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Fibroblast growth factor receptor 4 (FGFR4) is a tyrosine kinase receptor that is a member
of the fibroblast growth factor receptor family and is stimulated by highly regulated ligand
binding. Excessive expression of the receptor and its ligand, especially FGF19, occurs in
many types of cancer. Abnormal FGFR4 production explains these cancer formations, and
therefore, this receptor has emerged as a potential target for inhibiting cancer
development. This review discusses the diverse mechanisms of oncogenic activation
of FGFR4 and highlights some currently available inhibitors targeting FGFR4.
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INTRODUCTION

FGFR1–4 and FGFR5 comprise the fibroblast growth factor receptor (FGFR) family (Wang and
Ding, 2017). Among these members, FGFR1–4 are typical tyrosine kinase receptors, including a cell
surface segment, a one-way cross-membrane section, and a protein–tyrosine kinase domain inside
the membrane. FGFR5 is also called FGFRL1, and it differs from the others in that it is missing the
intracellular kinase domain (Regeenes et al., 2018). In the process of FGF–FGFR binding, the
receptor and the ligand combine to form a dimer stimulated and autophosphorylation complex leads
to downstream pathways, including protein serine–threonine kinase (AKT), mitogen-activated
protein kinase (MAPK), and signal transducer and activator of transcription 3 (STAT3)-activated
pathways (Helsten et al., 2016). Current researchers have determined that the FGFR protein family
participates in the generation of tumor cells, angiogenesis, immigration, differentiation, aggression,
and drug resistance (Haugsten et al., 2010).

Among the FGFR family members, the role of FGFR4 in cancer has been expounded on by only a
few studies. Herein, this review discusses the characteristics of FGFR4 signaling in tumor progression
and features some small molecular inhibitors that target FGFR4, intending to increase our
understanding of this pathway.

FGFR4 IN CANCER

Genetic aberrations in FGFR4 are prevalent among various types of cancer like breast cancer,
pancreatic cancer, and especially hepatocellular carcinoma (HCC) (Figure 1), and these aberrations
are associated with poor prognoses (Shah et al., 2002; Sawey et al., 2011; Jain and Turner, 2012). The
irregular expression of the FGFR4 pathway may be induced by gene amplification,
posttranscriptional errors (Helsten et al., 2016), FGFR4 mutations (Futami et al., 2019),
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translocations, isoform switching, alternative splicing of FGFR4
(Kwiatkowski et al., 2008), and overexpression of specific ligands
in cancer or stromal cells (Miura et al., 2012).

Regarding the aberrations and abnormalities in the FGFR4
gene, except for point mutations, gene fusions, and splice
variations, one crucial genetic mutation is the single nucleotide
polymorphism (SNP). SNPs can exist in various regions of DNA
and can affect the production of transcription factors, translation,
and gene expression. Recently, the popularity and widespread use
of SNP analysis platforms have made the identification of
individual SNPs more convenient (Tsay et al., 2019). The
SNPs from FGFR4 have been recognized as an essential
participant in cancer occurrence and were associated with
prognosis in patients. Examples are FGFR4 rs351855 in HCC
(Sheu et al., 2015), FGFR4 SNP rs2011077 with rs1966265 in
urothelial cell carcinoma (Tsay et al., 2019), and FGFR4
rs2011077 and rs1966265 in oral squamous cell carcinoma.
FGFR4 can alter the production of relative transcript factors,
which influences subsequent translation and gene expression (Su
et al., 2018) and is directly related to patient survival (Chou et al.,
2017).

FGFR4-SPECIFIC LIGAND: FGF19

FGFs function mainly in paracrine and autocrine metabolism (Li,
2019). However, FGF19 subfamilies, including FGF19, FGF21,
and FGF23, act as endocrine factors or hormones that bind to
specific receptors. FGF19 plays an essential role in metabolism
under ordinary physiological conditions (Lin and Desnoyers,
2012). FGF19 subfamily proteins affect the enterohepatic
circulation of bile involved in glucose and lipid metabolism
and maintain homeostasis phosphorus and vitamin D3
(Dolegowska et al., 2019). Under normal circumstances, the
intestinal tract secretes FGF19, and it binds to FGFR4 on liver
cells through the hepatoenteral circulation to regulate
metabolism (Liu et al., 2020) (Figure 2). In disease states,
FGF19 might be crucial for the development and progression
of multiple cancers. The specific binding of ligand FGF19
combined with co-receptor β-klotho activated FGFR4. FGF19-
mediated activation of the phosphatidylinositol-3-kinase (PI3K)/
AKT, MAPK, STAT3, and epithelial–mesenchymal transition
(EMT) pathways might take part in the malignancy (Figure 3)
(McKinnon et al., 2018; Xin et al., 2018).

FIGURE 1 | FGFR4 gene expression in cancer. Expression of FGFR4 in different cancer types from The Cancer Genome Atlas (TCGA). On the x-axis are the
different cancer types in TCGA, and the y-axis depicts gene expression RNAseq of FGFR4 (IlluminaHiSeq), unit: log2 (norm_count+1).
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The FGF19 gene is located in 11q13.3, an amplified section of
which is usually found in human HCC (Wu and Li, 2011). An
orthotropic transplantation study confirmed that the
transplanted hepatocytes overexpressing FGF19 developed
tumors (Schwartz, 2011). A monoclonal FGF19-blocking
antibody was created to prove the function of FGF19 in
cancer development. When examining in vivo and chemically
induced liver tumor models, it was observed that the FGF19
antibody suppressed tumor growth (Desnoyers et al., 2008).
FGF19 gene amplification is common in several types of
cancers, such as lung squamous cell carcinoma (Lang and
Teng, 2019), breast cancer (Zhao et al., 2018), and esophageal
cancer (Liu et al., 2020) (Figure 4). It is suggested that a potent
approach to treating different types of cancer would involve
targeting the FGF19 gene to silence it.

OTHERREGULATORYFACTORSOF FGFR4

Identifying the active mechanisms of FGFR4 can be an optimal
strategy to develop new therapeutic inhibitors (Table 1).

MicroRNAs (miRNAs) play an essential role in developing
tumors because they can inhibit the transcription of
corresponding target genes (Ueda et al., 2010). Recent research
has claimed that miR-7-5p could bind to FGFR4 3’-UTR directly
(Tian et al., 2020). It has been demonstrated that miR-491-5p
suppresses tumor growth in certain cancers and can indirectly
inhibit FGFR4, thus reducing the SNAIL level and weakening
EMT-induced tumor migration (Yu et al., 2018). Another study
demonstrated that overexpressed miR-29c-3p reduced the
secretion of KIAA1199, a cell migration–inducing protein.
Subsequently, suppressing the EGFR and FGFR4/AKT
pathways’ excitation was ultimately harmful to EMT (Wang
et al., 2019).

Interleukin-1β (IL-1β) acts as an essential pro-inflammatory
cytokine mediating the innate immune response. It helps the host
resist the invasion of microorganisms and is beneficial for body
repair (Dinarello, 2011). Zhao et al. found that among the
inflammatory cytokines released in response to
lipopolysaccharide (LPS), an immune response resulted only
when IL-1β specificity restricted the expression of β-klotho.
After losing its co-receptor, FGF19 cannot successfully
combine with FGFR4. Thus, IL-1β restrained FGF19/FGFR4-
induced MAPK phosphorylation and tumor generation (Zhao
et al., 2016b). The result suggests that inflammatory cytokines,
especially IL-1β, can influence the activation of the FGF19/
FGFR4 signaling pathway in the tumor microenvironment.

Specificity protein (Sp) transcription factors (TFs) play an
essential role in promoting cancer. Accumulation of Sp1, Sp3, and
Sp4 in cells leads to tumor development in organisms (Suske
et al., 2005). One study showed that Sp TFs participate in the
occurrence and development of a tumor, and they also support
tumor resistance to drugs. Sp1, Sp3, and Sp4 are known as no
oncogene addiction (NOA) genes and have become relevant drug
targets (Safe et al., 2018). Another research demonstrated that the
Sp TFs control the FGFR family’s activation (Cavanaugh and
DiMario, 2017). Mutation analysis investigated the three Sp
binding sites on the FGFR4 promoter, and chromatin
immunoprecipitation and electromobility shift assays revealed
that Sp3 binding occurred at the location of the FGFR4 promoter.
After overexpression of Sp1 and Sp3, it was found that Sp1
inhibited FGFR4 expression, but Sp3 promoted FGFR4
expression (Cavanaugh and DiMario, 2017).

Forkhead box C1 (FOXC1), which belongs to the Forkhead
box (FOX) transcription factor family, participates in neural crest,
ocular, and mesodermal development. It performs a vital role in
lymphatic vessel formation, angiogenesis, and metastasis (Elian
et al., 2018). The data accumulated over the years demonstrate the
unique behavior of FOXC1 in cancer, particularly in basal-like
breast cancer (BLBC) (Wang et al., 2018a). Other studies
determined that FOXC1 is significantly involved in breast
cancer (BRCA) (Sabapathi et al., 2019) and also colon
adenocarcinoma (COAD) (Zhang et al., 2020), pancreatic
adenocarcinoma (PAAD) (Subramani et al., 2018), and
non–small-cell lung cancer (NSCLC) (Chen et al., 2016).
Using genetic epistasis analysis, Liu found that FOXC1
attaches to integrin α7 (ITGA7) and FGFR4 and then activates
their expression in metastatic colorectal cancer (CRC). FOXC1

FIGURE 2 | Metabolic pathways of FGF19 during normal conditions.
Under normal conditions, FGF19 is secreted from the intestinal canal and
enters into the enterohepatic circulation into the liver and subsequently binds
to the specific receptor activating the FGF19/klotho/FGFR4 pathways.
This results in the metabolic regulation of glucogenesis, fatty acid oxidation,
glycogen synthesis, triglyceride synthesis, and bile acid synthesis.

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 6334533

Liu et al. FGFR in cancer

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FIGURE 3 | Tumorigenic mechanism of the FGF19/klotho/FGFR4 signaling pathways. Once FGF19 binds to FGFR4 with klotho, tyrosine residues in the
intramembrane TK2 domain are phosphorylated, and FGFR4 is activated. Phosphorylated FGFR4 activates downstream kinases, including PKC, ERK, AKT, Src, and
GSK3β. Cells respond to these activated kinases, and survival, proliferation, and metastasis result.

FIGURE 4 | FGF19 gene copy number in cancer. The gene copy number of FGF19 in different cancer types from The Cancer Genome Atlas (TCGA). On the x-axis,
there are 31different TCGA tumor types, and on the y-axis, there are the gene copy numbers of FGF19; unit: Gistic2 copy number.
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overexpression–mediated CRC metastasis can be reverted using
an FGFR4 inhibitor (Liu et al., 2018). The research shows that
targeting the FGFR4 signaling pathway might be a useful
approach that can be used to treat FOXC1-driven CRC
metastasis.

Transforming growth factor β1 (TGF-β1) is significantly
associated with regulating cell multiplication, differentiation,
invasion, and tumor promotion (Troncone et al., 2018).
Among animal models, the TGF-β family significantly impacts
metabolism and plays a critical role in tumor transformation,
proliferation, invasion, extracellular matrix (ECM) production,
and immune reaction (Xie et al., 2018). In the tumor
microenvironment, TGF-β1 modulates and interferes with
EMT progression, is associated with metastasis, and directly
binds to membrane receptors TβR-1 and TβR-2 to exert its
effect (Fransvea et al., 2009). Few studies have expounded on
a correlation between TGF-β and FGFR4. The expression of
FGFR4 is correlated with the diagnosis of HCC, which is
related to TGF-β expression. The invasive and metastatic
effects of TGF-β1 are realized by inducing FGFR4 and its
downstream MAPK pathway (Huang et al., 2018).

FGF19/FGFR4 ACTIVATION RESULTS IN
RESISTANCE TO THERAPIES

The main reason cancer becomes resistant to chemotherapy is
that cancer cells have formed antiapoptotic signaling pathways
(Zhao et al., 2016a). Substantial studies have shown that the
stimulation of the FGFR4 pathway endows cancer with the
capacity to resist cancer therapies and chemotherapies (Prieto-
Dominguez et al., 2018). A recent study found that breast cancer
cell lines can express FGFR4 to gain the ability to resist apoptosis
when treated with cyclophosphamide and doxorubicin, while this
capacity disappears when the FGFR4 gene is silenced (Andre and
Cortes, 2015). FGFR4 overexpression increased Bcl-x expression
at the mRNA and protein level through the MAPK cascade,
implying that FGFR4 inhibitors (e.g., opposing antibodies)
combined with chemotherapeutic drugs should be used for
treating FGFR4-overexpressing cancers (Roidl et al., 2009).

Another study showed that drug-resistant cells activate FGFR4
signaling to phosphorylate FGF receptor substrate 2 (FRS2) and

then activate downstream MAPK/ERK signaling. Inhibitors that
block the FGFR4-FRS2-ERK signaling pathway restrain the
glycolytic phenotypes and chemoresistance of resistant cells
(Xu et al., 2018). Ahmed et al. (2016) investigated CRC cells
that can resist radiotherapy via expression of FGFR4 and
discovered that inhibiting FGFR4 can weaken the RAD51-
mediated double strain break (DSB) repair, hence attenuating
the anti-radiation effect. FGFR4 may be an efficient target for
combination therapies to improve radiation response.

FGF19 also plays a crucial role in resistance to therapies
(Figure 5). In HCC, overexpression of FGF19 not only
promotes EMT by activating the GSK3β/β-catenin and STAT3
pathways (Zhao et al., 2016b) but it also shields HCC cells against
endoplasmic reticulum (ER) stress. In liver cancer, ER stress
enhanced the transcriptional activation of FGF19 mediated by
ATF4, and antiapoptotic ability was observed to increase during
ER stress (Teng et al., 2017). Small nucleolar RNA host gene 16
(SNHG16) is a proto-oncogene common to various types of
cancer (Gong et al., 2020). One recent study revealed that
SNHG16 increased HCC growth and antiapoptosis through
the SNHG16/miR-302a-3p/FGF19 pathway (Li et al., 2019).
These studies indicate that FGF19 is associated with
tumorigenesis, and targeting it may be useful as a form of
cancer therapy.

NOVEL SMALL-MOLECULE INHIBITORS
OF FGFR4 IN CANCER

The FGF19/FGFR4 pathway participates in metabolism and
maintaining cell processes such as growth and reproduction.
Suppression of the expression of FGFR4 and its ligand or the
impairment of its downstream activation has been known as the
main reason for tumor growth (Liu et al., 2020). It has been
reported that FGFR4 possesses three immunoglobulin-like
domains (IgI, IgII, and IgIII) outside the membrane structure
that is necessary for a particular ligand, which is also the case for
the other three FGFRs (Dai et al., 2019). More importantly, unlike
FGFR1–3, there are no splice variants of IgIII in FGFR4 (Touat
et al., 2015), which may explain why pan-FGFR inhibitors have a
low affinity for FGFR4 and suggests that developing selective
FGFR4 inhibitors could be an effective therapeutic strategy.

TABLE 1 | Novel activators of FGFR4 in cancer cells.

Activators Category Mechanism Functions

MiR-
491-5p

microRNA Binding to the FGFR4 RNA Suppressed EMT and tumor metastasis

MiR-
29c-3p

microRNA Decreased expression of KIAA1199, subsequently suppressed the activation
of the FGFR4/Wnt/β-catenin

Harmful to the EMT

IL-1β Pro-inflammatory
cytokine

Inhibited β-klotho expression, thus inhibiting FGF19/FGFR4-induced Erk1/2
activation

Promote cell growth, migration, and invasion
capacity

Sp1 Transcription factors Binding to promoter location, repress FGFR4 gene activity Repress myogenic differentiation
Sp3 Transcription factors Binding to promoter location active FGFR4 gene activity Promote myogenic differentiation
FOXC1 Transcription factors FOXC1 directly binds its target genes ITGA7 and FGFR4 and activates their

expression
Promote lymphatic vessel formation, angiogenesis,
and metastasis

TGF-β1 Cytokines Induce FGFR4 expression through the ERK pathway Promote EMT and cancer dissemination

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 6334535

Liu et al. FGFR in cancer

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Numerous clinical trials have been performed to test several drugs
that specifically target FGF19/FGFR4. Thus far, the most
investigated approach in anticancer targeting of the FGF19/
FGFR4 pathway has been the use of small molecular inhibitors
of FGFR4 kinase.

In order to develop effective anticancer inhibitors of FGFR4,
great efforts have been made. Several multi-targeting tyrosine
kinase inhibitors (TKIs) have been developed for treatment, such
as ponatinib (Massaro and Breccia, 2018), dovitinib (Andre et al.,
2013), and lucitanib (Hui et al., 2020). Although these inhibitors
have good kinase inhibitory activity against FGFR4, their
therapeutic effects are limited by their inhibitory effects on
other enzymes (Gavine et al., 2012). After analyzing the ATP
domain of the FGFR family, a cysteine residue was found. It is
possible to design some covalent inhibitors for this residue to
inhibit the phosphorylation of FGFR. Pan inhibitors have been
successfully reported as covalent inhibitors of FGFR. They all
bind the cysteine residue position at position 477, such as TAS-
120 (Goyal et al., 2019), FIIN-1 (Zhou et al., 2010), and FIIN-2
(Tan et al., 2014). However, when using these inhibitors, because
of targeting both FGFR1 and FGFR3, severely toxic side effects
occur in patients with hyperphosphatemia (Wang et al., 2018b).
In view of the important fact that the FGFR family shares
sequence homology about its kinase domain, developing a
selective inhibitor of FGFR4 has been a daunting challenge. In
2015, Hagel et al. reported a selective FGFR4 inhibitor, BLU-
9931, by binding the conserved Cys552 in the hinge region of the

FGFR4 protein. This may be an effective treatment strategy.
Herein, we reviewed the clinical trial results for FGFR4
inhibitors for different cancer types (Table 2).

According to Figure 1, we had already known that the
abnormal expression of FGFR4 occurs obviously in
cholangiocarcinoma and liver cancer. In fact, since the
occurrence and development of liver cancer are more
dependent on FGFR4, the current FGFR4 inhibitors are
mainly aimed at the treatment of HCC (Lu et al., 2019).
Cholangiocarcinoma is more commonly treated with FGFR2
inhibitors (Raggi et al., 2019). BLU-9931 is an irreversible
kinase inhibitor that acts powerfully on FGFR4 but exhibits no
sensitivity to other FGFRs, indicating promising kinase group
selectivity (Lang et al., 2019). BLU-9931 has the potential to be
used as an FGFR4-selective inhibitor to treat HCC patients with
FGFR4 signaling abnormalities for the first time (Hagel et al.,
2015). BLU-554 is a highly selective kinase inhibitor that inhibits
FGFR4 with an IC50 of 5 nM; in contrast, the IC50 range for
FGFR1–3 is 624–2,203 nM (Sarker et al., 2016). BLU-554 is
currently being tested in ongoing clinical trials to treat HCC
(NCT02508467, NCT04194801, etc.). FGF401 is a novel
reversible covalent kinase inhibitor that is highly efficient and
specific to FGFR4 while having little effect on the other FGFR
members and other kinases in the kinome (Weiss et al., 2019). A
clinical trial with FGF401 (NCT02325739) for HCC and other
solid malignancies is now complete. Joshi et al. used a structure-
guided drug design to create H3B-6527, a novel inhibitor

FIGURE 5 |Drug resistancemechanism induced by FGF19/FGFR4. Novel activators act on FGF19/FGFR4, which then activates GSK3β/β-catenin with the STAT3
pathway and confers drug resistance to cells.
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selectively and covalently bound to FGFR4. A series of PDX
models revealed that H3B-6527 has a beneficial therapeutic effect
on patients with overexpression of FGF19, and clinical trials are
currently being conducted (NCT03424577, NCT02834780, etc.).
INCB062079 is a useful and discriminating irreversible inhibitor
targeting FGFR4 (>250-fold vs. FGFR1/2/3) that suppresses the
proliferation of HCC driven by increased expression of FGF19
(Ruggeri et al., 2017). Toxicological experiments are currently
underway to investigate the safety and tolerability of INCB062079
in patients with a variety of malignancies (NCT03144661).

Although the current task of advancing our knowledge and the
use of small-molecule FGFR4 inhibitors is highly
interdisciplinary, inhibitors against FGFR4 must be carefully
evaluated based on the clinical data. At present, only a few
single-agent FGFR4 inhibitors have been confirmed to be
efficient for therapy (Lu et al., 2019). Improving our
understanding of the pathogenesis that occurs in tumors that
overexpress FGFR4, as well as the elucidation of elements that
alter the sensitivity to endurance of FGFR4 inhibitors, is vital for a
more accurate selection of patients and for increasing the success
rate of cancer treatment with FGFR4 inhibitors (Knights and
Cook, 2010).

CONCLUSION

Many investigations and studies have demonstrated that the
FGF19/FGFR4 pathway influences cells’ growth, development,

and their differentiation in tumors (Katoh, 2016). Abnormal gene
expression of FGFR4 with its ligand FGF19 has been determined
as a vital factor in tumor growth (Babina and Turner, 2017).

The research on FGFR4 has focused on the exploitation of
small molecular inhibitors (Mellor, 2014). Herein, we reviewed
various inhibitors of FGFR4 in the cancer microenvironment,
including immune evasion, paracrine signaling, and angiogenesis
(Repana and Ross, 2015). However, the effectiveness of FGFR4
inhibitors is still being challenged (Wang et al., 2017). Compared
to other RTKs, the selectivity of FGFR4 remains relatively new,
and sometimes it needs to be used in combination with other
adjuvant drugs in clinical treatment to be effective (Jiang et al.,
2017). Moreover, their efficacy seems to apply to only a few
cancers (Quintanal-Villalonga et al., 2019a). Additional
preclinical studies are required to explore FGFR4 inhibitors
further and increase their effectiveness during application.

FGFR4 inhibitors have currently attained remarkable
potency, and the use of small-molecule inhibitors remains
a powerful therapeutic approach (Heinzle et al., 2014).
Multiple FGFR4 inhibitors can be applied to treat cancers
where FGFR4 signaling is responsible for tumor
development. Besides, the use of FGFR4 inhibitors remains
a practical approach in cancer patients with high FGFR4
expression. Selective FGFR4 inhibitors are advantageous
because of their low toxicity and their ability to be
combined with other treatments for more optimal results
(Quintanal-Villalonga et al., 2019b). Although FGFR4-based
therapy is still relatively new, it should be completely utilized

TABLE 2 | Overview of novel small-molecule inhibitors of FGFR4 and clinical studies.

Drug Structural
formula

Target(s) Clinical trial ID Tumor types Phase Status

NVP-BGJ398 Pan-FGFRs
inhibitor

NCT01975701 Recurrent resectable unresectable
glioblastoma

II Completed

NCT03510455 Oncogenic osteomalacia II Recruiting
AZD4547 Pan-FGFRs

inhibitor
NCT01824901 Non–small-cell lung cancer I/II Completed
NCT01791985 Breast cancer I/II Completed

JNJ-42756493
(Erdafitinib)

Pan-FGFRs
inhibitor

NCT02421185 Carcinoma, hepatocellular I/II Completed
NCT02365597 Urothelial cancer II Active, not

recruiting
NCT03238196 Metastatic breast cancer I Recruiting
NCT04172675 Urinary bladder neoplasms II Not yet recruiting

PRN-1371 Pan-FGFRs
inhibitor

NCT02608125 Solid tumors I Active, not
recruiting

ASP5878 Pan-FGFRs
inhibitor

NCT02038673 Solid tumors I Completed

BLU-9931 FGFR4 (irreversible) NO
BLU-554 FGFR4 NCT02508467 HCC I Active, not

recruiting
NCT04194801 HCC I/II Not yet recruiting

FGF401 FGFR4 (reversible) NCT02325739 HCC I/II Completed
H3B-6527 FGFR4 NCT03424577 Healthy participants I Completed

NCT02834780 HCC I Recruiting
INCB062079 UNKNOW FGFR4 (irreversible) NCT03144661 HCC I Recruiting

Cholangiocarcinoma
Esophageal cancer
Nasopharyngeal cancer
Ovarian cancer
Solid tumors
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for treating human diseases. Various modern developments
are required to explain FGFR4 biology and its treatment
strategy further.

Cancer treatments’ resistance to carcinogenic drivers remains a
major clinical challenge (Zhao et al., 2016a; Zheng et al., 2019).
Various mechanisms may induce this phenomenon, but the
consequence is unavoidably relative to signaling reactions that
promote cell antiapoptosis and survival (Gatenby and Brown,
2018; Yang et al., 2019). Most kinase inhibitors are hydrophobic
with relatively small molecular weights, and they competitively bind
to theATPdomain of the related kinase to cause inhibition. A typical
resistance mechanism is that the kinase domain has a mutation that
blocks the drug from combining with the active site (Jiao et al., 2018;
Zhao et al., 2020). It is this mechanism that limits the application of
FGFR4 inhibitors. One study found that the FGFR4 gene structure
had been altered in patients who develop drug resistance to FGFR4
inhibitors in HCC (Hatlen et al., 2019). These changes were later
confirmed by in vitro and in vivo assays. In the case of continuous
dependence on oncogenes, the concept of differential resistance is of

great significance for cancer treatment and contributes to the clinical
progress of a new generation of FGFR4 inhibitors, which considers
resistance mechanisms while maintaining selectivity for FGFR4.
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