentra-
tion only increased in A leaves, accompanied by an elevated expression of PsP5CS2 not only
in these organs, but also in B and C leaves (Figure 5A,C, Figures S7 and S8). The transcript
level of PsP5CS1 was not affected by Cd application in any of the pea leaves (Figure 5B).
Increases in proline concentration and the P5CS transcript level have previously been
observed following ABA application in roots of potato (StP5CS1) [71], roots and leaves of
Arabidopsis (AtP5CS1) [16,17], and leaves of wheat (P5CS1) [76] and rice (OsP5CS1) [77].
On the other hand, no increase in proline concentration was reported in spinach or pearl
millet [47], and wild-type levels of P5CS1 transcripts were found in the ABA-deficient mu-
tant aba2-1, suggesting the ABA-independent regulation of proline synthesis [45]. Thus, the
analysis of leaves at different stages of development would provide additional information
enabling an understanding of the role of ABA in the regulation of proline synthesis under
Cd stress. Real-time PCR analyses showed that the transcript level of PsPDH1 was reduced
in response to applied ABA in most of the pea leaves (Figure 5D). Similar changes in PDH
expression have also been noted in the shoots and roots of Arabidopsis [17] and in seedlings
of Brassica napus [78]; however, when rice seedlings were exposed to ABA, the transcript
levels of PDH did not change. Moreover, it has also been shown that the PDH promoter in
Arabidopsis is induced by exogenously applied Pro but is not affected by ABA [79]. In this
way, the PDH response to ABA signals still needs to be thoroughly investigated.

In conclusion, the accumulation of proline during the early response to CdCl2 in
leaves of pea plants may occur independently of ABA signaling. The changes in proline
concentration observed after Cd treatment, however, depend on the age of the leaves as
well the duration of the stress factor. The concentration of proline in pea leaves is a result
of an equilibrium between its synthesis, mediated by PsP5CS2, the catabolism, mediated
by PsPDH1, and transport, mediated by PsProT1 and PsProT2. The expression of PsP5CS1,
another potential gene involved in proline synthesis, did not correspond to the proline
changes during the first 48 h of Cd treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10040946/s1: Table S1: Oligonucleotide sequences of Medicago truncatula used as primers
for amplification of internal fragments of the Pisum sativum genes, Table S2: Primer sequences used
for real-time PCR analysis, Figure S1: The alignment of the nucleotide sequence fragment of Pisum
sativum PsP5CS1 (MW030636) with the sequences of P5CS1 genes from other plants, Figure S2: The
alignment of the nucleotide sequence fragment of Pisum sativum PsP5CS2 (MW423825) with the
sequences of P5CS2 genes from other plants, Figure S3: The alignment of the nucleotide sequence
fragment of PsPDH1 (MW183670) with the sequences of stress-downregulated PDH genes from other
plants, Figure S4: The alignment of the nucleotide sequence fragment of PsProT2 (MW030635) with
the sequences of ProT genes from other plants, Figure S5: The alignment of the nucleotide sequence
fragment of PsProT2 (MW030635) with the sequences ProT genes from other plants, Figure S6:
Changes in the abscisic acid (ABA) concentration after 48 h of Cd treatment, Figure S7: Changes
in the proline concentration after 72 h of abscisic acid (ABA) treatment, Figure S8: Changes in the
proline concentration after 24 h of abscisic acid (ABA) treatment, Figure S9: Changes in the abscisic
acid concentration after 24 h of abscisic acid (ABA) treatment.
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