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Using active matter to introduce 
spatial heterogeneity 
to the susceptible infected 
recovered model of epidemic 
spreading
P. Forgács1, A. Libál1, C. Reichhardt2, N. Hengartner2 & C. J. O. Reichhardt2*

The widely used susceptible-infected-recovered (S-I-R) epidemic model assumes a uniform, well-mixed 
population, and incorporation of spatial heterogeneities remains a major challenge. Understanding 
failures of the mixing assumption is important for designing effective disease mitigation approaches. 
We combine a run-and-tumble self-propelled active matter system with an S-I-R model to capture the 
effects of spatial disorder. Working in the motility-induced phase separation regime both with and 
without quenched disorder, we find two epidemic regimes. For low transmissibility, quenched disorder 
lowers the frequency of epidemics and increases their average duration. For high transmissibility, the 
epidemic spreads as a front and the epidemic curves are less sensitive to quenched disorder; however, 
within this regime it is possible for quenched disorder to enhance the contagion by creating regions of 
higher particle densities. We discuss how this system could be realized using artificial swimmers with 
mobile optical traps operated on a feedback loop.

Disease propagation through a heterogeneous environment has become a topic of worldwide interest. Tremen-
dous modeling resources have been applied in efforts to control or at least predict the progress of the global 
pandemic. The majority of these models have as their basis the conceptually simple yet physically rich compart-
mentalized susceptible-infected-removed (S-I-R) representation of temporal disease evolution introduced nearly 
a century ago by Kermack and McKendrick1. Under the fundamental simplifying assumption of a mean-field, 
well-mixed population, in the S-I-R model the population is divided into S (susceptible), I (infected), or R (recov-
ered) individuals, and the dynamic evolution of the epidemic is governed by the transition rates between these 
categories: a removal rate µ for transitions I → R and an infection rate that relies on the law of mass action to 
model transitions from S → I . Individuals in a given bin are indistinguishable, and all spatial details of the system 
are discarded2. Despite their apparent simplicity, S-I-R models and their many variants provide powerful tools 
for forecasting the general course of an epidemic. Where these models falter is in predicting the specific course of 
an actual real-world epidemic. This is generally attributed to the lack of homogeneity in individual susceptibility, 
spatial contacts, and mixing behavior of individuals3 leading to stochastic effects that can not be averaged away.

Incorporation of heterogeneity has proven to be not at all straightforward, and numerous approaches have 
been developed over the years. For example, the population can be broken into subpopulations, each with differ-
ent infection and recovery rates, or the population can be geographically subdivided into regions with diffusive 
terms to link to the regional S-I-R dynamics4,5. Additional heterogeneities in the diffusion can be achieved by 
incorporating patchiness into the diffusion6,7. Much work has been done on connecting individuals via finite-
dimensional networks rather than through an infinite-dimensional mean field2; however, the details of the 
network itself make the problem even more complex since decisions must be made on what is the appropriate 
degree distribution for the network connectivity as well as whether the network should remain static or should 
be allowed to evolve either independently or in response to the progress of the disease8,9. The impact of hetero-
geneity in transmission and susceptibility is discussed in10.
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The epidemic model with the ultimate heterogeneity treats each individual as a separate, mobile, interacting 
unit. Under Agent Based Modeling (ABM), also known as Individual Based Modeling11, heterogeneity can be 
included at all levels ranging from varied individual susceptibility and recovery rates, varied contacts between 
individuals, spatial clustering of individuals in cities or at attractive sites such as bars, and both short and long 
range transport of individuals such as by bus or airplane12,13. The flexibility of these models is also their greatest 
weakness, since in addition to the computational challenge of tracking potentially millions of individuals on a 
country-wide scale, there can be a vast number of free parameters that must be painstakingly fitted to real-world 
data that is not always available at the necessary resolution.

There have been surprisingly limited efforts to address a middle ground of ABM in which many but not all 
of the details are abstracted away to produce a model that captures spatial heterogeneity in a meaningful way 
without being swallowed in a proliferation of parameters. This can, in principle, be achieved either by developing 
more complex analytical models or simpler simulation-based models. One of the earliest approaches for sim-
plifying simulation-based models involved cellular automata, where the mobility of individual agents could be 
varied up to a level consistent with the mean-field limit14. Individuals obeying S-I-R interactions have also been 
represented as moving particles that are driven and diffusing15, that never change direction16, that occasionally 
make long-range jumps17, that move at different velocities18, or that are confined to diffuse only within the region 
of their ’houses’19. To help mitigate the computational expense of such methods, dynamic density functional 
theory techniques can be applied20.

The significant progress made during recent years in understanding what are known as active matter 
models21,22, where individual particles are self-propelled and interact with each other on a spatial landscape that 
may or may not include disorder, suggests the natural step of pairing a model of S-I-R type with active particles. 
The active particles can be of run-and-tumble type23 or driven diffusive24. In a small system of low density, an 
active matter assembly was able to reproduce the mean field behavior of S-I-R25. Generally, however, there has 
been only limited work on coupling S-I-R modeling with active matter. For example, Paoluzzi et al. considered 
S-I-R type dynamics to examine information exchange in active clustering transitions24 but not aspects of the 
epidemic spreading itself. Recently Zhao et al. studied contagion dynamics in self-propelled flocking models 
and found that ordered homogeneous states reduce disease spreading while bands and clustering favor the 
spreading26.

There are a number of advantages to working with an active matter system. The well-known motility-induced 
phase separation (MIPS) transition from a low density gas phase to a coexistence between high and low density 
regions as a function of density and/or mobility of the active particles27–30 can provide a natural separation of the 
particles into clustered communities connected by disordered transport pathways. Contacts between particles 
can be viewed as an adaptive network that may be tuned to evolve on the same or a different time scale as the pro-
gression of the disease. Spatial heterogeneity emerges automatically in the MIPS regime, but can also be inserted 
using walls, traps, or obstacles. Disease dynamics in such systems can be abstracted by tracking the evolution of 
the number of S(t), I(t), and R(t) over time, whose temporal behavior will capture the impact of heterogeneities 
that are averaged out by the mean field approximations of the standard S-I-R model.

In this work, we simulate a large assembly of active matter particles in the MIPS regime where a giant clus-
ter spontaneously emerges. We combine this model with S-I-R interactions in which all particles are initially 
susceptible (S) but can be infected with probability β when they come into direct contact with an infected (I) 
particle. Infected particles spontaneously transition to the recovered (R) state at rate µ , and no reinfection 
is allowed. We study the evolution of epidemics as the ratio of β/µ is varied, and consider the impact on the 
behavior of adding quenched disorder in the form of immobile obstacles. Increasing the number of immobile 
obstacles in an active matter system will increase the number of clusters and decrease their sizes. By perform-
ing large numbers of realizations, we find that inclusion of quenched disorder increases the number of “failed” 
outbreaks for small β/µ and increases the average duration of successful epidemics. When β/µ is sufficiently 
large, the system becomes insensitive to the presence of quenched disorder and approaches the mean field limit, 
and in this regime the epidemic propagates via spatially well-defined fronts. We also study the average number 
of susceptible particles surrounding an infective as a function of time, and find that this quantity is modestly 
altered by the addition of quenched disorder in the mean field limit of high β/µ but becomes strongly affected 
by quenched disorder as β/µ is reduced.

Our results indicate that for low β/µ , the homogeneous mixing hypothesis breaks down, that is, the infection 
process departs from mass action and the system becomes much more sensitive to spatial quenched disorder. 
In the high β/µ regime, the mixing hypothesis is more applicable even though the epidemic is spreading via 
spatially localized fronts. This implies that localized epidemic mitigation efforts will be more successful at low 
β/µ but would become ineffective in higher β/µ regimes unless applied to the entire population.

Finally, we discuss how the system we consider could be realized experimentally using feedback control of 
light activated colloids, where the active behavior of the colloids can be controlled on the individual level. Experi-
ments on this type of system have already demonstrated group formation, responsive states, and predator-prey 
model realizations31–33. There are also numerous possible ways to introduce spatial heterogeneities in active 
matter systems34–39. Techniques of this type could be used to mimic the S-I-R model with and without spatial 
disorder. This could permit the creation of table-top epidemic spreading models with active matter.

Results
Modeling and characterization of the S‑I‑R dynamics.  We simulate N = 5000 active particles in a 
two-dimensional system of size L× L where L = 200 and where there are periodic boundary conditions in the 
x and y directions. The motion of the particles is obtained by integrating the following equation in discrete time:
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Here vi = dri/dt is the velocity and ri is the position of particle i, and the damping constant αd = 1.0 . Time 
is incremented in steps of �t = 0.005 . The interaction between two particles is represented with a harmonic 
repulsive potential Fddi =

∑N
i �=j k(2ra − |rij|)�(|rij| − 2ra)r̂ij , where � is the Heaviside step function, rij = ri − rj , 

and r̂ij = rij/|rij| . We set the spring force to k = 20 and the particle radius to ra = 1.0 . Each particle is subjected 
to a motor force Fm

i
= FMm̂i of magnitude FM applied in a randomly chosen direction m̂ during a run time of 

τl before instantaneously changing to a new randomly chosen direction during the next run time, producing 
run-and-tumble dynamics. For each particle, we fix τl to a value selected randomly from the interval 1.5× 104 
to 3.0× 104 simulation time steps, and we set FM = 1.5 for susceptible and recovered particles, placing us in 
the MIPS regime in the absence of quenched disorder37. Infected particles have their motor force reduced to 
FM = 1.0 . For some simulations, we include quenched disorder in the form of Nobs obstacles that produce the 
force Fobs . This is taken to be the same as the particle-particle interaction force, with the only difference being 
that the obstacles are immobile. Unless otherwise noted, the number of obstacles is set to Nobs = 800 . An image 
of the system in the presence of obstacles appears in Fig. 1.

Each active particle carries a label marking it as being in one of three states: S, I, or R. If an S particle comes 
into direct contact with an I particle, for each simulation time step during which the contact persists there is a 
probability β that the S particle will transition to an I particle. If at a given simulation time step an S particle is 
in contact with n I particles, the probability of infection is 1− (1− β)n ≈ nβ . Transitions of I particles to state 
R occur with probability µ at each simulation time step regardless of the state of any particles that may be in 
contact with the I particle. Thus, the mean time spent in the infected state is 1/µ simulation time steps. The R state 
is absorbing and R particles experience no further state transitions. In this S-I-R model, the infected I particles 
are present only as a transient and the system will eventually contain only S and/or R particles. We note that the 
mean-field rates governing S → I and I → R transitions and determining the basic reproductive number R0 in 
classic S-I-R models do not map directly to the values of β and µ that we insert into our model as microscopic 
parameters. In ABMs, the effective mean-field rates are emergent quantities instead of control parameters.

To initialize the system, we place the particles randomly in the sample and set them all to state S. We allow the 
system to evolve for 5× 105 simulation time steps until a stable MIPS giant cluster has formed, and define this 
state to be the t = 0 condition. We then randomly select 5 particles and change their state to I. These particles 
serve as our index cases, and we choose 5 rather than 1 in order to lower the probability of a failed outbreak. 
The system continues to evolve under both the motion of the particles and the reactions between states S, I, and 
R until no I particles remain. We perform 1000 realizations for each parameter set. Since, as is shown in the 
results, the duration td = min{t > 0 : I(t) = 0} of an individual epidemic can vary significantly from run to run, 
we report time in terms of the scaled quantity t̃ = t/td . As a function of scaled time, we measure the epidemic 

(1)αdvi = F
dd
i + F

m
i + F

obs
i .

Figure 1.   Image of the sample containing run-and-tumble S-I-R particles in a motility-induced phase separated 
regime. The particles transition among susceptible (S, yellow), infected (I, red), and recovered (R, blue) states. 
Here β/µ = 0.5 and quenched disorder is present in the form of Nobs = 800 immobile obstacles (black). The 
quenched disorder causes the formation of numerous small clusters in addition to the giant MIPS cluster.
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curves s(t̃) = S(t̃)/N , i(t̃) = I(t̃)/N , and r(t̃) = R(t̃)/N . This rescaling enables us to visually compare features 
of the progression of the epidemic when we change the ratio β/µ . We also measure the peak infective fraction 
imax and the final susceptible fraction s∞ , both of which are commonly used indicators of the severity of an epi-
demic. To obtain further information on the spatial evolution of the system, we measure the average number of 
susceptible particles surrounding an infective, η(t̃) = I−1(t̃)

∑I(t̃)
i

∑S(t̃)
j I(|rij(t̃)| = 2ra) , where I denotes the 

indicator function, and the sums over i and j range over the infected and susceptible particles, respectively. For a 
two-dimensional system of particles with identical radii ra , η cannot exceed the maximum coordination number 
of z = 6 . If the infected individuals are well mixed within the population, the average number of susceptible 
particles surrounding an infective is η(t̃) ∝ S(t̃) ; more specifically, we would expect η(t̃) ∝ zcS(t̃)/N , where zc 
is the average coordination number of the particles. Departure from this behavior is indicative of a failure of the 
homogeneous mixing assumption.

Low transmissibility regime.  In Fig. 2a we show a snapshot of the system at β/µ = 0.5 in the low trans-
missibility regime in the absence of quenched disorder. The moving particles form a phase separated state of a 
high density solid and a low density gas. As indicated in the introduction, the relationship between β/µ and 
the basic reproductive number is an emerging quantity. Since within a cluster the expected number of contacts 
is z = 6 , the expected number of secondary cases from an index case within the cluster will be η = 3 , showing 
that the epidemic will infect a fraction of the cluster. If the index case starts in the gaseous phase, its expected 
number of contacts is likely z < 1 , implying a reproductive number less than one and giving limited cluster-to-
cluster transmissions.

The same system in the presence of randomly placed obstacles appears in Fig. 2b, where the giant dense cluster 
is now accompanied by numerous smaller persistent clusters that have nucleated around some of the obstacle 
sites. Since particles within a cluster are locked to one another, the homogeneous mixing assumption fails to 

Figure 2.   Images of the low transmissibility regime with and without quenched disorder. The evolution of 
the epidemic for the system in Fig. 1 with β/µ = 0.5 at time (a,d) t̃ = 0.2 , (b,e) t̃ = 0.3 , and (c,f) t̃ = 0.4 . The 
particles transition among susceptible (S, yellow), infected (I, red), and recovered (R, blue) states. (a–c) The 
obstacle-free system. (d–f) The system containing obstacles, showing that fewer infected particles are present at 
later times. Movies of these two systems are available in the Supplemental Material.
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hold for the epidemic dynamic within each cluster. Thus by controlling the number and size of the clusters, we 
explore a range of departures from the mixing assumption, from the most extreme situation when there is only 
one large cluster, to greater mixing as the number of clusters increases and their sizes decrease.

In Fig. 2a–c we illustrate the evolution of the S, I, and R particles for the obstacle-free system at times of 
t̃ = 0.2 , 0.3, and 0.4, while in Fig. 2d–f we show the evolution in the system containing Nobs = 800 obstacles. In 
both cases, when the giant cluster is contacted by an infective, the disease spreads through the cluster, but since 
the probability of transmission is low, not all of the S particles surrounding a given I become infected, and as a 
result, a finite number of S remain when the epidemic is complete. See Ref.40 for a discussion on final epidemic 
size. When we add quenched disorder to the system, shown as black circles in Fig. 2d–f, a greater amount of 
localized clustering occurs in addition to the giant cluster. Since each cluster must be infected separately, this 
tends to slow the spread of the infection and reduce the peak infective fraction imax , as shown in Fig. 2e.

Although the dynamics of the spread of the infection is similar with and without quenched disorder, at t̃ = 0.4 
the number of I particles present is much lower when obstacles have broken the system into smaller clusters, 
indicating that the epidemic has impacted fewer particles in the system with quenched disorder.

In Fig. 3a we plot the epidemic curves showing the fractions of susceptible s, infected i, and recovered r 
particles as a function of reduced time t̃ for samples with and without quenched disorder. We note that in the 
presence of obstacles, the duration of the epidemic tends to be longer; however, by plotting the epidemic curves as 
a function of reduced time it is easier to compare samples with and without quenched disorder. The curves have 
the shapes expected from the classic S-I-R model. In the system without obstacles, by the end of the epidemic 
there is still a fraction s∞ = 0.41 of the population that never became infected, while r∞ = 1− s∞ = 0.59 of 
the particles have recovered. When obstacles are present, a larger fraction s∞ = 0.51 of particles have escaped 
infection. The peak imax in the infected fraction is also considerably reduced in magnitude when obstacles are 
present. This indicates that the system is sensitive to the presence of spatial heterogeneities introduced by the 
clustering arising from the presence of fixed obstacles. Within this regime, spatially localized mitigation pro-
tocols could be effective, since local quenched disorder can slow the overall mobility of the particles or reduce 
the effective connectivity among the particles. To further demonstrate the effect of adding obstacles, in Fig. 3b 
we plot η , the average number of S particles surrounding an I particle, versus t̃ . Here η is always smaller in the 
sample containing obstacles.

High transmissibility regime.  We next consider the case of high transmissibility β/µ = 5.0 . In Fig. 4a–c 
we plot the spatial evolution of the susceptible, infected and recovered particles in the absence of obstacles. The 
infection spreads via well defined fronts through the dense region. In Fig. 4d–f we show the same evolution in 
the presence of obstacles. There are now multiple dense clusters present, but in each a similar front propagation 
of the infection appears. Movies of these two systems are available in the Supplemental Material.

In Fig. 5a we plot s(t̃) , i(t̃) , and r(t̃) for the high transmissibility system with β/µ = 5.0 from Fig. 4. Here, 
s∞ = 0 and all of the particles become infected regardless of whether obstacles are present. The peak value imax is 
nearly the same for both cases. An interesting effect appears in which for t̃ < 0.175 , adding obstacles depresses i, 
but for t̃ > 0.185 , adding obstacles increases i. This is not merely due to a change in the duration of the epidemic 
since the curves are plotted in reduced time; instead, it indicates a change in the spatial propagation of the infec-
tion, which we will address in Figs. 7 and 8. The crossover in behavior occurs after the initial large infection front 

Figure 3.   Epidemic curves in the low transmissibility regime. (a) Fractions of susceptible s (yellow), infected i 
(red), and recovered r (blue) particles versus rescaled time t̃ for the system in Fig. 2 with β/µ = 0.5 . Solid lines 
are for samples without quenched disorder and dashed lines are for samples containing obstacles. At t̃ = 1.0 , 
the epidemic is over and i = 0 . Introducing obstacles reduces the peak value imax of the infective curve. (b) The 
corresponding η , the average number of S particles surrounding an I particle, versus t̃ in the sample without 
(blue) and with (orange) obstacles. Here, the inclusion of obstacles significantly reduces η during the entire 
epidemic.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11229  | https://doi.org/10.1038/s41598-022-15223-5

www.nature.com/scientificreports/

Figure 4.   Images of the high transmissibility regime with and without quenched disorder. The evolution of 
the epidemic for systems with β/µ = 5.0 at time (a,d) t̃ = 0.1 , (b,e) t̃ = 0.2 , and (c,f) t̃ = 0.3 . The particles 
transition among susceptible (S, yellow), infected (I, red), and recovered (R, blue) states. (a–c) The obstacle-
free system. (d–f) The system containing obstacles. For both cases, the epidemic spreads as a well-defined front 
through the dense clusters.

Figure 5.   Epidemic curves in the high transmissibility regime. (a) Fractions of susceptible s (yellow), infected i 
(red), and recovered r (blue) particles versus reduced time t̃ for the system in Fig. 4 with β/µ = 5.0 . Solid lines 
are for samples without quenched disorder and dashed lines are for samples containing obstacles. In this case 
all of the particles become infected and s∞ = 0 . (b) The corresponding η , the average number of S particles 
surrounding an I particle, versus t̃ in the samples without (blue) and with (orange) obstacles. There is a minimal 
difference in η between the two cases.
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has completely swept through either the giant cluster or all of the smaller clusters for the samples with quenched 
disorder. In Fig. 5b we plot the corresponding η versus t̃ , which is nearly unchanged by the inclusion of obstacles. 
These results indicate that under high transmissibility, the system is less sensitive to spatial disorder and the 
behavior is consistent with the mean field limit. Note that epidemic cuves and plots of η(t) for all other β/μ can 
be viewed in the Supplemental Material. 

Duration of epidemic.  Our simulations reveal a strong stochasticity of the behavior. Depending on the 
particular randomly chosen locations of the index cases, the duration td of the epidemic can vary widely. In 
particular, for some realizations the outbreak fails to take hold and is extinguished without affecting a significant 
fraction of the particles. To illustrate this, in Fig. 6 we plot the distribution P(td) of the epidemics measured in 
simulation time steps with and without obstacles for 1000 realizations. In Fig. 6a–e, we show the low transmis-
sibility regime with β/µ = 0.4, 0.45 , 0.5, 0.6, and 1.0. Here the distribution is bimodal and there is a clear divi-
sion between small td , where we find failed outbreaks that do not infect a significant fraction of the particles, and 
larger td , where successful epidemics occur that involve a substantial fraction of the particles. This behavior is 
similar to what has been observed in other studies41. Addition of quenched disorder in this regime increases the 
probability that the outbreak will fail, but also increases the average duration of successful epidemics. In contrast, 
for high transmissibility, as shown in Fig. 6f,g at β/µ = 2.0 and 3.0, P(td) is unimodal since all outbreaks pro-
duce successful epidemics. Additionally, there is no longer a significant difference in the distribution for systems 
with and without quenched disorder.

Ability of I to contact S.  We can also distinguish the two regimes of behavior using features in η by com-
paring the value of η in samples with and without quenched disorder. In Fig. 7a we plot η versus ̃t ′ in samples with 
and without obstacles. The time scale t̃ ′ reaches a value of t̃ ′ = 1.0 when the number of recovered has increased 
to 95% of its maximum value, r(t̃′ = 1.0) = 0.95r∞ = 0.95(1− s∞) . Use of this time scale allows us to exclude 
the stochastic late time behavior when the last few straggling infectives are recovering. At t̃ ′ = 0 , η is always high 
since the initial seed I particles are surrounded only by susceptible particles. As the epidemic spreads, the aver-
age number of S particles around I particles decreases. When β/µ ≤ 1.5 , the curves monotonically decrease to 
a saturation value between η = 2.5 to η = 3.25 , and samples containing obstacles show lower values of η . For 

Figure 6.   Duration of epidemics with and without quenched disorder in the low and high transmissibility 
regimes. Distribution P(td) of the duration td of the epidemic in simulation time steps for 1000 realizations. 
Blue curves are for a system with no obstacles and orange curves are for a system with obstacles. The low 
transmissibility regime is β/µ = (a) 0.4, (b) 0.45, (c) 0.5, (d) 0.6, and (e) 1.0, while the high transmissibility 
regime is β/µ = (f) 2.0 and (g) 3.0. The distributions (a–e) in the low transmissibility regime are bimodal, 
and the addition of quenched disorder increases the number of failed outbreaks and increases the duration of 
successful epidemics. In the high transmissibility regime (f,g), there are no failed outbreaks and the effect of 
quenched disorder is strongly reduced.
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β/µ > 1.5 , the epidemic spreads in the form of a front, which is visible as the appearance of a local dip in η 
centered near t̃ ′ = 0.2 . As the front moves rapidly through the largest cluster, most of the infected particles are 
surrounded by I particles behind the expanding front, while only I particles at the edge of the front are adjacent 
to S particles. This depresses the value of η . Once the front has passed through the cluster, the mobility of the 
particles bring more S from the gas phase into contact with the remaining I, and η recovers somewhat before 
saturating to a low value between η = 1.5 and 2.0.

In Fig. 7b we plot the difference �η = ηobs=800 − ηobs=0 between η for the samples with and without quenched 
disorder from Fig. 7a. When β/µ ≤ 1.5 , �η reaches a constant value and is always negative, �η ≈ −0.25 , indi-
cating that the quenched disorder is always reducing the effectiveness of the spread of the epidemic. Once the 
system enters the front propagation regime for β/µ > 1.5 , �η becomes nonmonotonic and shows local peaks 
and dips. For t̃ ′ < 0.4 , there is a dip when the front is passing through the largest clusters. In this regime, �η is 
negative, indicating that the quenched disorder slows the front to some extent. For times above the minimum 
of the dip, �η increases and becomes positive, indicating that the addition of quenched disorder is actually 
increasing the effectiveness of the epidemic spread. This can also be seen in Fig. 5a, where i is reduced in the 
presence of quenched disorder for t̃ < 0.175 but is slightly increased for t̃ > 0.175 , indicating that the disorder 
can accelerate the infection at later times. This enhancement of the epidemic arises after the largest cluster has 
become fully infected and some of the infected particles break away from the cluster and enter the gas phase. 
Within the gas phase, the quenched disorder induces the formation of smaller localized clusters, as shown in 
Fig. 1. These smaller clusters, once contacted by an infective, undergo the same rapid front propagation as the 
initial infection wave. When quenched disorder is not present, there are no smaller clusters and the infection 
must propagate through the gas phase and infect the remaining S particles one by one, an inefficient process.

Epidemic phase diagram.  Based on the features in Fig. 7, we can construct a phase diagram of the behav-
ior of the system as a function of β/µ versus t̃ ′ , as shown in Fig. 8. When β/µ > 1.5 , s∞ = 0 and the entire sys-
tem becomes infected, while the initial invasion of the infection occurs by front propagation. For β/µ ≤ 1.5 , the 
low transmissibility regime marked LT, the infection spreads much more homogeneously, as illustrated in Fig. 2, 
and s∞ > 0 so that not all of the particles have been infected by the end of the epidemic. Within this regime, 

Figure 7.   Measure of the ability of I to contact S and how it changes when quenched disorder is introduced. 
(a) η vs t̃ ′ for varied β/µ in samples without obstacles (thin lines) and with obstacles (thick lines). When β/µ is 
large, a local minimum in η appears near t̃ ′ = 0.1 due to the formation of a propagating front. (b) The difference 
�η between the value of η in the sample with disorder and the value in the sample without disorder as a function 
of t̃ ′ . For β/µ ≤ 1.5 , there is no front propagation and the addition of quenched disorder always reduces the 
value of η . For β/µ > 1.5 , a front appears, and once the front has passed, �η drops below zero, indicating an 
enhancement of the infection rate when quenched disorder is present.
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the addition of quenched disorder always reduces imax and increases s∞ . In the high transmissibility regime 
with β/µ > 1.5 , at small t̃ ′ the infection propagates as a front through the largest cluster, defined as the front 
propagation regime FP. Here the addition of quenched disorder can slow the front propagation but does not stop 
it. After the front has crossed the entire largest cluster, we find the CP regime in which the secondary clusters 
start to show front propagation. Here the quenched disorder can increase the effectiveness of the spread of the 
infection by increasing the number of secondary clusters that are present. At larger values of t̃ ′ , all of the clusters 
have been infected and the epidemic is making its way through the gas phase. In this regime, which we call Diff 
for diffusive, there is little difference between the systems with and without quenched disorder. The locations of 
the phase boundaries should depend on the amount of quenched disorder and the activity level of the particles.

Effect of changing quenched disorder density.  To test the robustness of our results against changes in 
the density of quenched disorder sites, in Fig. 9a–g we show the distribution P(td) of the epidemic durations in 
a sample with Nobs = 1600 obstacles. In the low transmissibility regime, successful outbreaks are further sup-
pressed as the density of obstacles increases since the large clusters that form for low obstacle density are broken 
apart at higher obstacle density, as illustrated in Fig. 9i. In the high transmissibility regime of β/µ ≥ 2 , however, 
even the larger number of quenched disorder sites still has a negligible effect on outbreak duration. Thus our 
observation that quenched disorder becomes irrelevant for high transmissibility remains robust as the number 
of obstacles increases.

To quantify the impact of quenched disorder in the low transmissibility regime for the samples with 
β/µ = 0.5 , we integrate the total number of outbreaks Es in the successful window, defined to be outbreaks 
with td that falls above the red dashed line in Fig. 9c. We then obtain the relative fraction of successful outbreaks, 
Erel = Eobss /E0s  , where Eobss  is the number of outbreaks in samples with quenched disorder and E0s  is the number 
of outbreaks in samples without quenched disorder. In Fig 9h the plot of Erel versus Nobs indicates that as Nobs 
increases, there is a greater suppression of successful outbreaks compared to the disorder-free system. If the 
obstacle density became so high that the obstacles themselves begin to percolate across the sample, cutting it 
into disconnected regions, Erel could drop to zero and different behavior would emerge, but this regime will be 
studied in a future work.

Discussion
Our model suggests that active matter can be used to capture a variety of epidemic behaviors. There are a number 
of active matter systems, such as active colloids, in which the activity of the particles can be controlled on an 
individual basis using optical rastering methods. Experiments of this type have been developed in order to use 
active colloids to mimic group formation, to introduce an effective visual perception mobility, and to produce 
other kinds of collective behaviors such as quorum sensing31,32. In order to implement an S-I-R model, indi-
vidual active colloids could be traced and tagged according to their infective state, and when they interact with 
other colloids, there can be a probability that the infection will pass to a susceptible colloid. This can be done 
in a motility induced phase separated regime or in a diffusive regime for varied β/µ . The experiments could 
then be repeated multiple times to obtain the average behavior. Within a given sample, certain colloids could 
remain inactive and be counted as passive or obstacle particles, or actual obstacles could be put in place on the 

Figure 8.   Phase diagram of the epidemic evolution in the low and high transmissibility regimes. The phase 
diagram of the different regimes as a function of transmissibility β/µ vs reduced time t̃ ′ based on the features 
of the curves in Fig. 7 . For β/µ ≤ 1.5 , the system is in a low transmissibility (LT) regime where s∞ > 0 and 
the addition of obstacles can strongly impact the propagation of the epidemic. The front propagation phase at 
high transmissibility is marked FP, and in the secondary cluster phase (CP), the addition of obstacles actually 
increases the spread of the infection. In the diffusive regime (Diff), the obstacles do not affect the epidemic 
spread.
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substrate. Additionally, a wealth of rules could be introduced, such as the inclusion of hyperactive particles that 
could serve as superspreaders, as well as possible mitigation effects. This could potentially position active matter 
as a table-top experimental system for modeling epidemics. Our work indicates that active matter can be used 
as a simulation tool to study epidemics in a system that can be tuned readily between states that are sensitive to 
spatial disorder and states that are insensitive to disorder.

In conclusion, we have shown how an active matter system of self-propelled particles can be used to model 
spatial heterogeneity in an S-I-R epidemic spreading model. The active particles naturally form spatial clusters 
in the motility induced phase separated regime. For low transmissibility, the epidemic spread is percolative and 
the system is sensitive to the addition of quenched disorder, which both increases the probability of a failed 
outbreak and increases the average duration of successful epidemics. In this regime, the mixing hypothesis of 
classical S-I-R models breaks down. For high transmissibility, all of the particles are eventually infected and the 
epidemic spreads in well defined fronts. In this case, the addition of quenched disorder can slow the spread of the 
epidemic at early times by slowing the propagation of the initial front. At later times, however, since the quenched 
disorder introduces a larger number of small clusters in the gas phase, the epidemic can spread more efficiently 
compared to a system without quenched disorder. Our results indicate that spatial disorder can impact epidemic 
spreading in both the high and low transmissibility regimes. Our system could be realized experimentally using 
light activated colloidal particles with specified feedback rules to mimic the S-I-R model, and our results suggest 
that active matter systems could provide a new way to create table-top epidemic experiments.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author upon reasonable request.

Code availability
The codes generated and used during the current study are available from the corresponding author on reason-
able request.
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